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1 Introduction
In the variational approach to image segmentation, one seeks minimizers of the Mumford-
Shah functional

E(u,K)= ( \u-g\2dx+ f \Vu\2dx^nN^(K),
Jn\K JQ\K

where g € L°°(ft) is the initial image, u € Cx(ft\K), HN'l{K) is the N - 1 dimensional
Hausdorff measure of the relatively closed set K C ft, and 17 C RN is a bounded Lipschitz
domain. Minimizers of this functional are close to the initial image due to the first term,
smoothed due to the second, and segmented due to all three: if the first term forces any
"low energy" u to have large enough gradient along some N - 1 dimensional surface K,
then the image is segmented across K, which relieves u from needing to be smooth across
K, The last term ensures that segmentations occur only when necessary.

From the point of view of image processing, the set K corresponds to edges of objects in
an image, placed where a smooth grey scale image is forced to change too much too quickly.

Mumford and Shah [MS] conjectured that if N = 2 minimizers exist and the edge set
K of any minimizer consists of a finite number of C1 curves. It was shown in [DGCL] that
minimizers exist. This was done by reformulating the problem in SBV, a space introduced
by De Giorgi and Ambrosio [DGA], so that weak solutions could be shown to exist using a
compactness theorem due to Ambrosio [A]. They then proved that any minimizer it is in
C^ftVO, where K is the closure in ft of the jump set of u, i.e., the set of points that are
not Lebesgue for u.

Attention has largely turned to the regularity of K (see, e.g., [DS], [AP], [AFP]). In
particular, it was shown in [AP] and [AFP] that, for ft C RN , optimal edge sets are Cli<*
hypersurfaces outside a closed set of liN~l measure 0. The main idea was to analyze the
behavior of |Vu| near x G K that can cause a singularity in K at x.

In this paper, we take a step towards understanding the regularity of K when there
are no singularities caused by |Vu|. We consider minimizing the Mumford-Shah functional
only over two-valued functions in the plane (and so also rule out singularities due to triple



junctions, i.e., singularities in K that occur when three regions with different values of u
meet at a point), which is equivalent to minimizing over constant multiples of characteristic
functions. If 5 C fl, we denote its characteristic function by xs> and for u = Cxs^ the edge
set K is d*S fl fl since dmS is the jump set of C\s- Our energy is then - ,. l^i

E(CXs) = / \CXs - 9?dx + Hl(frSnil). (1.1)
Jn

This variational problem corresponds to finding an optimal placement of edges around clus-
ters of overlaping objects.

We first consider the energy

E(CXs) := / \CXs - P|2dx + Hl(8.S) (1.2)
Jn

and prove that for a minimizer S one has Ml(d*S f\ Q\d*S) = 0, so that the last term in
the above energy is the same as W}(d+S n fl). Since 9*5 C d*S n fl, minimizers of (1.2)
coincide with minimizers of (1.1). Furthermore, we show that for such an 5, there exists
an open set A C fl such that C2(SAA) = 0 and A = A°. Next, we prove A = U^A^
where A{ are the connected components of A and the distance between 8mA{ and d*Aj is
positive away from dfi, if i ^ j . Analogous results are obtained for Sc, the complement
of 5 in fl, e.g., C2(SCA U?=1 O») = 0 where O» are connected, etc. Finally, we conclude
that 9*At 0 dm0j H fl is C1 for i = 1 , . . . , m, j = 1 , . . . ,p, which proves the Mumford-Shah
conjecture for "two shaded" image segmentations.

2 Preliminaries
We consider a bounded, simply connected, Lipschitz domain f l c E 2 , and we define the
space of functions of bounded variation BV(fl) in the usual way (see, e.g., [EG] and [Z]).
For E C fl, XE stands for the characteristic function of E. Given two sets A and B, the
symmetric difference is given by AAB := {A\B) U (B\A), and if D C fl then we define
distD(A, B) := dist(A DD,B DD). For A C fl, we denote by Ac its complement, A its
closure, and A0 its interior. We write D c c f l i f I ? C f l i s open and D C fl.

