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1. Introduction

Oscillatory phenomena and the characterization of limits of nonlinear quantities of os-
cillating sequences have been sucessfully analyzed by means of Young measures. These
measures where first introduced by Young [37] to study non-convex problems in optimal
control theory and to provide the appropriate framework for the description of gener-
alized minimizers in the calculus of variations. Recently Young measures have become
an important tool in the study of nonlinear partial differential equations ([10], [12], [13],
[30], [32], [33], [34], [36]) and the analysis of oscillatory behavior in non-convex variational
principles that arise in models of solid-solid phase transitions ([7], [8]). Characterizations
of Young measures associated to minimizing sequences of such functionals as well as to
general sequences of gradients bounded in L^ft) have been found in [20] and [21]. See
also [28].

One of the main drawbacks of Young measures is that they miss completely con-
centration effects. Indeed, sequences may share the same Young measure and yet one
may exhibit concentrations while the other does not. Several ways of understanding and
manipulating concentrations have been proposed. We refer the reader to [14], [15], [18],
[19], [23], [24], [29], [35] and [36] for some of these methods. Another possibility is to
use varifolds or indicator measures following the works [3], [4], [17], [27]. This is the
point of view that we will take here, and focus on sequences that are constrained to be
gradients. A similar approach has been employed in [2] for unconstrained sequences that
are bounded in L1.

The notion of a varifold has been used to describe certain nonlinear limits of oscillating
measures, and it plays a role complementary to that of the Young measure. In fact, the
Young measure associated to a sequence {un}, which is bounded in 1^(0), describes the
effect of oscillations on the limits of {/(tin)} whenever the nonlinearity / has growth of
order strictly less than p, while the varifold describes the effect of concentrations on the
limits of {g{iin)} when g grows asymptotically as the pth power. We will be more precise
in Section 3.

Our goal is to understand the relation between the varifold and the Young measure
that are generated by a sequence of gradients which is bounded in L^ft), p > 1. We hope
to address the case p = 1 in a future work. A detailed description of Young measures
generated by sequences of gradients bounded in L^ft) was obtained in [21] (see Theorem
2.3 below).

To describe our main result we consider an open, bounded set fi C RA and a sequence
{fj} of functions from ft to Rd which is bounded in IS{Q) for some p > 1. There exists a
subsequence, still denoted {/ ,} , and a family v = {^x}x€n (called the Young measure) of
probability measures vz on R*, as well as a Radon, nonnegative measure A o n f l x Sd~l

(called the varifold) with the following properties (see [6], [17] and Section 3). For all
continuous functions 6 that vanish on dft, 0 e Co(ft), all continuous functions y? on Rd

with growth of order.5trictly less than p, i.e.

and for all continuous functions V> on Rd that are homogeneous of degree p, we have

f I e{x)
Ja

I 0(z)iK/,-(z)) dx

a

/

[
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Here it is the projection of A onto ft, Xx are probability measures (for 7r-a.e. x € ft),
A = A®TT, A = {A*}r€n> is the slicing decomposition of A ([15]) and S = Sd~l is the unit
sphere in Rd. In what follows, we will refer to (i/, A) as the Young measure-varifold pair.

If {UJ} is a bounded sequence in Wlj)(ft), if ft = Vtij and if the target space Rd is
identified with the space M = MmxN of m x TV matrices, we say that (i/, A) is a WltP(ft)-
Young measure-varifold pair, and we abbreviate saying that (i/, A) is a YM-V pair. The
Young measures that arise in such pairs (the so-called WliP(fl) Young measures) were
characterized in [21]. The following example shows that there are restrictions involving
both v and A. Let p = m = N and consider the ^-homogeneous function ^{A) = det A.
Then by the above

[ 0(x) det Vujdx-* f 0(x) f detAd\x(A)dn{x).

On the other hand, we know that ([5], [27]) det VUJ -^ det Vu in the sense of measures,
where u is the weak limit of Uj in W/1»p(ft). We conclude that

(detVu)d£"= (f detAd\x(A)\ dn,

where £N denotes the Lebesgue measure in R^.
The main result of this paper is the following characterization theorem for YM-V

pairs.

Theorem 1.1 Let p > 1. (*/, A) is a YM-V pair, where v = { ^ } J € n ® £N, A =
{^x)xen ® w» i^and oniy if
J.

Vtt(i) = / Advx(A), £N a.e. x € ft,
JM

for some u e
2.

