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Abstract

The Fokker-Planck equation, or forward Kolmogorov equation, de-
scribes the evolution of the probability density for a stochastic process
associated with an Ito stochastic differential equation. It pertains to a
wide variety of time—dependent systems in which randomness plays a
role. In this paper, we are concerned with Fokker-Planck equations for
which the drift term is given by the gradient of a potential. For a broad
class of potentials, we construct a time—discrete, iterative variational
scheme whose solutions converge to the solution of the Fokker-Planck
equation. The major novelty of this iterative scheme is that the time
step is governed by the Wasserstein metric on probability measures.
This formulation enables us to reveal an appealing, and previously
unexplored, relationship between the Fokker—Planck equation and the
associated free energy functional. Namely, we demonstrate that the
dynamics may be regarded as a gradient flux, or a steepest descent,
for the free energy with respect to the Wasserstein metric.

Keywords: Fokker-Planck equation, steepest descent, free en-
ergy, Wasserstein metric.

AMS subject classifications: 35A15, 35K15, 35Q99, 60J60.

1 Introduction and overview

The Fokker-Planck equation plays a central role in statistical physics and in
the study of fluctuations in physical and biological systems (7, 20, 21]. It
is intimately connected with the theory of stochastic differential equations:
A (normalized) solution to a given Fokker-Planck equation represents the
probability density for the position (or velocity) of a particle whose motion is
described by a corresponding Ito stochastic differential equation (or Langevin
equation). We shall restrict our attention in this paper to the case where the
drift coefficient is a gradient. The simplest relevant physical setting is that
of a particle undergoing diffusion in a potential field [21].

It is known that, under certain conditions on the drift and diffusion coeffi-
cients, the stationary solution of a Fokker-Planck equation of the type that
we consider here satisfies a variational principle. It minimizes a certain con-
vex free energy functional over an appropriate admissible class of probability
densities [12]. This free energy functional satisfies an H-theorem: It de-
creases in time for any solution of the Fokker-Planck equation [20]. In this
work, we shall establish a deeper, and apparently previously unexplored, con-



nection between the free energy functional and the Fokker-Planck dynamics.
Specifically, we shall demonstrate that the solution of the Fokker—Planck
equation follows, at each instant in time, the direction of steepest descent of
the associated free energy functional.

The notion of a steepest descent, or a gradient flux, makes sense only in
context with an appropriate metric. We shall show that the required metric
in the case of the Fokker-Planck equation is the Wasserstein metric (defined
in Section 3) on probability densities. As far as we know, the Wasserstein
metric cannot be written as an induced metric for a metric tensor (the space
of probability measures is not a Riemannian manifold). Thus, in order to give
meaning to the assertion that the Fokker—Planck equation may be regarded
as a steepest descent, or gradient flux, of the free energy functional with
respect to this metric, we switch to a discrete time formulation. We develop
a discrete, iterative variational scheme whose solutions converge, in a sense
to be made precise below, to the solution of the Fokker-Planck equation. The
time-step in this iterative scheme is associated with the Wasserstein metric.
For a different view on the use of implicit schemes for measures, see [6, 14].

For the purpose of comparison, let us consider the classical diffusion (or heat)
equation

?%=Ap(t,x), te (0,00), z€ R",

which is the Fokker—Planck equation associated with a standard n—dimensional
Brownian motion. It is well-known (see, for example, [5, 22]) that this equa-
tion is the gradient flux of the Dirichlet integral % Jrn |Vp|? dz with respect
to the L2(JR") metric. The classical discretization is given by the scheme

Determine p*) that minimizes
L6 = plidagary + & [ IVoP da,

over an appropriate class of densities p. Here, h is the time step size. On the
other hand, we derive as a special case of our results below that the scheme

Determine p*) that minimizes
1d(p* 1, p)? + h/mplogp dz (1)
overall pe K,

where K is the set of all probability densities on JR" having finite second
moments, is also a discretization of the diffusion equation .when d is the
Wasserstein metric. In particular, this allows us to regard the diffusion equa-
tion as a steepest descent of the functional [p» plog p dz with respect to the
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Wasserstein metric. This reveals a novel link between the diffusion equation
and the Gibbs-Boltzmann entropy (— [gn plog p dz) of the density p. Fur-
thermore, this formulation allows us to attach a precise interpretation to the
conventional notion that diffusion arises from the tendency of the system to
maximize entropy.

The connection between the Wasserstein metric and dynamical problems
involving dissipation or diffusion (such as strongly overdamped fluid flow or
nonlinear diffusion equations) seems to have first been recognized by Otto
in [17]. The results in [17] together with our recent research on variational
principles of entropy and free energy type for measures [12, 11, 13], provide
the impetus for the present investigation. The work in [12] was motivated by
the desire to model and characterize metastability and hysteresis in physical
systems. We plan to explore in subsequent research the relevance of the
developments in the present paper to the study of such phenomena.