We say that a set E C fl has finite perimeter in fl if XE € BV(fl), in which case the
measure theoretic boundary in fl is defined as

8.E - L « „ :^p*%%>"*> > 0 -d — » g j ™ > > 0} ,

where B(x,(J) is the open ball in M2 centered at x with radius <5. We denote by VE(X) the
measure theoretic normal to JS at x € 9*25 (for properties of this normal, see [EG]). The
reduced boundary d*E is the set of a: € d+E such that x is a Lebesgue point for VE with
respect to the Radon measure Hl [d*E.

For u € BV^fl), we write Du = £>acu+.D,u, where Dacu and JD,u stand for, respectively,
the absolutely continuous and singular parts of Du with respect to £ 2 . We also consider the
set S(u) of points which are not Lebesgue points for u. We use the representation Dactt =
Vtx£2. We say tx is a special function of bounded variation, and we write u € SBV(fl), if
Du = Vu£2 + D8u[S(u). This space was introduced by De Giorgi and Ambrosio [DGA].

3 Regularity of Edge Sets
Definition 3.1 For C > 0 fixed, we define

E*(S) := J \CXs - 9\2dx + «l(fcS),

€ L°°(fl) ond S C fl is measurable.



It follows from BV compactness in L1 and the lower semicontinuity of perimeter that
E* has a minimum. Indeed, even if we let C vary there is a minimum. Let Cnxsn be a
minimizing sequence, and note that we can assume \Cn\ < ||p||oo- Xsn is bounded in BV(Q),
so, for a subsequence, Cn~> C and xsn -* Xs in ̂ ( 0 ) for some S C ft. Since perimeter is
lower semicontinuous, it follows that C\s is a minimizer.

Lemma 3.2 Suppose that S minimizes E*. Then W}(dJ5 H fi\0*S) = 0.

Proof. Note first that if Cxs is a minimizer of J3, then the conclusion holds by [DGCL].
Here, we need to show that the result is true even if Cxs is a minimum only over charac-
teristic functions. The basic strategy follows [AP].

Step 1: We claim that for D CC ft, there exists rr> > 0 such that if a: € d*SDD and r <TD,
then Hx(dmS D B(x, r)) > 2r. Clearly, it suffices to show this for x € d.S H D.

Let D CC fi and x € d*SDD and choose rD < min{2(C + ||p||oo)"2, dist(£,0ft)}.
Suppose that r < m and Hl(d*S D B(x>r)) < 2r. We will show that this leads to a
contradiction. Put

St:=S'naB(x,t)

and

where 5' := {x € ft : 5 has density 1 at x}, and similarly for (Sc)'.

Step i .4: We claim that

Hl({t £ (0,r) : Hl(St) = 0 or ̂ (T t ) = 0}) > 0. (3.1)

Suppose that
W1 (S t),^(T,) > 0 for W^a-e. t € (0,r).

We can choose <f>n e C°°(J5(x,r)) such that

<t>n^Xs on B(x,r)

and
r)) -> Hl(d.SnB(x,r)). (3.2)

It follows that for T^-a-e. t € (0, r) we have

\<t>n-XS'\dU}->0. (3.3)

For t e (0,r) such that (3.3) holds and V}{St)yH
l{Tt) > 0, we then have

liminf /
n-+°° JdB{xyt) dr

where ^- denotes the tangential derivative of <f>n on 8B(x,t). Hence, by (3.2)

nl(d*SnB(x,r)) = Urn \D<f>n\(B(x,r))
TI—+OO

> liminf f f
n-^°° Jo Jei/dB(x,t) dT

>2r.

This concludes the proof of (3.1). Since W1 [d»S is a Radon measure, we can choose t € (0, r)
such that, e.g., Ux (5t) = 0 and H1 (d.S n dB(x, t)) = 0. Set

T := S'\B(x,t).



Step l.B: Next, we claim that y}(d,T\d,S) = 0. Note that d.T\d.S C 8B(x,t) and if
yed,TndB{x,t), then

hmsup ; vy ' " > 0.

Kin addition 5 does not have density 1 at y (i.e., y $ St), then y € 9.5. Thus d»T\d,S C S t

and since "H^St) = 0, we have HHd.TXd.S) = 0.