< f <p{A)dux{A), £N a.e. x € ft,
JM

for every quasiconvex <p for which the limit

<p(A)

( rP(A)d»x(A) < ^ ( x ) / rl>{A)d\x{Al £N a.e. x € ft,
JM dC Js

exists;
3.

for every p-homogeneous, continuous function %l> such that Qrp(O) = 0, wAere Qtp
denotes the quasiconvexiScation of%/>;

4.
i

tl>(A) d\x{A) > 0, *s a.e. x € ft,

for every p-homogeneous, continuous function tp such that Qtp(O) = 0, where TT, is the
singular part of it with respect to CN.
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We remind the reader that (see [5], [11]) a function <p, defined on M, is said to be
quasiconvex if

<p(F) < ± I <p(F+ Vu(x))d£*(x),
ls*l Ja

for all matrices F and all test functions t* € W*>°°(n\ Rm). If <p is not quasiconvex then
its quasiconvexification, Qipy is defined to be

Q<p(F) = inf yir / <p(F + Vti(x)) dx,
14 1**1 yn

for all matrices F. The infimum is taken again over the set of functions u € WQJOO(Q\ Rm).
In addition, if

then
Q<p(F)= inf *L I rfF + Vu{x))dx.

Equivalently, Qtp can be characterized as the largest quasiconvex function below <p ([1],
in])-

Parts 1 and 2 of Theorem 1.1 correspond to the characterization of the underlying
Young measure, and were proved in [20] and [21]. Part 3 provides the interaction between
the Young measure and the absolutely continuous part of the varifold. Part 4 represents
the restriction on the varifold in the set where the singular part n8 is concentrated. An
interesting consequence of this result is that there are no restrictions on the singular
measure n9.

A key tool in the proof of the above theorem is the following decomposition result for
sequences of gradients that are bounded in L^fi), for some;? > 1. It states, in particular,
that every such sequence can be written as a sum of a sequence {VZJ} (of gradients!)
whose p-th power is equiintegrable, and a remainder that converges to zero in measure
(and hence almost uniformly). Using the terminology introduced earlier, we may say
that {VZJ} carries the oscillations, while the remainder accounts for the concentration
effects.

Lemma 1.2 (Decomposition Lemma) Let ft C RA be an open, bounded set and let
{wn} be a bounded sequence in Wlj>(Ct) taking values in Rm. There exists a subsequence,
{WJ}, and a sequence {ZJ} C Wl^(Q) such that

Wj or Vzj * Vwj}) - 0, (1.1)

ss j —• oo, and {|V^|P} is equiintegrable. If SI is Lipschitz (or, more generally, an
extension domain), then each ZJ may be chosen to be a Lipschitz function.

Note that (1.1) implies that both sequences {Vz,} and {VWJ} generate the same
Young measure.

Some remarks are in order. A similar result was derived independently by Kristensen
[22]. The lemma above is in fact a consequence of the characterization of Wl&-Young
measures obtained in [21] (see Theorem 2.3). The point is that one can give a short,
direct proof of Lemma 1.2, while the approach via [21] is rather indirect and implicitly
relies on the lower semicontinuity results of Acerbi and Fusco [1 J. In fact, once the lemma
is proved one can considerably shorten the arguments in [1] and {21] (see [26] for this
point of view). Our proof of Lemma 1.2 (see Section 4) still relies on essentially the same
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tools as [1], namely IP estimates for maximal functions and Lipschitz extensions of
functions off small sets, but we think that an approach that uses the decomposition result
as a starting point might be more intuitive. Kristensen's proof ([22]), on the other hand,
uses Iwaniec's estimates for perturbed Hodge decompositions. These estimates, however,
in turn rely on IP estimates involving the sharp maximal function. Finally, the result
may be viewed as an IP counterpart of a theorem by Kewei Zhang [38] which states that
if {Vvjj} is bounded in Lq for some q > 1 and generates a Young measure with support
contained in a ball B = B(0,i?) C M (i.e. supp(i/x) C B for a.e. x € fi) then there
exists a sequence ZJ with

| V ^ | < C(N)R and CN ({Zj £ Wj or VZj ^ Vui,-}) - • 0.