The paper is organized as follows. In Section (2), we first introduce the
Fokker-Planck equation and briefly discuss its relationship to stochastic dif-
ferential equations. We then give the precise form of the associated station-
ary solution and of the free energy functional that this density minimizes.
In Section (3), the Wasserstein metric is defined, and a brief review of its
properties and interpretations is given. The iterative variational scheme is
formulated in Section (4), and the existence and uniqueness of its solutions
are established. The main result of this paper — namely the convergence of
solutions of this scheme (after interpolation) to the solution of the Fokker-
Planck equation - is the topic of Section (5). There, we state and prove the
relevant convergence theorem.

2 The Fokker—Planck equation, stationary
solutions, and the free energy functional

We are concerned with Fokker-Planck equations having the form

% - av (VU@ +670, 0l@,0) = (@), 2
where the potential ¥(z) : IR" — [0,00) is a smooth function, # > 0 is a
given constant, and p°(z) is a probability density on IR". The solution p(t, z)
of (2) must, therefore, be a probability density on JR" for almost every fixed
time ¢. That is, p(t,z) > 0 for almost every (t,z) € (0,00) x IR", and
Jgn p(t,z) dz = 1 for almost every t € (0, c0).



It is well known that the Fokker-Planck equation (2) is inherently related to
the Ito stochastic differential equation [7, 20, 21]

dX(t) = —VU(X(t))dt +/28-1 dW(t), X(0) = X°. 3)

Here, W(t) is a standard n—dimensional Wiener process, and X° is an n—
dimensional random vector with probability density p°. Equation (3) is a
model for the motion of a particle undergoing diffusion in the potential field
U. X(t) € IR™ then represents the position of the particle, and the posi-
tive parameter [ is proportional to the inverse temperature. This stochastic
differential equation arises, for example, as the Smoluchowski-Kramers ap-
proximation to the Langevin equation for the motion of a chemically bound
particle [21, 4, 15]. In that case, the function ¥ describes the chemical bond-
ing forces, and the term /251 dW (t) represents white noise forces resulting
from molecular collisions [21]. The solution p(t, z) of the Fokker-Planck equa-
tion (2) furnishes the probability density at time ¢ for finding the particle at
position z.

If the potential ¥ satisfies appropriate growth conditions, then there is a
unique stationary solution ps(z) of the Fokker-Planck equation, and it takes
the form of the Gibbs distribution [7, 20]

ps(x) =7z exp(—ﬁ\ll(:c)), (4)

where the partition function Z is given by the expression
Z= /};ﬂ exp(—0Y¥(z)) dz.

Note that, in order for equation (4) to make sense, ¥ must grow rapidly
enough to ensure that Z is finite. The probability measure p,(z) dz, when it
exists, is the unique invariant measure for the Markov process X (t) defined
by the stochastic differential equation (3).

It is readily verified (see, for example, [12]) that the Gibbs distribution p,
satisfies a variational principle — it minimizes over all probability densities
on IR" the free energy functional

F(p) = E(p) + B7'S(p), (5)

where

E(p) = /R Vpds (6)

plays the role of an energy functional, and
S(p) := /m plogpdz (7)
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is the negative of Gibbs-Boltzmann entropy functional.

Even when the Gibbs measure is not defined, the free energy (5) of a den-
sity p(t,z) satisfying the Fokker-Planck equation (2) may be defined, pro-
vided that F(p°) is finite. This free energy functional then serves as a Lya-
punov function for the Fokker-Planck equation: If p(t,z) satisfies (2), then
F(p(t,z)) can only decrease with time [20]. Thus, the free energy functional
is an H-function for the dynamics. The developments that follow will enable
us to regard the Fokker-Planck dynamics as a gradient flux, or a steepest
descent, of the free energy with respect to a particular metric on an appro-
priate class of probability measures. The requisite metric is the Wasserstein
metric on the set of probability measures having finite second moments. We
now proceed to define this metric. :

3 The Wasserstein metric

The Wasserstein distance of order two, d(u;, p2), between two (Borel) prob-
ability measures y4; and u; on IR" is defined by the formula

|z — y|? p(dzdy), (8)

Ay, us)? = inf /
(#1 Hz) pEP(u1,42) JR*xR"

where P(u1, p2) is the set of all probability measures on R x IR" with
first marginal u; and second marginal u,, and the symbol | - | denotes the
usual Euclidean norm on /R". More precisely, a probability measure p is in
P(u1, po) if and only if for each Borel subset A C IR™ there holds

p(Ax R") = u(A) , p(IR" x A) = pa(A).

Wasserstein distances of order ¢ with ¢ different from 2 may be analogously
defined [10]. Since no confusion should arise in doing so, we shall refer to d
in the sequel as simply the Wasserstein distance.