Step l.C: We prove that E*(T) < E*(S). Rom the isoperimetric inequality and Step l.B
we have

Wa(d.S) - ^ ( d . T ) = HHd.[S\T]) > 2yft

Since r < rD, we know that r < 2{C + ||ff||oo)""2. and so

C2(S\T) < Trr2

Hence,
C2(S\T)(C + HPIIO

But this implies that E*(T) < E*(S) because

/ \CXT - 9?dx - / \CXs - 9?dx < C2(S\T)(C + \\g\U2.

Since this contradicts 5 being a minimizer, we have proved the claim in Step 1.

Step 2: Now, following [AP], we set /x := V} [9*5 and note that

for all x € 9*5. Hence,
0 =

D

Lemma 3.3 Suppose that S minimizes E*. Then there is an open set A C ft such that

Proof. Define 5 ' as in the previous lemma, and note that xsf has the same total variation
measure and jump set as xs- We wish to show that we can take -A = S'°. It is clear that

and we claim that 5 = 5' U9*S'. Suppose that x & S' U9*5'. Then 5 does not have density
1 at x and we can choose an r > 0 such that B(x,r) n 9*5' = 0. Hence, \Dxs\(B(x,r)) =
Hl(d+S H B(x,r)) = 0, and so xs is a constant £2-a.e. in JB(x,r). Since S does not have
density 1 at x, we know that 5 has density 0 on B(x, r), and so B(x, r) nSf = 0 and x £ S7.

Now, suppose that x € S'\dmS'. Then 5 has density 1 at x and and we can choose
r > 0 such that B(x,r) n 9*S' = 0, so S has density 1 on B{x,r), and x € 5'°. Clearly,
S'° C S'\d.S', thus

5'° = S'\d.S'.

Since 5 ' minimizes £*, we know that 7il(d^S') < oo and by the previous lemma y}(dm
ft) < oo, hence

£2(5A5'°) = 0.



Clearly S'° C (5*)°. We also have 3 ^ C S7 = S' U7KS7. Suppose B C5 'U 5*5' is open. If
BDd.S' ^ 0, then C2(B\S) > 0. But this is a contradiction since C2(d.S') •= 0. Therefore,
B C 5 ' which implies (S' U ST57)0 = S'°. So, (2F5)0 C 5 / o and

5 / o =

Lemma 3.4 Suppose that S minimizes E*. Then we can write A = U^Ai, where A is
the set from Lemma 3.3 and Ai are disjoint, open, and connected sets. Furthermore,

distp(.4i, Aj) >Oifi^j and D CC IX

Proof. We may write A = Ug -̂A*, where Ai are disjoint, open, and connected sets. We
first claim that SM D d*A{ n d*(A\Ai) = 0. We know (see, e.g., Theorem 5.6.2 of [Z],
Theorem 1 in Section 5.7.2 of [EG]) that if x € 0M n 0M< n d*(A\Ai), then

£2(B(x,r)) 2'

£ 2 ( i t - n B ( y ) ) ^ 1
r)) " 2 *

Bfer)) _ 1
( ( , r ) ) 2'

which is a contradiction.
We next claim that

Hl(dmAi O d*[A\Ai]) = 0. (3.4)

We first show that d+Ai,d*(A\Ai) C d+A. If x & d+A, then we can choose r > 0 such
that B(x,r) n 5*>1 = 0. This implies \DxA\{B{x,r)) = 0, and so \A is a constant £2-
a.e. on B(x,r). Since A = 5 / o , it follows that B(x,r) C -4 or B(x,r) C -4C, which yields
x & d*Ai U d*(A\Ai). We conclude, using Lemma 3.2, that

.Aj n d.[A\Ai])

= o.
is removed from A, then / n |Cxs - 9\2dx is increased by at most (C + ||p||o

It is clear from the definition of measure theoretic boundary and the proof of (3.4) that

6*A C dmAi U 6*[A\Ai] C dlA.

