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Abstract

We establish a new and intriguing connection between the Fokker-

Planck equation with gradient drift term and an associated free energy

functional. Namely, we demonstrate that such a Fokker-Planck equation

may be interpreted as a gradient flux, or a steepest descent, of a free

energy functional with respect to a certain metric. This is accomplished

through the construction of a time-discrete iterative variational scheme

whose solutions converge to the solution of the Fokker-Planck equation.

The time step in this scheme is governed by the Wasserstein metric on

probability measures.

Keywords: Fokker-Planck equation, gradient flux, free energy,

Wasserstein metric.

PACS numbers: 02.30.Jr, 02.30.Wd, 02.50.Ey, 05.40,+j.

1 Introduction and overview

Many important questions in statistical mechanics and in the theory of stochas-

tic processes may be cast in terms of a free energy functional of the form

F = E + P~lS, where E is the potential energy, —5 is the entropy, and /?

plays the role of the inverse temperature. For a system with a finite or a count-

able number of states £i,X2, • • •, the familiar expression for the free energy is

where ^ is a potential and pi is the probability of state x*. The form of the

entropy —S = — ^Pilogpi arises from the usual Gibbs-Boltzmann statistical

description. For a system with continuous state-space, say J?n, the free energy



is given by the obvious analogous expression

F(p) = [ Vpdx + 0-1 f plogpdx, (1)

where p is a probability density on Rn,

E(p):= f Vpdx, (2)
JRn

is the energy functional, and

S(p):= / plogpdx, (3)
JRn

is the negative of the Gibbs-Boltzmann entropy functional. The potential \I> is,

in general, a nonconvex function.

In an attempt to go beyond the present framework of the calculus of varia-

tions, we have initiated an investigation [1] on functionals of the form (1), and

on generalized free energy functionals of the form

(4)u)= fvdv + p-1 flog^dv.

Here, v is a probability measure, /x is a fixed reference measure (in the case

of (1), /x is just Lebesgue measure), and — / l o g ^ d v is the Kullback relative

entropy of v with respect to \x [2]. We recognize in (4) the Young measure

formulation of a variational principle [3] coupled to an entropic stabilization

principle. The extrema of (4) deliver in the limit as /3~l —• 0 the relaxation,

or the Young measure distribution, of a classical but nonconvex variational

principal. Put another way, the integral ftydv represents the contemporary

approach to the calculus of variations, and in our interpretation, it has become

ineluctably wedded to an entropy functional. In general, there is an intriguing

connection between variational functionals of type (1) and (4) and simulated

annealing procedures for global optimization [4].



Let us now focus our attention on the classical free energy (1). The minimizer

of this functional is the Gibbs density

ps(x) = Z~1exp(-/?*(x)) , with Z = exp(-/?*(x)) dx. (5)
JRn

Note that, in order for equation (5) to make sense, * must grow rapidly enough

to ensure that Z is finite.

It is known [5, 6] that the Gibbs density is the stationary solution of the

Fokker-Planck equation

The Fokker-Planck equation (6) plays a prominent role in statistical physics and

in the study of fluctuations in physical, chemical, and biological systems [5, 6, 7].

Its importance in the study of energy landscapes in physical and biological sys-

tems is evidenced by its conspicuous appearance in many presentations at this

particular conference. It is inherently connected with the theory of stochastic

differential equations: A (normalized) solution to the Fokker-Planck equation

provides the probability density for a stochastic process whose dynamics is gov-

erned by the Ito stochastic differential equation

dX{t) = -W(X(t))dt + x/2/3"1 dW(t).

Here, W(t) is a standard n-dimensional Brownian motion. The Gibbs measure

ps(x)dx is the unique invariant measure for the Markov process X(t) [5, 6].

This illustrates that a variational principle involving a free energy functional

of the form (1) (or more generally of the form (4)) may be associated with a

stochastic process.

It may be shown [6] that the free-energy is an H-function for the Fokker-

Planck dynamics: If the probability density p(t,x) is a solution of (6), then



F(p(t,x)) is a decreasing function of time. Our main purpose here is to make

prominent a more compelling, and previously unrecognized, connection between

the Fokker-Planck dynamics and the free energy functional. Specifically, we

shall demonstrate that the Fokker-Planck dynamics may be interpreted as a

gradient flux, or a steepest descent, of the free energy functional. Technically,

the notion of a gradient flux or a steepest descent makes sense only in the

presence of an appropriate metric. The requisite metric in the case of the

Fokker-Planck equation is the Wasserstein metric (to be defined below) on the

set of probability measures having finite second moments. To make precise

the sense in which the Fokker-Planck equation may be regarded as a steepest

descent, or gradient flux, of the free energy functional with respect to this metric,

we switch to a discrete time formulation. Namely, we develop a discrete, iterative

variational scheme whose solutions converge, in a sense to be made exact below,

to the solution of the Fokker-Planck equation. The time-step in this iterative

scheme is associated with the Wasserstein metric.