It is well known that d defines a metric on the set of probability measures p on
R" having finite second moments: [gn |z]21(dz) < oo [10, 19]. In particular,
d satisfies the triangle inequality on this set. That is, if y;, ps, and p; are
probability measures on JR" with finite second moments, then

d(ula Ns) S d(ﬂl, ﬂ'2) + d(u% “3) . (9)
We shall make use of this property at several points later on.
We note that the Wasserstein metric may be equivalently defined by [19)

d(p, k2)* = inf E|X = Y]?, (10)

5



where E(U) denotes the expectation of the random variable U, and the infi-
mum is taken over all random variables X and Y such that X has distribution
u1 and Y has distribution p,. In other words, the infimum is over all possi-
ble couplings of the random variables X and Y. Convergence in the metric
-d is equivalent to the usual weak convergence plus convergence of second
moments. This latter assertion may be demonstrated by appealing to the
representation (10) and applying the well-known Skorohod theorem from
probability theory (see Theorem 29.6 of [1]). We omit the details.

The variational problem (8) is an example of a Monge-Kantorovich mass
transference problem with the particular cost function ¢(z,y) = |z — y|?
[19]. In that context, an infimizer p* € P(u;, u2) is referred to as an optimal
transference plan. When p; and us have finite second moments, the existence
of such a p* for (8) is readily verified by a simple adaptation of our arguments
in Section 4. For a probabilistic proof that the infimum in (8) is attained when
w1 and po have finite second moments, see [10]. Brenier [2] has established
the existence of a one-to-one optimal transference plan in the case that the
measures p; and po have bounded support and are absolutely continuous
with respect to Lebesgue measure. Caffarelli [3] and Gangbo and McCann
[8, 9] have recently extended Brenier’s results to more general cost functions
c and to cases in which the measures do not have bounded support.

If the measures yu; and p, are absolutely continuous with respect to the
Lebesgue measure, with densities p; and ps, respectively, we will write P(p;, p2)
for the set of probability measures having first marginal y; and second
marginal p,. Correspondingly, we will denote by d(p;, p2) the Wasserstein
distance between u; and p,. This is the situation that we will be concerned
with in the sequel.

4 The discrete scheme

We shall now construct a time—discrete scheme that is designed to converge
in an appropriate sense (to be made precise in the next section) to a solution
of the Fokker-Planck equation. The scheme that we shall describe was moti-
vated by a similar scheme developed by Otto in an investigation of pattern
formation in magnetic fluids [17). We shall make the following assumptions
concerning the potential ¥ introduced in Section (2):

¥ € C*(R");
¥(z) > 0 for allz € R™; (11)
IV¥(z)] < C(¥(z)+1) forallz € R", (12)
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for some constant C < oo. Notice that our assumptions on ¥ allow for cases
in which [g» exp(—fY¥) dz is not defined, so that the stationary density p,
given by (4) does not exist. These assumptions allow us to treat a wide class
of Fokker-Planck equations. In particular, the classical diffusion equation
%‘f = 3~1Ap, for which ¥ = const., falls into this category. We also introduce
the set K of admissible probability densities:

K = {p:.lR"—»[O,oo)mea.surable,/Rnp(a:)dx=1,M(p)<oo},

where

M(p) = [ o p(a) ds.

With these conventions in hand, we now formulate the iterative discrete

scheme:
Determine p*) that minimizes

3d(0*1,p)? + hF(p) (13)
overall pe K.

Here we use the notation p® = p°. The scheme (13) is the obvious gen-
eralization of the scheme (1) set forth in the Introduction for the diffusion
equation. We shall now establish existence and uniqueness of the solution to
(13).

PROPOSITION. Given p° € K, there exists a unique solution of the scheme

(13).

Proor

Let us first demonstrate that S is well-defined as a functional on K with
values in (—o0, +00] and that, in addition, there exist o« < 1 and C < o0
depending only on n such that

S(p) > —C (M(p)+1)* forallpe K. (14)

Actually, we shall show that (14) is valid for any a € (;33,1). For future
reference, we prove a somewhat finer estimate. Namely, we demonstrate that
there exists a C < 0o, depending only on n and «, such that for all R > 0,
and for each p € K, there holds

1 !2+n22a—n °
i < M 1)® 15
-/R“—-B | min{p log p,0}|dz < C (R2+1) (M(p)+1)%, (15)
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where Bpr denotes the ball of radius R centered at the origin in JR". Indeed,
for a < 1 there holds

|min{z log 2,0} < C2* forallz>0.
Hence by Holder’s inequality, we obtain
in{p log p,0}|d
/R,,_BR | min{p log p,0}| dz

< C p*dzx
R"-Bp
l-a

On the other hand, for ;2= > 7, we have
1 s 1 =%
dz < C ( ) .
/R"—BR (|:z:|2 + 1) '= R?+1