2. Preliminaries

Let M = MmxAr be the set of m x N matrices, and for any number p > 0 consider the
class

Hp = {/ € C(M) : / is positively homogeneous of degree p) ,

where C(M) is the set of continuous functions on M. If / € Hp then f{tA) = tpf(A) for
all A € M and t > 0. It is easy to show that homogeneity entails Q^{0) = 0 whenever
ip € Tip and Qt/>(0) is finite. Let XP denote the set of continuous functions in M with
growth of order at most p, i.e.

Xp = {<p € C(M) : |Y>(,4)| < C(l + \A\V)} .

Xp is a Banach space under the natural norm

IMI =
+ M IIL-(M)

Finally, we consider the class

£p = lip € C(M) : there exists / € Hp, lim
jA|-»o

The properties of Cp are listed in the proposition below.

Proposition 2.1
1. For every (f€£p there is a unique / € Tip such that

»»
\A\P

The function f is the recession function of<p of degree p, y?£°, de&ned by

2. £p is a closed, separable subspace of Xp and Hv is a closed subspace o/£p.
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3. If/€7ip then

where S is the unit sphere in M.

The proof of this proposition is elementary. The only fact that requires some comment
is the separability of £p. Indeed, using the map

C~

one can easily verify that £p is isomorphic to the space of continuous functions on the unit
ball of M, equipped with the sup norm. This space is separable due to the compactness
of the unit ball. If we compare the space Sp with the space considered in [21],

we see that £p corresponds to the compactification of M by a sphere at oo while Ep

corresponds to the one-point compactification. More general compactifications have been
considered in [14], [28], [29] and [30].

We will use the following lemma, whose proof is elementary and left to the reader.

Proposition 2.2 Ifxfc is Lipschitz continuous on the unit sphere S and homogeneous
of degree p , p> 1, then there is a constant C > 0 (depending on tp) such that

MA) - *[B)\ < C (jAr1 + IBr1) \A-B\,

for any pair of matrices A, B.

A remark that will be used often in Sections 5 and 6 is the following. Given a family
of probability measures v = {^x}x€n

 anc* a sequence of functions {/,} taking values in
Kd with {fj} bounded in I^(fl), it can be shown that if

lim f 9(x)<PUi(*))d*~ / * (* ) / V(i)*>z{t)d* (2-1)

for all 0 € Co(ft), y> € C?{Rd), then (2.1) still holds for all if € C(Rd) such that {?(/,-)}
is equiintegrable, and in particular, for all (p on Rd which grow slower than 1 -I- |f \p.
Therefore v = {i/*}x€n is the Young measure associated to {fj}. We conclude that in
order to identify the Young measure generated by {fj}, it suffices to study the limits
(2.1) for 6 € Co(ft) and ip e CS°(Rd). Also, it can be shown that

rier«MO<k<oo. (2.2)

The main result in [21] is a characterization of W1*-Young measures in terms of
Jensen's inequality for quasiconvex functions.

Theorem 2.3 Let p > 1. Then u = {vz}xen is a M^1 -̂Young measure if and only if
1.

Vu(x) = / Advx{A), CN a.e. x € ft,
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for some u €
2.

<p(Vu(x)) < I ip{A)dvx{A), £N a.e. x € fi,
Ju

for every quasiconvex ip for which the limit

lim

exists;
3.

f I \A\pdvx(A)dx <oo.
in JM

3. The Representation Formula

We introduced the space £p in order to recover weak limits associated to sequences
{^(Vtij)} for (p € £p and any sequence {UJ} that is bounded in WliP(fi). The represen-
tation of weak limits for such functions in terms of Young measures is only valid if one
can rule out concentration effects (see [9]). To account for possible development of con-
centrations, we associate to {VUJ} a measure A on fl x 5, called the varifold associated
to {VUJ}. We first recall that for an M-valued Radon measure /x on an open set Q the
polar decomposition (see [17]) is given by d/x = adA, where A is the total variation of /x
and a : £1 —> S is the density of /x, i.e. the Radon-Nikodym derivative of /x with respect
to its total variation A (see [16]). To define the varifold we use the following general
representation result for weak * limits of M-valued Radon measures (see [17]).

Theorem 3.1 Let {/x̂ } be a sequence of M-vaiued measures on ft with polar de-
composition ctjdXj. Assume that Hj -^ /x in the sense of measures. There exists a
subsequence, still denoted {fij}, and a non-negative, finite, Radon measure A = Az 0 7r
on fi x 5 such that for every f € Co(fi x Rd)

lim / / ( x , a i ( x ) ) d A , ( x ) = / /(z,y)dA(x,y)

- / f f(xty)dXx(y)dn{x).

