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Abstract

The Fokker-Planck equation, or forward Kolmogorov equation, de-
scribes the evolution of the probability density for a stochastic process
associated with an Ito stochastic differential equation. It pertains to a
wide variety of time-dependent systems in which randomness plays a
role. In this paper, we are concerned with Fokker-Planck equations for
which the drift term is given by the gradient of a potential. For a broad
class of potentials, we construct a time-discrete, iterative variational
scheme whose solutions converge to the solution of the Fokker-Planck
equation. The major novelty of this iterative scheme is that the time
step is governed by the Wasserstein metric on probability measures.
This formulation enables us to reveal an appealing, and previously
unexplored, relationship between the Fokker-Planck equation and the
associated free energy functional. Namely, we demonstrate that the
dynamics may be regarded as a gradient flux, or a steepest descent,
for the free energy with respect to the Wasserstein metric.

Keywords: Fokker-Planck equation, steepest descent, free en-
ergy, Wasserstein metric.

1 Introduction and overview
The Fokker-Planck equation plays a central role in statistical physics and
in the study of fluctuations in physical and biological systems [7, 17, 18]. It
is intimately connected with the theory of stochastic differential equations:
A (normalized) solution to a given Fokker-Planck equation represents the
probability density for the position (or velocity) of a particle whose mo-
tion is described by a corresponding Ito stochastic differential equation (or
Langevin equation). We shall restrict our attention in this paper to the
case where the drift coefficient is a gradient. The simplest relevant physical
setting is that of a particle undergoing diffusion in a potential field [18].

It is known that, under certain conditions on the drift and diffusion co-
efficients, the stationary solution of a Fokker-Planck equation of the type
that we consider here satisfies a variational principle. It minimizes a certain
convex free energy functional over an appropriate admissible class of prob-
ability densities [12]. This free energy functional satisfies an H-theorem:
It decreases in time for any solution of the Fokker-Planck equation [17]. In
this work, we shall establish a deeper, and apparently previously unexplored,
connection between the free energy functional and the Fokker-Planck dy-
namics. Specifically, we shall demonstrate that the solution of the Fokker-
Planck equation follows, at each instant in time, the direction of steepest
descent of the associated free energy functional.

The notion of a steepest descent, or a gradient flux, makes sense only
in context with an appropriate metric. We shall show that the required
metric in the case of the Fokker-Planck equation is the Wasserstein metric
(defined in Section 3) on probability densities. As far as we know, the



Wasserstein metric cannot be written as an induced metric for a metric
tensor (the space of probability measures is not a Riemannian manifold).
Thus, in order to give meaning to the assertion that the Fokker-Planck
equation may be regarded as a steepest descent, or gradient flux, of the
free energy functional with respect to this metric, we switch to a discrete
time formulation. We develop a discrete, iterative variational scheme whose
solutions converge, in a sense to be made precise below, to the solution
of the Fokker-Planck equation. The time-step in this iterative scheme is
associated with the Wasserstein metric. For a different view on the use of
implicit schemes for measures, see [6, 14].

For the purpose of comparison, let us consider the classical diffusion (or
heat) equation

at
which is the Fokker-Planck equation associated with a standard n-dimensional
Brownian motion. It is well-known (see, for example, [5, 19]) that this equa-
tion is the gradient flux of the Dirichlet integral 5 fpn \Vp\2 dx with respect
to the L2(JRn) metric. The classical discretization is given by the scheme

Determine p^ that minimizes

over an appropriate class of densities p. Here, h is the time step size. On the
other hand, we derive as a special case of our results below that the scheme

Determine pW that minimizes

5d(ffi~l,p)2 -f h / plogpdx
JRn

over all p € K,

where K is the set of all probability densities on JR" having finite second
moments, is also a discretization of the diffusion equation when d is the
Wasserstein metric. In particular, this allows us to regard the diffusion
equation as a steepest descent of the functional fjjn p log p dx with respect
to the Wasserstein metric. This reveals a novel link between the diffusion
equation and the Gibbs-Boltzmann entropy (— fRn plogpdx) of the density
p. Furthermore, this formulation allows us to attach a precise interpretation
to the conventional notion that diffusion arises from the tendency of the
system to maximize entropy.