Let us now prove that for given p*~1) € K, there exists a minimizer p € K
of the functional

K>pw~ 3d(p*,p)* + hF(p). (16)

Observe that S is not bounded below on K and hence F' is not bounded
below on K either. Nevertheless, using the inequality

M(p1) < 2M(po) +2d(po, p1)* for all po,py € K (17)

(which immediately follows from the inequality |y|? < 2|z|? + 2|z — y|? and
from the definition of d) together with (14) we obtain

3d(o*7,0)® + hF(p)
S 1M(p) — LM(* D) + hS
> M) — s M(P™") + hS(p) (18)
(1)
> IM(p) — C (M(p)+1)* — IM(p*Y) forallpe K,

which ensures that (16) is bounded below. Now, let {p,} be a minimizing
sequence for (16). Obviously, we have that

{S(p.)}» is bounded above, (19)
and according to (18),

{M(p,)}, is bounded. (20)
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The latter result, together with (15) implies that

{ /R" | min{p, log p,, 0}| dz}u is bounded
which combined with (19) yields that
{/;{n max{p, log p,, 0} d:c}u is bounded .
As z — max{zlog z,0},2z € [0,00), has superlinear growth, this result, in

conjunction with (20) guarantees the existence of a p(*) € K such that (at
least for a subsequence)

pv = p® in LNR). (21)
Let us now show that
5(p™) < liminf S(p,). (22)

As [0,00) 3 z +— zlog z is convex and [0, 00) 3 z — max{zlog 2,0} is convex
and nonnegative, (21) implies that for any R < oo,

/ p*®) log p®) dz < liminf / p, logp, dz, (23)
Bp vloo Bgr

/ max{p® log p¥), 0} dz < lLiminf / max{p, log p,,0} dz. (24)
n"_Bp vioo "~Bp

On the other hand we have according to (15) and (20)

Ii / in{p, log py,0}| dz = 0. 25
Jim sup R,,_Bnlmm{p og py,0}| dz (25)

Now observe that for any R < oo, there holds
S < / o) log p® dz + / max{p™® log p(i‘),O} dr.
Br R"~Bp

which together with (23),(24) and (25) yields (22).

It remains for us to show that

E(p%) < liminfE(p,), (26)
d(p* D, p®)? < liminfd(e*,p,)°. (27)
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Equation (26) follows immediately from (21) and Fatou’s Lemma As for
(27), we choose p, € P(p¥~1), p,) satisfying

/R,,xR,, Iz —yPPp.(dzdy) < d(p*V,0.)* + 2

By (20) the sequence of probability measures {p, dz},1o is tight, or rela-
tively compact with respect to the usual weak convergence in the space of
probability measures on IR" (i.e., convergence tested against bounded contin-
uous functions) [1]. This, together with the fact that the density p*~?) has
finite second moment, guarantees that the sequence {p,},100 Of probability
measures on JR” x IR" is tight. Hence, there is a subsequence of {p,},100
that converges weakly to some probability measure p. From (21) we deduce
that p € P(p*~1, p*)). We now could invoke the Skorohod Theorem [1] and
Fatou’s Lemma to infer (27) from this weak convergence, but we prefer here
to give a more analytic proof. For R < oo let us select a continuous function
nr: IR™ — [0,1] such that

nr = 1 inside of By and 7z = 0 outside of By .
We then have

L. () (@) 2~y p(dz dy)

=lim | 7r(@)nr() |z -y’ p.(dzdy) (28)

< liminfd(p*~V, p,)?,
vioo

for each fixed R < co. On the other hand, using the monotone convergence
theorem, we deduce that

d(p* 0, 0¥ < [ le—yl*p(dzdy)

= li —yl?
Jm [ . 1R(Z)NR(Y) |2~y p(dz dy),

which combined with (28) yields (27).

To conclude the proof of the proposition we establish that the functional (16)
has at most one minimizer. This follows from the convexity of K and the
strict convexity of (16). The strict convexity of (16) follows from the strict
convexity of S, the linearity of E, and the (obvious) convexity over K of the
functional p — d(p*-1, p)%. O

REMARK. We can actually obtain a sharper inequality than (14). Indeed,
we can show that for all p € K, there holds

S(p) 2 3 log(2n~'meM(p)) . (29)
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To obtain this inequality, let M > 0 be given. Notice that the Gaussian
density

n

o= (52)" o ()

satisfies M(0) = M and S(0) = —(n/2)log(2rn~'e M). Both facts follow
immediately from direct calculation. Now suppose that p is a probability
density with M(p) = M. Then

S(p) = /mplogpdx
p
/R"plogad:r+/mplogadz

= /R" plog g dz — (n/2)log(2mn~le M)
> —(n/2)log(2rn~'e M).