To illustrate these ideas, let us consider the classical diffusion equation

,x), *€(0,oo), xtRn,

which is the Fokker-Planck equation associated with a standard n-dimensional

Brownian motion. It is well-known (see, for example, [8, 9]) that this equation

is the gradient flux of the Dirichlet integral ^ JRn |Vp|2 dx with respect to the

L2(Rn) metric. The classical discretization is given by the scheme

Determine p^ that minimizes

over an appropriate class of densities p. Here, h is the time step size. On the



other hand, it is a special case of our results below that the scheme

Determine p^ that minimizes

\d(pk-\p)2 + h f plogpdx

over all p € K,

is also a discretization of the diflFusion equation when d is the Wasserstein met-

ric. Here, K is the set of all probability densities on Rn having finite second

moments. In particular, this allows us to regard the diffusion equation as a

steepest descent of the functional JRn plogpdx with respect to the Wasserstein

metric. This reveals a novel link between the diffusion equation and the Gibbs-

Boltzmann entropy of the density p. Furthermore, this formulation allows us to

attach a precise interpretation to the conventional notion that diflFusion arises

from the tendency of the system to maximize entropy.

We shall now define the Wasserstein metric and briefly review its properties

and interpretations.

2 The Wasserstein metric

The Wasserstein distance, d(/xi,/Z2), between two probability measures fi\ and

/12 on Rn is defined by the formula

= inf / \x-y\2p(dxdy), (7)

where 'P(/ii,/x2) is the set of all probability measures on Rn x Rn with first

marginal fii and second marginal /i2- More precisely, a probability measure p

is in 7>(/xi,/i2) if for each set A C Rn there holds

p(A x Rn) = ^(A) , p(Rn xA)



It is well known that d defines a metric on the set of probability measures /J,

on Rn having finite second moments: JRn \x\2fi(dx) < oo [10, 11]. We note that

the Wasserstein metric may be equivalently defined by [10]

d(/ii,/x2)
2 = i n f E | X - r | 2 , (8)

where E(t/) denotes the expectation of the random variable 17, and the infimum

is taken over all random variables X and Y such that X has distribution fi\ and

Y has distribution /i2. Since E( |X-Y|2) = E{\X\2)+ E(|Y|2) - 2 E(X-Y), and

since E(|X|2) = JRn \x\2 fjn{dx) and E(|Y|2) = JRn \y\2 fi2(dy) are fixed, we see

that the infimum in (8) is attained when the correlation between the random

variables X and Y is maximal. The Wasserstein metric induces a weak topology

on the space of probability measures.

The variational problem (7) is an example of a Monge-Kantorovich mass

transference problem with the particular cost function c(x,y) = |x — y\2 [10].

Variational principles of this type find applications in many disciplines, including

economics, statistics, and differential geometry [10, 12]. An infimizer p* G

^(^1,^2) is referred to as an optimal transference plan. When /zi and /i2 have

finite second moments, the existence of such a p* for (7) is readily verified

[11, 13]. In the case that the measures fi\ and /i2 have densities p\ and p2 with

respect to the Lebesgue measure, we will write V(pi, p2) for the set of probability

measures having first marginal /ii and second marginal /i2. Correspondingly,

we will denote by d(pi,p2) the Wasserstein distance between fi\ and /LZ2. This

is the situation that we will be concerned with in the sequel.



3 The discrete scheme

We shall now construct a time-discrete scheme that is designed to converge in an

appropriate sense (to be made precise below) to a solution of the Fokker-Planck

equation. Our construction is motivated by a similar scheme developed by Otto

in an investigation of pattern formation in magnetic fluids [14]. It was in [14]

that the connection between the Wasserstein metric and dynamical problems

involving diffusion or dissipation was first illustrated.

We assume for simplicity that the potential \£ is smooth and nonnegative and

that it satisfies appropriate growth conditions. In particular, we allow for cases

in which JRn exp(—0ty) dx is not defined, so that the stationary density ps given

by (5) does not exist. These assumptions allow us to treat a wide class of Fokker-

Planck equations, including the classical diffusion equation §£ = ^9""1Ap. We

also introduce the set K of admissible probability densities:

K := { p: R n - > [0 , o o ) I / p(x)dx = l , [ \x\2p(x)dx < o o } .
1 ' JRn JRn '

With these assumptions and definitions in hand, we now formulate the iter-

ative discrete scheme:

Determine p^ that minimizes

over all p e K.

where p^ = p° is a fixed probability density in K. This scheme exhibits two

competing tendencies. On the one hand, there is the tendency to minimize

the free energy functional F at each step, while, on the other hand, there is the

tendency to maintain a large correlation between successive iterates (see eq.(8)).