The decomposition A = Ax ® -n is obtained via the slicing measures technique (see
[15]), and by means of the Radon-Nikodym Theorem we write TT = naC

N -h n8 where
TTO ss -££jj and 7r, is singular with respect to CN.

Given a sequence {tin}, bounded in Wl^(Sl), we may regard the sequence

V%inCN} as a bounded sequence of M-valued Radon measures. Hence, according to
Theorem 3.1, associated to a subsequence there exists a varifold, and this suggests the
following definition.

Definition 3.2 A finite, Radon measure A supported on SI xS is a Wl^-vaiifold if
there exists a bounded sequence in Wl^(Cl)f {tin}, such that for every f € Co(Q x M)

f f (*' TETl) , A).
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In particular, if V is homogeneous of degree p and 0 € Co(ft) then

Urn / ^(x)^(Vun) dx = / 0(x)1>(A) dA(x, A)

« fe(x)[rl;(A)d\x(A)dn(x).
Ju Js

In order to see how the YM-V pair determines the limits of {<p(Vun)} for sequences
{tin} bounded in W ^ f t ) and having oscillatory and concentrating features, consider
<p€ £p. By definition,

lim r-—- = 0,
H \A\V\A\V

which implies that {<p(Vun) - <p£°(Vun)} is weakly relatively compact in L^ft). For this
sequence, the representation in terms of the Young measure is valid. On the other hand
<p™ € Hp, and the limit for {^(Vun)} is therefore given by the varifold. Hence, we
have the representation formula

lim [ O(x)<p(Vun(x))dx= [ 0(x) [ (<p(A)-<p?(A))dvx(A)dx

+ fe(x)[<p?(A)d\x(A)dn(x).

It is this formula that motivated our study of YM-V pairs.

4. Proof of the decomposition lemma

In this section we will prove Lemma 1.2. As mentioned in the introduction, our argument
uses maximal functions and their properties, and we recall some well-known facts (see
[31]).

Given a Borel measurable function u : TtN —> Rd, the maximal function of u is defined
by

/p / \u(v)\dy.

If u € Wl*(fl) then we set

M*(u)(x) = M(u)(x) + M (Vtx) (x),

and ifp > 1, then
(4.1)

Lemma 4.1 Let p > 1 and iet w € W ^ R ^ R " 1 ) . Given A > 0 there exists a
Lipschitz function z in RN such that w = z on {M{Vw) < A} and the Lipschitz constant
for z is bounded by C(N)\, where C(N) is a constant depending only upon dimension.

For the proof see, e.g., [16].
The proof of Lemma 1.2 will be divided into two steps. In the first step we consider

an extension domain ft, i.e., an open, bounded set ft for which there exists an extension
operator T : Wl*(Q) — W ^ R " ) such that

Tu{x) = u(x), x € ft, \\Tu\\w,HRfi) < C IM
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In the second step we remove this restriction on ft, generalizing the result for arbitrary
open sets.

Proof of Lemma 1.2.
Stev 1. Assume that ft is an extension domain. Let {wn} be a bounded sequence in

W l j )(ft;Rm). In the sequel, we identify wn with its extension Twn € W l j )(RAr;Rm).
By (4.1) the sequence {M(Viun)} is bounded in 1^(0) and so (see [6] and (2.2)), there

exists a subsequence (not relabeled) and a parametrized measure fx = {M*}x€n
 s u c ^ ^ a t

/ / \s\p dfjLx(s)dx < oo, (4.2)
JCIJR

and whenever {f(M(Vwn))} converges weakly in L2(ft), its weak limit is given by

/(x) = (/i*»/)> jC^a.e. x € ft.

Let k € N and consider the truncation map Tk : R —> R given by

fx, |x|</c,

ifclxT' W > * :

Clearly {Tk{M(Vwn))} is a bounded sequence in L°°(ft), therefore equhntegrable, and
so given o € L°°(ft) we have

lim lim [ a(x)\Tk(M(Vwn))(x)\pdx= lim f a(x) f \Tk(s)f d^{

= / I a(x)\sf dnx{s)dx,
JnJR

(4.3)

where we have used (4.2) and the Dominated Convergence Theorem. For every k € N,
choose n(k) with n(k) > n(k — 1), such that

lim / \Tk(M{Vwn))(x)f dx- [ |T*(Af(VtO)(*)|p ^x < i

whenever m > n(ik). Setting c = l , (4.3) reduces to

lim / \Tk(M(Vwn(k))){x)\p dx = / / \s\p dfj,x(s)dx. (4.4)

We claim that _

\Tk(M(VWn{k)))\
p - / in LJ(ft), (4.5)

where
7 ( x ) = f \s\p dfix(s).