The last inequality follows from the fact that the expression [g. plog £ dz is
nonnegative (use the inequality zlogz < z—1,2 > 0, with 2 = (¢/p)). This
demonstrates that (29) holds for all p € K.

5 Convergence to the solution of the Fokker-
Planck equation

We come now to our main result. We shall demonstrate that an appropriate
interpolation of the solution to the scheme (13) converges to the unique
solution of the Fokker-Planck equation. Specifically, the convergence result
that we will prove here is:

THEOREM. Let p° € K satisfy F(p°) < oo, and for given h > 0, let {pﬁf’}keN
be the solution of (13). Define the interpolation py: (0,00)x IR™ — [0, 00) by

pn(t) = pF) for t € [kh,(k+1)h) and k€ INU {0}
Then as h | 0,
pr(t) — p(t) weakly in L*(IR™) for all t € (0,00), (30)

where p € C*((0,00)xIR") is the unigque solution of

% = div(pV¥) + 87 'Ap, (31)
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with initial condition
p(t) — p° strongly in L'(R™) for t|0 (32)

and
M(p), E(p) € L*((0,T)) forallT < oo. (33)

REMARK. A finer analysis reveals that

pn — p strongly in L}((0,T)xIR") for all T < co.

PROOF OF THE THEOREM

The proof basically follows along the lines of [17, Proposition 2, Theorem 3].
The crucial step is to recognize that the first variation of (16) with respect
to the independent variables indeed yields a time—discrete scheme for (31),
as will now be demonstrated. For notational convenience only, we shall set
B =1 from here on in. As will be evident from the ensuing arguments, our
proof works for any positive 8. In fact, it is not difficult to see that, with
appropriate modifications to the scheme (13), we can establish an analogous
convergence result for time—dependent 8.

Let a smooth vector field with bounded support, £ € C§°(IR", R"), be given,
and define the corresponding fluz {®,},cr, by

0; P, = £0®, forallT€ R and &, = id.

For any 7 € IR, let the measure p,(y)dy be the push forward of p*)(y) dy
under ®,. This means that

/Rn pr(y)¢(y)dy = /m p® () ((@,(y))dy forall¢ € CO(R™). (34)

As @, is invertible, (34) is equivalent to the following relation for the densi-
ties:

det V@, p, 0 ®, = p*), (35)
By (16), we have for each 7 > 0

2 (3™, pr)* + R F(p,) = (3d(6*70,p%) + hF (o)) 2 o,
(36)
which we now investigate in the limit 7 | 0. Because V¥ is nonnegative,
equation (34) also holds for { = V¥, i.e.,

Jo @ Y@ dy = [ pP@) ¥(@, 1)) dy

12



This yields

1 (Bler) - B(p®)) = [ 3 (¥(2:@) - ¥(w)) /M) dy.

Observe that the differential quotient under the integral converges uniformly
to V¥(y)-£(y), hence implying that

= [E(pr), = /R V(y)-£(y) p¥(y) dy. (37)

Next, we calculate & [S(p,)],_o- Invoking an appropriate approximation
argument (for instance approximating log by some function that is bounded
below), we obtain

/Rn pr(y) log(p:(v)) dy

@-:4) /R" p(k) (y) log(ﬂr (QT(y))) dy

()
(35 ®) PO
/Rn P (y) log(detw,f(y))dy.

Therefore, we have

1 (8(or) = 8(6") = = | p®(v) ] log(det V&, (y)) dy.

Now using
£ (detVe, (y)]r=0 = divé(y),

together with the fact that ®, = id, we see that the differential quotient
under the integral converges uniformly to div{, hence implying that

£ 1S )mo = = [ #Wdivedy. (38)

Now, let p be optimal in the definition of d(p*~1), p(¥))? (see Section 3). The
formula

—_ 0 n n
fo e C@pdrdi) = [ ((@8:@)pldzdy) ¢ € CYR" < RY)
then defines a p, € P(p*~Y, p,). Consequently, there holds

(3D, 57 — 3d(, oY)
1 (1 2 1 2 -
S /RW,. T (a |®-(y) —z|* — 3|y — =l ) p(dz dy),

13



which implies that
lmsup} (3(o* D, p0)? = (o, oY)
T

< [ W=D EW)Pdzdy). (39)

We now infer from (36), (37), (38), and (39) (and the symmetry in £ — —§)
that

foe 0= € pla ) + 1 [ (wE-ane) pay =0
for all £ € CP(R", R").