The connection between the Wasserstein metric and dynamical problems
involving dissipation or diffusion (such as strongly overdamped fluid flow or
nonlinear diffusion equations) seems to have first been recognized by Otto
in [15]. The results in [15] together with our recent research on variational
principles of entropy and free energy type for measures [12, 11], provide the

impetus for the present investigation. The work in [12] was motivated by
the desire to model and characterize metastability and hysteresis in physical
systems. We plan to explore in subsequent research the relevance of the
developments in the present paper to the study of such phenomena.

2 The Fokker-Planck equation, stationary solu-
tions, and the free energy functional

We are concerned with Fokker-Planck equations having the form

% = d\v(V*(x)p) + p~lAp , pfoO) = p°(x),
ot

(2)

where the potential V(x) : JR" - • [0,oo) is a smooth function, /? > 0 is
a given constant, and p°(x) is a probability density on Rn. The solution
p(t,x) of (2) must, therefore, be a probability density on Rn for almost
every fixed time t. That is, p(t, x)>0 for almost every (*, x) € (0, oo) x JR",
and fRn p(t, x) dx = 1 for almost every t G (0, oo).

It is well known that the Fokker-Planck equation (2) is inherently related
to the Ito stochastic differential equation [4, 7, 17, 18]

dX(t) = - (3)

Here, W(t) is a standard n-dimensional Wiener process, and X° is an n-
dimensional random vector with probability density p°. Equation (3) is a
model for the motion of a particle undergoing diffusion in the potential field
* . X(t) £ fT then represents the position of the particle, and the positive
parameter p is proportional to the inverse temperature. The solution p(t, x)
of the Fokker-Planck equation (2) furnishes the probability density at time
t for finding the particle at position x.

If the potential * satisfies appropriate growth conditions, then there is a
unique stationary solution p8(x) of the Fokker-Planck equation, and it takes
the form of the Gibbs distribution [7, 17]

ps(x) = Z-lexp(-0*(x)), (4)

where the partition function Z is given by the expression

Z = / exp(-/W(*)) dx.
JRn

Note that, in order for equation (4) to make sense, ^ must grow rapidly
enough to ensure that Z is finite. The probability measure ps(x) dx, when it
exists, is the unique invariant measure for the Markov process X(t) defined
by the stochastic differential equation (3).



It is readily verified (see, for example, [12]) that the Gibbs distribution
p9 satisfies a variational principle - it minimizes over all probability densities
on JRn the free energy functional

where
:= / Vpdx

JR"
plays the role of an energy functional, and

S{p)'-= I plogpdx
JRn

(5)

(6)

(7)

is the negative of Gibbs-Boltzmann entropy functional.
Even when the Gibbs measure is not defined, the free energy (5) of a

density p(t,x) satisfying the Fokker-Planck equation (2) may be defined,
provided that F(p°) is finite. This free energy functional then serves as a
Lyapunov function for the Fokker-Planck equation: If p{t,x) satisfies (2),
then F(p(t,x)) can only decrease with time [17]. Thus, the free energy
functional is an H-function for the dynamics. The developments that follow
will enable us to regard the Fokker-Planck dynamics as a gradient flux, or
a steepest descent, of the free energy with respect to a particular metric on
an appropriate class of probability measures. The requisite metric is the
Wasserstein metric on the set of probability measures having finite second
moments.

3 The Wasserstein metric

The Wasserstein distance, rf(/xi,^2), between two (Borel) probability mea-
sures m and fj.2 on Rn is defined by the formula

\x-y\2p(dxdy), (8)

where P(/ii,/i2) is the set of all probability measures on Rn x Rn with
first marginal m and second marginal /12, and the symbol | • | denotes the
usual Euclidean norm on Rn. More precisely, a probability measure p is in
V{\i\, H2) if and only if for each Borel subset A C Rn there holds

p(i4x IT) = p(Rn x A) = >i2(A).

It is well known that d defines a metric on the set of probability measures
/x on /T* having finite second moments: fRn \x\2y.(dx) < 00 [10, 16]. We note
that the Wasserstein metric may be equivalently defined by [16]

(9)

where E(t/) denotes the expectation of the random variable [/, and the
infimum is taken over all random variables X and Y such that X has dis-
tribution p \ and Y has distribution \ii. Since

E|X - Y\2 = E|X|2 + E|K|2 - • Y),

and since Ed^l2) and E(|y|2) are fixed, we see that the infimum in (9) is
attained when the correlation of the random variables X and Y is maximal.
The Wasserstein metric defines a weak topology on probability measures.