JR

Indeed, fix 6 € L°°(ft), / € N and let k > I. Clearly
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and so, taking first the limit as * - • oo, followed by the limit as / —> oo, and by virtue of
(4.3) and (4.4), we conclude that

limsup / 6(x) |T*(M(Vu;n(*)))(x)|p dx < f f b{x) \s\p dfMx(s)dx. (4.6)
* - o o JCl JnJR

Similarly, (4.6) holds for —6 in place of 6; hence

lim / b(x) \Tk(M(Vwn{k)))(x)\p dx= I b{x)J{x) dx,

proving (4.5). Set
Rk = {x € RN : M(Vwn{k))(x) > k} .

By Lemma 4.1 there exist Lipschitz functions zk such that

zk = Wr*k) a.e. on R* \ Rki |V2ik(x)| < C(N)k, a.e. x € RN.

Therefore, by (4.1) and because ft is bounded

CN (Q n {zk ? wn{k) or Vzk ± Vwn(k)}) < CN (Rk n Q)

and this term tends to zero as k —> oo. In addition, for CN a.e. x € Q \ Rk we have

\Vzk(x)\ = \Vwn{k)(x)\ < \M(Vwn{k))(x)\ =

while if x € Rk then

| V z , ( x ) | < C(N)k = C(N) | T i k ( M ( V ) |

We conclude that

|> < C \Tk(M(Vwnik))(x))\p a.e. x € fi,

which, together with (4.5), yields equiintegrability of
Stev 2. Let ft be an open, bounded domain of RN , and let {WJ} be a bounded

sequence in W1|P(fi;Rm). Without loss of generality we may assume that there exists
w0 € Wl>P(n;Rm) such that

Wj->wo in Wlj>(il]Rm),wj^ w0 inZ/(n;Rm),

i.e. if Wj =s wo -f Wj,

Let {fin} be an increasing sequence of compactly contained subdomains of jf2, with £N(ft\
Hn) —> 0, and choose cut-off functions rjn € Cg°(n; [0,1]) such that r^ = 1 if x € fin. We
have

lim sup lim sup 11^^11^,^ = 0
n-»oo jf-*oo
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and

limsuplimsup 1^(^)11^,^ = limsuplimsup Ĥ - ® Vr^ +

p H j l l ^ ^ <oo.
J-KJO

A standard diagonalization procedure yields a bounded subsequence in W l j )(ft;Rm),
{VnWj(n)}> which we extend by zero to R^. Now the argument used in Step 1 applies to
this sequence, so that we obtain a sequence {zk} of Lipschitz functions such that

ak = CN (ft fi {zk ^ fln{k)Wj{n{k)) <>r Vzk ^ V (Vn{k)^j(n(k)))}) -+ 0,

as k —• oo, and {|Vjzjfc|p} is equiintegrable. We conclude that {|V(tt>o+ Zk)\p} is equiinte-
grable and

CN (ft O {tfj(n(jk)) 7̂  ™o 4- zk or Vtx;j(n(it)) ^ V(w0 + zk)}) < ak + CN (ft \ ftn(fc))

and this term converges to zero as k —• oo. a

5. Characterization of YM-V: necessary conditions

We devote this section to the proof of the necessity part of Theorem 1.1. We may assume
that ft is smooth as otherwise we can first consider smooth subsets of ft and then exhaust
ft by such sets. Conditions 1 and 2 were established in [20] and [21]. To prove 3 and 4
we split A into a part, Pi/, that is determined by the Young measure and a remainder,
A, that is related to pure concentrations effects.

For t/> € C(S) (with p-homogeneous extension t/>) and 6 € Co (ft), let

/
M

and Pv = {P*x}x€n ® £N, i-e.,

fe(x) f
Ju JM

Let A a= A - Pv. Suppose that {VUJ} generates the YM-V pair (i/,A). In Steps 2
and 3 below we will show that Uj can be decomposed as Uj = Zj 4-1;̂  where {|V^|P} is
equiintegrable, {VZJ} generates the YM-V pair (I / ,PI/) , and {V^} generates the YM-V
pair (6Q®CN,A).