So,
HX(B.A) =H1{d*AiUd.[A\Ai])

- W 1 ^ * ^ n A

Therefore, by removing Ai from A, Hl(d+A) is decreased by Wl(d+Ai). Due to the mini-
mality of A it follows that

< (C7+ |M|oo)2£2(^). (3.5)



Although the relative isoperimetric inequality (Theorem 5.4.3 in [Z], Theorem 2, Section
5.6.2 in [EG]) is stated for balls, it is immediate from the proof that a relative isoperimetric
inequality holds for any bounded Lipschitz domain. In particular, there exists a constant
k > 0 such that

min{£2(£;),£2(fi\£;)}1"i < kHl(d.E)

for all E C fi measurable. Let Ai be a connected component of A, and suppose that
2 < |£ 2(f l ) . It follows from our isoperimetric inequality that

This, together with (3.5), gives

Since Q is bounded, there are finitely many A{.
Finally, we prove that d*Aj fl d+Aj = 0 if i ^ j and so dist£>(Ai, Aj) > 0 for D CC fi.

Suppose that x € d*Ai n d*Aj D D, where D CC fl and i ^ j . Then

tfdUuMilfiflf^r)) >4r (3.6)

for r < r̂ >, where we have applied Step 1 in the proof of Lemma 3.2 to d+Ai and d+Aj,
and we used the fact that, by an argument just like that proving (3.4), we know these sets
intersect on a set of H1 measure 0.

However, note that if for r > 0 we take T := A\B(x,r), then

[ \CXT-9?dx- I \CXA-9?dx
Jn Jn

is at most (C + ||f l||0O)2£2(B(x,r)), while

nl(d»T) - V> (d,A) = y}{dB{x,r) Cl A) - y}(.d,A n B(x,r)).

Since £«(r) > E*{A), we have

HHd.Ar\B(x,r)) < (C + ||p||oo)a£a(B(x>r))+«1(aB(x>r)nA).

A similar argument can be made for T := A U B(x, r), and as

min^ 1 (SB(x,r) n A),n1(dB(x,r)\A)} < Trr,

it follows that
H\d.AnB{x,r)) < (C + ||fl||oo)2£2(B(x,r)) +7rr, (3.7)

contradicting (3.6) for sufficiently small r.
D

Now, note that

f 5c - (C - g)\2dx + W^AS*)

/

Hence, Sc minimizes &c_g if 5 minimizes 1?*, and so we may write

dist£>(Oi, Oj) > 0 if t ^ j and D CC fi, and all properties obtained for 5 and Ai hold also
for Sc and 0, .

We will need the following lemma in order to prove the regularity theorem, Theorem 3.6.



Lemma 3.5 Let A CC ft be a simply connected domain with Lipschitz boundary. Suppose
that E C ft has finite perimeter. Suppose further that there are a ̂  b € dA so that the
connected components C,D of dA\{a,b} are such that ED A has density 0 Wl-a.e. on C
and A\E has density 0 Hl-a.e. on D. Then

\LJe.EnA

and similarly for e2 and |6i — a\\.

Proof. The proof is a natural generalization of the proofs of equations (6.7) and (6.8) in
[L].

D

Theorem 3.6 Suppose that S minimizes E*. Then d+Snfl, is a finite union ofC1 curves.

Proof. Set dj := d.AiDd.Oj;Hft and note that dJSnCl = Ug^ U?=1 dj- We claim that
dj is a C1 curve.

In Step 1, for D CC ft we find a constant c G (0,1) depending on D such that for
sufficiently small r > 0, given any x £ dj HDwe can choose t € (cr,r) with the following
property: we can find o,6 € 8B(x,t) so that one connected component of dB(x,t)\{a,b}
does not intersect Ai, and the other connected component does not intersect Oj. In Step 2,
we get an estimate for the maximum distance between the line L connecting these points
and dj f) B(x^t). In particular, we find a constant d > 0 such that this maximum is
bounded above by dt2. In Step 3, we show that VA{ is locally uniformly continuous on
d*Ai, and so it can be extended continuously to d*Ai D fi. Step 4 consists of proving that
dj is locally the graph of a C1 function, and finally we prove in Step 5 that dj are the
connected components of 3*5 n 17.

Step 1: Let D CC ft and x € dj n D, and set

and
a(x,r):=Hl({t€(0,r):m{x,t)>4}).

Choose D' CC ft such that D CC D' and set

fD :=nnn{rD, dist(D,dD'), <hstD'(dj,dJS\dj)} > 0.