Observe that because p € P(p*~1), p*)), there holds

[e® =ty = [ (y-2)Ve@)pldody)|
Lo (€0 = @) + (&~ ) C) pldzds)|

< 3suplVi| [ ly-zfp(dzdy)
R™ "« R®

= 3 sup V(| d(p®*Y, p®)2,
R"

for all { € C§°(IR"). Choosing £ = V( in (40) then gives

[ {306 = %D ¢+ (Vv - 80) 5} ay

41
< 3 sup| V(] 2d(e*, p)? for all ¢ € CC(R™). @y

We wish now to pass to the limit A | 0. In order to do so we will first
establish the following a priori estimates: For any T < oo, there exists a
constant C' < oo such that for all N € IV and all h € [0,1) with NAL < T,
there holds

M) < cC, (42)
/R . ma.x{p}lN) logpM,0}dz < C, (43)
E()") < ©, (44)
N
> dey ™, A7) < Ch (45)

k=1
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Let us verify that the estimates (42)-(45) hold. Since p*~1) is admissible in
the variational principle (13), we have that

Lo, o) + RF(p¥) < hF(eY),

which may be summed over k to give

N
> Fdew V.o + Fley") < F(p°). (46)
k=1

As in the Proposition in Section 3, we must confront the technical difficulty
that F' is not bounded below. The inequality (42) is established via the
following calculations:

an
M) < 24, pﬁm) + 2M(0")

< 2N Zd <D N2 42 M(p%)

4hN (F(e°) = F(gi)) + 2M(e°)
< AT (FG) +C MG +1)7) + 2M(?),

which clearly gives (42). To obtain the second line of the above display, we
have made use of the triangle inequality for the Wasserstein metric (see equa-
tion (9)) and the Cauchy-Schwarz inequality. Invoking (42), the estimates
(43), (44), and (45) are established as follows:

[ mex{e™ 108", 0} de < S + [ |min{™ og pf", 0} dz

(15)
Sy + c (M) + 1)

MY + oMMy + 1)

<
< F(

(46)

< F() + C (M) +1);
EE{M = F@E) - s

(14)
< F) + c(M@p") +1)°

S P + CMEM) +1)7;

(46)
Zd(p(" Vo2 < 2k (F(e”) — F(o"))

< 2h (FG) + M) +1)7)
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Owing to the estimates (42) and (43), we may conclude that there exists a
measurable p(t, z) such that, after extraction of a subsequence,

prn — p weakly in L}((0,T)xIR") for all T < oco. (47)
A straightforward analysis reveals that (42), (43) and (44) guarantee that
p(t) e K for a.e. t € (0,00),
M(p), E(p) € L*((0,T)) forallT < oo.

Let us now improve upon the convergence in (47) by showing that (30) holds.
For a given finite time horizon T < oo, there exists a constant C < 0o such
that for all NN’ € IN and all h € [0,1] with NAh < T,and Nh < T, we
have

(48)

die, M2 < CIN'h=NA|.
This result is obtained from (45) by use of the triangle inequality (9) for d and

the Cauchy-Schwarz inequality. Furthermore, for all p, o’ € K,p € P(p, 0'),
and ¢ € C§°(IR"), there holds

fLcpdz = [ codal = |[ (@ - cwpidsdy)

< sup|V(| / |z — y| p(dz dy)
R™ R*"xR"

1
< — 2 )2
< suwplvel ([, le—uPpldzdy))’
so that from the definition of d we obtain
/R,,Cp'dx - /Rnderc < sg,pIVCId(p,p') for p,p' € K and ¢ € C°(RR").
Hence, it follows that V
t) dz — t ’ < ¢ — 3
Jn o) dz = [ Cont) ds| < Complvel (¢~ el +mi |
for allt,t’ € (0,T) and ¢ € C§°(IR").

Let t € (0,T) and ¢ € C§°(IR") be given, and notice that for any § > 0, we
have '

[ ¢m®ydz = [ ¢ott) aa]

t+6
< /RﬂCPh(t)dz - %/;_6 /RﬂCPh(T)dxdT
t+6 t+6
+ 2%[_: /RnCph(T)dxdT - 2—15,/;-: /R..C”(T)dxdT
5
b esre - | canel

16



According to (49), the first term on the right hand side of this equation is
bounded by .
C sup|V¢| (6 + h)2,
R'\

and owing to (47), the second term converges to zero as h | 0 for any fixed
6 > 0. At this point, let us remark that from the result (47) we may deduce
that p is smooth on (0, 00) x IR". This is the conclusion of assertion a) below,
which will be proved later. From this smoothness property, we ascertain that
the final term on the right hand side of the above display converges to zero
as 6 | 0. Therefore, we have established that

/Rn Cpn(t) dz — /m Cp(t) dz for all ¢ € CP(IR™). (50)

However, the estimate (42) guarantees that M (py(t)) is bounded for A | 0.
Consequently, (50) holds for any { € L*(JR"), and therefore, the convergence
result (30) does indeed hold.