Stev 1. Reformulation of conditions 3 and 4.
We claim that 3 and 4 are equivalent to requiring that

i) A is a nonnegative, finite, Radon measure on ft x 5;
ii) if A s= l \ x \ 0 7r is the slicing decomposition of A, where Ax are probability

measures on M, then for 7r a.e. x € ft

& , t f > > 0 (5.1)
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for all \l> € Tip such that Q%l>{0) = 0.
Assume first that 3 and 4 hold. Since A and Pi/ are finite, nonnegative Radon

measures, it follows that A is a finite Radon measure. In addition, if 0 € Co(ft), 6 > 0,
and if V € C(«S), V > 0, then <?V>(0) = 0 and we have by 3 and 4

(A,

/

Hence A > 0, proving i).
In order to prove ii), fix 6 € Co(fl), 6 > 0, ^ € Tip, Q^(0) = 0, and using the slicing

decomposition of A and (5.2) we deduce that

0(x)(\x, j>) d7r(x) = (A, 9 0 V) > 0. (5.3)

The arbitrariness of 6 yields the existence of a 7f-null set E^ such that if x € ft \ E^ then

Let {xpk} be a countable, dense set in Tip, and define

U
It is clear that 7t(E) = 0. Fix x € fi \ JS, V € Tip, Q^{0) = 0, and choose a subsequence
{V>*J such that

1 ^ - t f in L~(5), | |^ . -V'IU- ( 5)<- .

where n, —• oo. Then

1 \A\P

and so

By homogeneity

Finally, using the definition of £ , x $ JEvfc.+(i/n.-)|.p, therefore

0 < .lira(A,, ^fc + 11. |") = (A,,^>, (5.5)

concluding the proof of ii).
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Conversely, if i) and ii) hold, using (5.2), (5.3) and 6 = XB(aiP), a € ft, p > 0, we have

for V € Wp, QV>(°) = 0. (Conditions 3 and 4 follow by virtue of the Radon-Nikodym
Theorem. Note that a priori the exceptional sets could depend on rpy but the argument
outlined for the definition of E above would entail the existence of ?r,- and £N-negligible
sets for which 3 and 4 hold for all $ € Up, such that Qtp{0) = 0.

In light of Step 1, the rest of this section will be dedicated to proving (5.1).
Stev 2. Construction of {*,-}.
By the decomposition lemma (Lemma 1.2) there exists a sequence of Lipschitz func-

tions {ZJ} such that {|Vzj|p} is equiintegrable in ft and the set

{x e

satisfies

uj(x),

CN(Rj)-+0. (5.6)

In particular, {VZJ} generates the YM-V pair (v,Pi/).
Stev 3. Construction of {VJ}.
Let VJ = Uj - Zj. We claim that {VVJ} generates the YM-V pair (60 0 £ A \ A). In

particular, A > 0. The assertion regarding the Young measure follows from (5.6). To
study the varifold generated by {VVJ} consider 6 € Co(ft) and \p €HP such that I/J\S is
Lipschitz. In view of Proposition 2.2 and Holder's inequality we have

I / 6(xW(Vvj)dx - / 6(
\Jn JQ

dx

/
R3

dx

<c\m. dx

Since CN(Rj) —» 0 as j —» oo and {|Vz,-|p} is equiintegrable, the last term goes to zero
as j —* oo and thus, using Step 2, we conclude that

(A - (A, e ® v)-

By density, the result extends to all V € Tip and the claim is proved.
Stev i. We prove that for w a.e. z € ft

(5.7)

for all ̂  € Hp with = 0.
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We first make the additional assumption that t/> is Lipschitz on 5. Let 0 € C^(B(ay p)),
0 < 0 < 1. By the definition of Qrp, Proposition 2.2 and Holder's inequality, we have

B{a%p)

= / ^ (OVvj + VJ £> V0) dx
JB(a,p)

< f OPIP{VVJ) dx + C [ (\eVvjf1 + \VJ ® VOr1) \vj <g> W | dx
JB(a>P) JB{a%p) V '

< f e^(Vvj)dx^C(0) \( f \vj\pdx) * + I hfd* •
JB{a%p) \\JB{a,p) J J B(a,p) J

Now Vj -> 0 in W^iBiatp)) as j - • oo, and thus vj - • 0 in IS(B(a, p)). By Step 3, the
sequence {Vv7} generates the varifold A. Therefore taking the limit as j —• oo in the
above inequality, we obtain

0 < (A,

The assertion follows (for tp € Lip(«S)) by taking an increasing sequence 0» —> XB(a,p)
applying the dominated convergence theorem. Hence

/ (Ax,
JB(atp)

> 0,

and the Radon-Nikodym Theorem yields the existence of a set E^ C fi, K(E^) — 0, such
that (5.7) holds if x £ E^. Defining E as in (5.4) and following the argument (5.4)-(5.5),
we finally remove the restriction that ip be Lipschitz on S to conclude that (5.7) holds
for V € Hp, Qtp{0) = 0, proving ii).