For r < fD we know from the fact that (3.1) led to a contradiction that

^ ( { * € (0,r) : W 1 ^ r\dB(x,t)),nl{Oj ndB(x,t)) > 0}) = r. (3.8)

If y € ^ n&B(z,*) H Oj ndB(x,t), then for all 6 > 0, xs is not a constant £2-a.e. on
B(y,6), and so y € Cij . For * € (0,r) such that ft1^ n&Bfo t ) ) , ?* 1 ^ DdB(x,t)) > 0,
it is immediate that either m(x,t) = oo or

n°(Ai n 3B(x, t) n Oj n 5B(x, t)) > 2,

and so we have m(x,t) > 2. By the definition of fi>, we know that if r < fp, then

and
H1(\$Jl&d.Ai]nB(x9r)) = 0.



By (3.7) we have, for c:=(C + ||p||oo)2,

c?rr2 + nr >Ul (dtj 0 B(x, r))

> / m{x,t)dt
Jo

>4a(x,r) + 2(r-a(x,r)),

which implies that a(x,r) < \cnr2 + (f - l) r. If necessary, we can redefine fp > 0 to
guarantee that we can find c € (0,1) such that r - a(x,r) > cr for all r < fp. Choose
t € (cr,r) such that m(x,t) € {2,3} and, by (3.8), V}(Air\dB(x,t)),/Hl(OjH&B(x,t)) > 0.
For either value of m, we can choose o, 6 € A% n 5B(x, *) n Oj H 9B(x, t), so that one con-
nected component of 3B(x, t)\{a, b} does not intersect A^ and the other does not intersect
Oj.

Step 2: Let L be the straight line segment connecting o and 6, and let I be its length.
Assume, without loss of generality, that e2 is normal to L in the Oj direction. We can
consider adding the Ai "side" of L to A,, and similarly for Oj> which must not reduce E*.
That is, we set

T := (Ai U the 4i "side" of L in B(x,i))\ the Oj "side" of L in B(x,t)

and note that
E*(T) < E*(S) - n'iCij n B(x,t)) +1 + crrt2.

Since ££(T) > ££(S), it follows from Step 1 in Lemma 3.2 that

CKt2 +1 > n1 (Cij D B(x, t)) > 2t.

Set
d(x,t) := sup{dist(y,L) : y €

We claim that we can find d > 0 depending only on c and f£> such that

d(x,t)<c't2. (3.9)

We know, for T as above, that

E*(T) < E*(S) - HHCij n B(x,*)) + / + 4cd(x, t%

so
, t) + / > H1 (Ci%j n B(x, t)) > 2t. (3.10)

We claim also that
4d(x, t)2 < H1 (Cu n B(x, t))2 - i2. (3.11)

Since \vAi\ = 1 K^a.e. on d+Au it follows that

By Jensen's inequality, we know

Ci%jf\B{x,t) \J Citjr\B(xyt)
1*. (/

\J Citj



and similarly for e2- Hence, we have

citjnB(xyt)

21

So,

UliPunB{x,t))2>[f VAi-eidH1) + ( / ^ .
\yc,,,nB(*,t) / \./c,finB(*,i)

. (3.12)

Note that the same holds if VA{ • e* is replaced by \vAi • e*|. FVom Lemma 3.5, with i? = A*
and A = B(x,t), we know that

= 0 and
citjnB(xtt)

= /. (3.13)

Hence / c . n B ^ t) Î Â  • e2\dhl > /, and to prove the claim (3.11), it is sufficient by (3.12)
and (3.13) to prove 2d < Jc nB(Xtt) \VAI ' e\\dHl. Let e > 0 be given and choose v €
d*Ai n JB(x, £) such that dist(t;, L) > d(x, t) — e. Since Ai and Oj are connected, we can find
z € Ai n 5JB(X, <), u; € OJ PI 9B(x, *), and smooth curves iT and M, such that if connects v
and z in {v} U ̂ 4j fl B(x, t) and is normal to C ĵ at v and to dB(x, t) at 2, and M connects
t; and w in {v} U Oj D J5(x,t) and is normal to Cij at 1; and to dB(x,t) at u;. We can
then apply Lemma 3.5 to both "sides" of K U M in B(x,t), yielding, together with the
arbitrariness of e, 2d < fCijnB(Xyt) |^,- * ei\dHl.