It now follows immediately from (41), (45) and (47) that p satisfies
- 8¢ — VU.V(+ A() dzdt = 0 d
JICS C(+A0) dedt = [ () dz, -
for all { € C°(IRxIR™).

In addition, we know that p satisfies (33). We now show that

a) any solution of (51) is smooth on (0,00)xIR™ and satisfies equation
(31);

b) any solution of (51) for which (33) holds satisfies the initial condition
(32);

c) there is at most one smooth solution of (31) which satisfies (32) and
(33).

The corresponding arguments are, for the most part, fairly classical.

Let us sketch the proof of the regularity part a). First observe that (51)
implies

[Pt ¢(t) d - ) p(8 — VU-V( + AC) dz dt

(to,t1) X R™
= [ plto)Cto) dz,  (52)
for all ( € C°(IRxIR") and a. e. 0ty <t;.

17



We fix a function n € C§°(IR™) to serve as a cutoff in the spatial variables. It
then follows directly from (52) that for each { € C§°(IRxR") and for almost
every 0 < ty < t;, there holds

/mn p(t1)¢(t)dz -

v/(to,tl)XR"n p(6:¢ + A() dz dt

An—VV¥.Vn) (drdt
oryxre? BT n) ¢ -

2Vn — nVV¥)-V( dz dt
Wl)xmp( n—nVV¥).V(

+ /R np(to) ((to) dz,

Notice that for fixed (¢;,z;) € (0,00)xIR" and for each § > 0, the function

((t,z) = Gt1+6—t,z — 14)
is an admissible test function in (53). Here G is the heat kernel:
G(t,z) = t°2 g(t’%x) with g(z) = (2n)"% exp(—1 |z]?).

Inserting (5 into (53) and taking the limit § | 0, we obtain the equation

(pm) () L o0 @0 - V2-90)) « Gt ~ 1)

[t @Vn - nv )« VGt - ) dt
(pn)(to) *x G(t; —to) for ae. 0<ty<ty,

“+
+

(54)

(85)

where * denotes convolution in the z—variables. From (55), we extract the

following estimate in the LP-norm

IGom)(t1) 2 L6 (an = VeIl 16t - )l de

L1100 @Vn = V)2 VGt = )10
(o) (to)ll2 IG (82 — o)l e

<+

+
Now observe that

forae. 0<ty<t;.

IGIe = t5 V% |g|Lr
IVGt)lle = 3% Vg1,

which leads to
(o n)(t1)ll L~

ess sup [p(t) (An—VI¥-Vn)||L
te(to,t1)

t1—-to n
L gl a

t1—to n_n
+ess sup lo(t) @V —n V)| [ B3 Vgl at

te(t01t1 )

+ [[(em) (to)llzr |G (81 — to)llz»

18
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For p < ;%5 the t-integrals are finite, from which we deduce that
p € L} ((0,00)xR™).

We now appeal to the LP—estimates [16, §3,(3.1) and (3.2)] for the potentials
in (55) to conclude by the usual bootstrap arguments that any derivative of p
is in L} ((0, 00)xIR™), from which we obtain the stated regularity condition
(a).

We now prove assertion b). Using (55) with ¢, = 0, and proceeding as above,
we obtain

em)(t) — (¢°n) * G(t1)]ln
= ess sup [lp(t) (An— VE-Vn)|lis [ lgllzs dt

te(0,t1)

t
+ ess sup ||p(t) (2Vn - nV\II)HLx/; -1 Vgl dt forallt; >0

te(0,t1)

and therefore,
(pn)(t) — (P°n)*G(t) — 0 in L'(R") fort 0.
On the other hand, we have
(0°n)+G@t) = °n in L'(R") fort]O,
which leads to
(pm)(t) — p°n in L'(R") fort]O.

From this result, together with the boundedness of {M(p(t))}s;0, We infer
that (32) is satisfied.

Finally, we prove the uniqueness result c) using a well-known method from
the theory of elliptic-parabolic equations (see for instance [18]). Let p;, po
be solutions of (32) which are smooth on (0, 00)xIR" and satisfy (32), (33).
Their difference p satisfies the equation

% _ div[pV¥ +Vp] = 0

ot
We multiply this equation for p by @%(p), where the family {¢s}s,0 is a convex
and smooth approximation to the modulus function. For example, we could
take

ds(z) = (+8%)7.
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This procedure yields the inequality

Oi[ds(p)] — div[@s(p) V¥ + V([#s(p)]]
= —¢5(0) IVol* + (¢5(0) p— ¢6(p)) AY
< (d5(p) p— ¢s(p)) AP

which we then multiply by a nonnegative spatial cutoff function n € C§°(IRR™)
and integrate over IR" to obtain

<[ ostoomdz] + [ dote)) (V9-Yn - ) do
< [ G50 o= ¢s(p) A¥nds.