6. Characterization of YM-V: sufficient conditions

Suppose that the pair (i/, A) satisfies the conditions of Theorem 1.1. We have to construct
a sequence {uj}, bounded in Wl^>(Q)1 such that (*/,A) is the YM-V pair generated by
{Vu,}.

As in the beginning of Section 5, we write A = Pu + A where

= fe(x) f j>(A)dvx(A)dx
Jo JM

for 0 € Co(ft), ^ € C(S) and with V> the p-homogeneous extension of tp. FVom Section 5,
Step 1, we know that A is a nonnegative, finite, Radon measure and

<A*,V>)>0 (6.1)

for all x/> €HP with Qip(Q) = 0, where lxx\ 0 n denotes the slicing decomposition of

A.
Step 1. We claim that it suffices to find {z,}, {VJ} bounded sequences in Wlj>(Q)

such that

f } is equiintegrable, {Vz,} generates the YM-V pair {v,Pv)y (6.2)
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and
{VVJ} generates the YM-V pair (60 ® LN

 % A), (6.3)

setting, as before, Uj = Zj + Vj. Indeed, note that since p > 1 then {|Vvj|} is equiinte-
grable, and so given A > 0 and in view of (2.1)

I > A}) < i / |Vt>,| dx-*\(6o8£N,\-\) = O- (6-4)
A Jn A

Thus given 6 € Co(ft) and y> € Cg°(M) we have

I / 9(x) [ipiVuj) - tp{Vzj)] dx < WOW^C f \Vvj\ dx-+0

as j —• oo and this implies that the Young measure associated to {Vu,} is also v.
Similarly, if 0 e C0(fl), rp eHp, V'ls Lipschitz, by Proposition 2.2 for fixed A > 0

| jf ( ) ( V ( , ) ^ ( , ) V K , ) ) d x

< C

+C / (^(Vtx,) - V(V^)| + |^(V^)|) dx

< c f (\vzjr1+ivt>,r 0 ivtyi dx+c / iv^r dx

+C / . (iVz.r1 + \Vvjf-1) \Vzj\ dx + C I |V*/ dx,

and so, using Holder's inequality, (6.4) and the equiintegrability of {|Vzj-|p},

limsup / 0(x) tyiVuj) - ifriVzj) - ^(Vv,-)J dx
\Jn

= O(X).

Letting A —• 0+ and removing the regularity restrictions imposed on xp as in (5.4)-(5.5),
we conclude that the varifold associated to {Vu^} is Pv + A = A.

Stev 2. We introduce two sets of measures supported on the unit sphere S of M,
namely

A = {/x € M{S) : M > 0, <M> *> > 0 if V € « , , Q^(0) = 0 } ,

where B is the unit ball in RN, and the average measures of H are defined by

for V € C(«S). We do not distinguish henceforth a continuous function on 5 from its
p-homogeneous extension. Note that, in view of (6.1), Xx € A for TT a.e. x € H. It is
clear that A is weak * closed and H C A.
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Proposition 6.1 A is the weak * closure ofH. Moreover, UR > 0 then An{\\fx\\ < R}
is the weak * closure of H D {\\fi\\ < R}.

Remark. The second statement will be useful in Step 3 where we will use the fact
that the weak * topology of M(S) is metrizable on closed balls.