The variational problem (8) is an example of a Monge-Kantorovich mass
transference problem with the particular cost function c(x, y) = | x - y | 2 [16].
In that context, an infimizer p* € V(p.\, /12) is referred to as an optimal trans-
ference plan. When fn and /12 have finite second moments, the existence
of such a p* for (8) is readily verified. For a probabilistic proof that the
infimum in (8) is attained under such conditions, see [10]. Brenier [2] has
established the existence of a one-to-one optimal transference plan in the
case that the measures /ii and /*2 have bounded support and are absolutely
continuous with respect to Lebesgue measure. Caffarelli [3] and Gangbo
and McCann [8, 9] have recently extended Brenier's results to more general
cost functions c and to cases in which the measures do not have bounded
support.

If the measures m and \i<i are absolutely continuous with respect to
the Lebesgue measure, with densities p \ and P2, respectively, we will write
V(p\, P2) for the set of probability measures having first marginal p.\ and sec-
ond marginal ^2- Correspondingly, we will denote by d(pi,p2) the Wasser-
stein distance between \JL\ and p.2- This is the situation that we will be
concerned with in the sequel.

4 The discrete scheme
We shall now construct a time-discrete scheme that is designed to converge
in an appropriate sense (to be made precise below) to a solution of the
Fokker-Planck equation. The scheme that we shall describe was motivated
by a similar scheme developed by Otto in an investigation of pattern for-
mation in magnetic fluids [15]. We shall make the following assumptions
concerning the potential # introduced in Section (2):

> 0 f o r a l l x € K n ; (10)

()| ( for all x € Rn , (11)

for some constant C < 00. Notice that our assumptions on $ allow for cases
in which fRn exp(-/?$) dx is not defined, so that the stationary density p9

given by (4) does not exist. These assumptions allow us to treat a wide



class of Fokker-Planck equations. In particular, the classical diffusion equa-
tion ^ = (3~lAp, for which \P = const., falls into this category. We also
introduce the set K of admissible probability densities:

K := { p:Rn -> [0, oo) measurable I / p(x) dx = 1 , M(p) < oo } ,
1 I jRn >

where
M(p) = / |rr|2 p(x) dx.

JR"

With these conventions in hand, we now formulate the iterative discrete
scheme:

Determine p ^ that minimizes

\ hF(p) \ (12)

over all p e K.

Here we use the notation p ^ = p°. The scheme (12) is the obvious gen-
eralization of the scheme (1) set forth in the Introduction for the diffusion
equation. We have established existence and uniqueness of solutions to this
iterative scheme. We refer the reader to [13] for the proof of the ensuing
Proposition.

PROPOSITION (EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE

SCHEME) Given p° € K, there exists a unique solution of the scheme (12).

We now state our main result. We can demonstrate that an appropriate
interpolation of the solution to the scheme (12) converges to the unique
solution of the Fokker-Planck equation. Specifically, the convergence result
that we have established is:

THEOREM (CONVERGENCE TO THE SOLUTION OF THE FOKKER-PLANCK

EQUATION). Let p° e K satisfy F(p°) < oo, and for given h > 0, let
{p^)keN be the solution of (12). Define the interpolation />/»: (0, oo)xi?n ->
[0, oo) by

Ph(t) = Ph] for t€[kh,(k + 1) h) and keNU {0}

Then ash J. 0,

Ph(t) -k p(t) weakly in Ll{Rn) for all t <= (0, oo), (13)

where p € C°°((0, oo)xRn) is the unique solution of

(14)

(15)

with initial condition

p(t) -> p° strongly in Ll(Rn) for

and
M(p), E(p) G L°°((0,T)) for allT < oo. (16)

REMARKS.

1. A finer analysis reveals that

ph -> p strongly in ̂ ((O.TJx^T1) for all T < oo.

2. With minor modifications to the scheme (12), we can establish an
analogous convergence theorem for Fokker-Planck equations with time de-
pendent diffusion coefficient (i.e., for ft = /?(£))•

We refer the reader once again to the article [13] for a detailed proof of
this Theorem.
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