Integrating over (0, t) for given ¢t € (0, 00), we obtain with help of (32)

S Belondz + [ bolt)) (VE-Vn— An) dzdt

< (¢5(p) p— ¢6(p)) A¥ndz dt.

(0,t) X R™

Letting 6 tend to zero yields
Vn — < 0.
S lo@lndz + [ o) (VEVn—An)dzdt < 0. (56)

According to (12) and (33), p and pVV¥ are integrable on the entire IR™.
Hence, if we replace 7 in (56) by a function ng satisfying

nr(z) = 171(}%), where my(z) =1 for |z] <1, m(z)=0 for |z| > 2,

and let R tend to infinity, we obtain [g. |p(t)] dz = 0. This produces the
desired uniqueness result. O

Acknowledgments

The research of all three authors is partially supported by the ARO and
the NSF through grants to the Center for Nonlinear Analysis. In addition,
FO is partially supported by the Deutsche Forschungsgemeinschaft (German
Science Foundation), and DK is partially supported by grants NSF/DMS
9505078 and DA AL03-92-0003.

20



References

[1] P. Billingsley, Probability and measure, Wiley, New York, 1986.

[2] Y. Brenier, Polar factorization and monotone rearrangement of vector— -
valued functions, Comm. Pure Appl. Math., 44(1991), pp. 375-417.

[3] L. A. Caffarelli, Allocation maps with general cost functions, in Partial
differential equations and applications, P. Marcellini, G. G. Talenti, and
E. Vesintini, eds., Lecture Notes in Pure and Applied Mathematics, 177,
Marcel Dekker, Inc., New York,1996 pp. 29-35.

[4] S. Chandrasekhar, Stochastic problems in physz'cé and astronomy, Rev.
Mod. Phys.,15(1942), pp. 1-89.

[5] R. Courant, K. Friedrichs, and H. Lewy, Uber die partiellen Differenz-
gleichungen der mathematischen Physitk, Math. Ann., 100(1928), pp.
1-74.

[6] S. Demoulini, Young measure solutions for a nonlinear parabolic equa-
tion of forward-backward type, SIAM J. Math. Anal., 27(1996), pp.
376-403.

[7] C. W. Gardiner, Handbook of stochastic methods, 2nd ed., Springer-
Verlag, Berlin, Heidelberg, 1985.

[8] W. Gangbo and R. J. McCann, Optimal maps in Monge’s mass transport
problems, C. R. Acad. Sci. Paris, 321(1995), pp. 1653-1658. '

[9) W. Gangbo and R. J. McCann, The geometry of optimal transportation,
‘preprint (1996).

[10] C. R. Givens and R. M. Shortt, A class of Wasserstein metrics for
probability distributions, Michigan Math. J., 31(1984), pp. 231-240.

[11] R. Jordan, A statistical equilibrium model of coherent structures in mag-
netohydrodynamics, Nonlinearity, 8(1995), pp. 585-613.

[12] R. Jordan and D. Kinderlehrer, An extended variational principle, in
Partial differential equations and applications, P. Marcellini, G. G. Tal-
enti, and E. Vesintini, eds., Lecture Notes in Pure and Applied Mathe-
matics, 177, Marcel Dekker, Inc., New York, 1996, pp. 187-200.

[13] R. Jordan and B. Turkington, Ideal magnetofluid turbulence in two di-
mensions, submitted to J. Stat. Phys.

21



[14] D. Kinderlehrer and P. Pedregal, Weak convergence of integrands and
the Young measure representation, SIAM J. Math. Anal., 23(1992), pp.
1-19.

[15] H. A. Kramers, Brownian motion in a field of force and the diffusion
model of chemical reactions, Physica, 7(1940), pp. 284-304.

[16] O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Ural’ceva, Linear and
quasi-linear equations of parabolic type, American Mathematical Society,
Providence, RI, 1968.

[17] F. Otto, Dynamics of labyrinthine pattern formation in magnetic fluids:
a mean-field theory, to appear in Archive Rat. Mech. Anal., (1996).

[18] F. Otto, L'-contraction and uniqueness for quasilinear elliptic~parabolic
equations, C. R. Acad. Sci. Paris, 321 (1995).

[19] S. T. Rachev, Probability metrics and the stability of stochastic models,
Wiley, New York, 1991.

[20] H. Risken, The Fokker-Planck equation: Methods of solution and appli-
cations, 2nd ed., Springer-Verlag, Berlin, Heidelberg, 1989.

[21] Z. Schuss, Singular perturbation methods in stochastic differential equa-
tions of mathematical physics, SIAM J. Review, 22(1980), pp. 119-155.

[22] J. C. Strikwerda, Finite difference schemes and partial differential equa-
tions, Wardsworth & Brooks/Cole, New York, 1989.

22



versity Libraries

L

|
77L8

W

3 aud2 0l4e

e Mellon Uni