Proof of Proposition 6.1. The proof is a standard application of the Hahn-Banach
Theorem. We start by proving that H is convex. Fix 0 € (0,1) and let for t = 1,2

Let xo € B be such that |xo| = 1/2 and define

kx), u2(x) = k-l+N'»u2(k(x - x0)),

where k > 4. Clearly xk € W ^ B ) , ui and u2 have disjoint supports, and a change of
variables shows that fa = /x» for i = 1,2. It follows that the function

u = O1^ -f (1 - 6)l/pu2 €

generates /x = Opi + (1 - 6)fi2 and so fie H.
We now show that A cannot be separated from H. Assume that rp € C(S) is such

that (i/, \l>) > a for all v € H and for some a € R. Hence, extending xp as p-homogeneous,

= inf ±.
^ \B\ JB

and so 0 > Qxp(O) > a. We conclude that Qxp(O) is finite, thus Qxp(O) = 0 by homogeneity,
and 0 = Qxp(O) > a. By definition of A, we have that (/x, xp) > 0 > a for all fx £ A. Hence
A cannot be separated from H.

Similarly, one shows that AR = A D {||^|| < R) cannot be separated from HR =
H n {IIMII < R}- Indeed, let \p € C(S) be such that (i/, xp) > a for all v 6 HR and for
some a € R. We first note that a < 0. In fact, if a > 0, since

IMI = vir / IVuf dx

when

then

inf < T-=T
|Vu|P - R} -a

Hence, if u e Wo
llP(B) and C(u) = jk fB \V*f dx > R, then for v =

(6.5) and the homogeneity imply

which, together with (6.5), yields Qxp(Q) > a. Therefore Qip{0) is finite, and by the
homogeneity we have 0 = Q\p(0) > a, contradicting our assumption. We conclude that
a < 0 and so
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Thus Q (rp - j j | |PJ (0) is finite, and by the homogeneity, it vanishes. Therefore if /x €
AR then

yielding (/i, ̂ > > a because a < 0.

ff. Construction of {*,-}.
Using condition 3 in Theorem 1.1 with \I>(A) = \A\V we have

, \Af dux{A)dx < / _ ( * ) / dXx(A)dx < ir(fi) < oo,

which, together with conditions 1 and 2, and by Theorem 2.3 (see [21] for the proof)
implies that v is a W1*-Young measure. Using the decomposition lemma (Lemma 1.2)
(see also Step 2, Section 5) we find a sequence {ZJ} bounded in Wl^(il) and satisfying
(6.2).

Stev i. Construction of {VJ} when

0.

Here we search for a sequence {VJ} bounded in W0
1>p(fi) such that (6.3) holds, i.e.

generates (6o ® £N,A) and, in addition,

By Proposition 6.1 and the remark after it, there exist sequences \wj \ in WQ'P(B) such
that

for all %/; € Tip. In particular

||A<|| = lim jL f |Vu;f P dx.

Now

has the desired properties.
Step 5. Construction of {VJ} in the general case.
To obtain {VJ} satisfying (6.3), we will use the following approximation lemma.

Lemma 6,2 Let A be a nonnegative, finite, Radon measure on Q x S with slicing
decomposition l\A ® £, let A be a convex set of the set of all nonnegative, finite,

I ) x€fi
Radon measures on 5, and suppose that.

Xx € A for 7c a.e. x € ft.
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Then A can be approximated in the weak * topology by measures of the form

h

such that

IIA«II<HA| | .

Before proving the approximation lemma, we conclude the construction of {VJ}. By
Lemma 6.2 we have

A = w-* limit A<*>, A<*> = j ; ^ ® ^ , ||A<fc>|| < ||A||.

Also, Step 4 yields the existence of sequences {vj**} bounded in W ^ f ! ) generating the

YM-V pair (So 9 CN, A<*>), and such that

Urn llv.f ir = ||A«|| < llAl
>-»oo II J \\is(n) II II II I>-»ooll J \\[S{Sl)

for all k. Separability of Co(fi), Co(M) and C(5), and a standard diagonalization argument
allow us to extract a diagonal subsequence vk = vf), satisfying (6.3) and

It remains to prove Lemma 6.2.
Proof of Lemma 6.2. The result is well-known to experts. We include a proof for the

convenience of the reader. By Besicovitch's Covering Theorem, for each ifc € N there
exists a finite family of disjoint closed balls B(x\k\r\k^) such that

',rtr') I < p rf} < j - . (6.6)

Set

Since A is convex we have A> ' € A, and we define

Then

t= i
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For tp € C(S) and 0 € W0
1|OO(n) with Lipschitz constant Lip(0) one has

!/.«••
f(x) - 5 ^ c<fc)<A<fc >, V>*(xf

<

and this expression tends to zero as k —• oo. We have used (6.6). The assertion follows

since test functions of the above type are dense and { A^M > is bounded. H
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