The existence and uniqueness of solutions essentially follow from the fact



that (9) is a strictly convex variational scheme. In fact, the constraint set K is

convex, and the objective functional \ d{p^k~l\ p)2 -f hF(p) is strictly convex.

Details are provided in [15].

4 Convergence to the solution of the Fokker—

Planck equation

Our main result is that an appropriate interpolation of the solution to the scheme

(9) converges to the unique solution of the Fokker-Planck equation (6). The

convergence result that we can establish is:

THEOREM Let p° € K satisfy F(p°) < oo. For given h > 0, let {p^j

be the solution of (9). Define the interpolation ph'- (0, oo)x.Rn —• [0, oo) by

ph(t) = p^ for te[kh,(k + l)h) and k € N U {0} .

Then as h I 0,

ph(t) -* p(t) weakly in L ^ J T ) for all t € (0, oo), (10)

where p e C°°((0, oo)xRn) is the unique solution of the Fokker-Planck equation

(6) with the initial condition p(0,x) = p°(x) interpreted in the sense that

p{t) -* p° strongly in Ll(Rn) for t[0, (11)

and with

M(p), E(p) e L°°((0,T)) for all T < oo, (12)

where M(p) = JRn |x|2p(x) dx.

The proof of this Theorem, which is given in [15], is rather lengthy and

technical. The crucial step in the analysis, however, is to demonstrate that the



first variation of the functional

KBp~±d(plk-1\p)2 + hF(p) (13)

with respect to the independent variables does indeed yield a time-discrete

scheme for the Fokker-Planck equation. We shall now illustrate this fact. For

simplicity, we will set /? = 1.

Let £ € Co°(Rn,Rn) be a smooth vector field with bounded support, and

define the associated flux {$r}r€/?> by

dT $T = f o $ r for all r € JR and $o = id.

For any r € JR, let the measure pT(y) dy be the push forward of p^k\y) dy under

$T. This means that

/ Pr(y)C(y)dy = f p{k)(y)«*Ay))dy for all C € C°(Rn). (14)

Since $T is invertible, (14) is equivalent to the following relation for the densities:

de tV$ T p r o$ T = pW . (15)

Because p^ minimizes (13), we have for each r > 0

> 0,

(16)

We now examine this inequality in the limit r I 0. To begin with, we investigate

the first variation of the square of the Wasserstein distance. To this end, let p

be optimal in the definition of d{p^k~1\ p^)2 (see Section 2). The formula

= f
JR

/
RnxRn JRnxRn

then defines a p r € Vip^^^^r). Consequently, we have



/ \ { \ y ) - x \ 2 -\\y-x\2)p{dxdy),
RnxRn

limsupl ( H A ' U ) 2 " i

which implies that

(y-x)'Z(y)p(dxdy). (17)

A straightforward but tedious analysis using (14) and (15) reveals that the first

variations of E and 5 are given by

dT

and

d_ fEY^ M _ / T7\Iif».\.Cf».\ *W(..\ J». ng\

&lS(Pr)]r=0 = - f PWdiv£dy. (19)
JRn

Appealing now to (16),(17), (18), and (19) (and the symmetry in £ —> — £),

we see that

/ (y-x)'£(y)p(dxdy) + hf (V*-£-divO pW dy = 0
JRnxRn JRn

(20)

Also, using the fact that p e V{p^k"l\p^) together with Holder's inequality,

we find that

/ [
Rn JRnxRR

(x - y)-VC(y)) P(dxdy)\

for all C € Cg°(Rn). Now, choosing £ = VC in (20), we obtain

- AC) p(fc)} dy

< |sup|V2C| ^ d ^ - 1 ) , ^ ) 2 for all C € C0°°(

10



Upon (formally) integrating by parts, the integral on the left hand side of (21)

becomes

/ - P(k~X)) - div(p<*> V*) - Ap<*>) dy./
Rn

In (21), therefore, we recognize a time-discrete version of the Fokker-Planck

equation.

The conclusions of the Theorem now follow from a careful analysis of the

limit h i 0. We refer the reader to [15] for the mathematical details.

REMARKS

1. A finer analysis reveals that

ph ~* P strongly in Ll((0,T)xRn) for all T < oo.

2. With minor modifications to the scheme (9), we can establish an analogous

convergence theorem for Fokker-Planck equations with time dependent diflFusion

coefficient (i.e., for f3 = (3(t)). This could perhaps lead to some new insight

into or improvement upon cooling schedules for the simulated annealing type

algorithms for global optimization. We plan to explore these possibilities in

future investigations.
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