Now, we have

4d(x,t)2 < Hl(Cijr\B{x,t))* - I2 (by (3.11))

= (H1 (dj n B(x, *)) - 0(«x(Cu n B(x,«)) + /)

< (4ctd(x,t))(4ctd(x,t) + 21) (by (3.10))

< \&<?t2d{x, t)2 + 16ct2d(x, t), (since l<2t)

which gives
d(x,t)<4ct2(l + crD).

We label this last constant multiplying t2 by d.

Step 8: We claim that VA( is locally uniformly continuous on d'Ai. Let y € Cij DB(x, if).
Let n e N and choose t(y) € (c^jt, ̂ t) as for i . Choose a and b for y, and denote the
normal to L(a,b) by v{y). We may then find t(a) 6 (cf(y),t(y)) such that dB(a,t(a))
intersects Citj two or three times, with Ai and Oj separated in 8B{a, t(a)) by a' and 6', and
6' € B(y, %)). Since dist(6\ L(a, 6)) < c't(y)2, similarly for dist(a, L(a', b')), and dist(a, 6'),
dist(a',a) > ct(y), we see that

< <*(v)
Ha') - u{a)\ < ct(y),



for some c > 0, where v(a) is normal to L(o,j/) and v(o!) is normal to L(a\a).
We may procede similarly n times, each time picking ak € 9J5(afc"1,t(a*~1)), t(ak) €

(cf(a),t(a)), with i/(ak) normal to L(ak,ak~l). Since nt(a) < | t , we know that we stay in
B(x,t). It follows that we have

Setting

we see that

for all k € { 1 , . . . , n } . We have

where a0 := y. Assuming /? > 0 without loss of generality, and further assuming /? - y > 0,
we also have

so

But,

< 2c7*2,

which implies that 0 < t(4|^ + | ) . K /? - y < 0, we still have /? < t§. A similar argument
can be made for v(y) • e2, so that

K»)-Kx) |<a, (3.14)

for some c > 0. Since, for x,y E 9*A, we can choose r small enough so that i/(x) is arbi-
trarily close to UAi{x) and n large enough so that v(y) is arbitrarily close to ^ ( y ) , (3.14)
implies local uniform continuity of VA^ and so VA{ can be extended continuously from d* A
to dmA H fi. In particular, this shows that dB(x,r) intersects dj exactly twice for suffi-
ciently small r > 0, and furthermore that d* A n Q = d*A.

Step 4: We show that C»j is locally the graph of a C1 function. Let x € C»j be given and by
Step 3, choose r > 0 such that Cij intersects dB(x,r) twice, at a and 6, and VAiiv) • e2 > 0
for all y € dj n B(x,r), where e2 = i^(x). Let L be the line segment connecting a and
6, and let / be its length, and assume that o and 6 are oriented so that 6 — a = I e\. For
A € (0,/), consider the line LA through a -4- Aei in the direction e2. Since ^ ( y ) • e2 > 0
for all y € B(x,r) n Cij , we know that L\ intersects dj H B(x,r) just once. We label the
intersection 7(A). We therefore can define / : (0 , / ) ->R by

and dj H B(x,r) is the graph of / . Let Ai > A2 € (0,/) and take |AX, A2| to be the region
in B(x,r) between LAl and L\2. We will denote VAiin&i)) by i^(Ai) . We have

10



Jc«.inB(«,r)n|>

Ai

'1/1 (C*. . C\ TRfri

- A 2

Ai

W l ^.(Ai)-ei

\)(vAi(Xl)-el+O
- A 2

Ai-A2

where the first equality follows just as Lemma 3.5, the second follows from (3.14), and the
third from an argument similar to the proof of (3.9). Hence, / € C1 .

Step 5: Finally, we show that dj is a connected component of d+SnSl. Let x,y € dj- By
the regularity of dj and the connectedness of Ai and Oj, we may choose smooth curves,
one in Ai and one in Oj, that connect x and y and are normal to dj at x and y. The union
of these curves is Jordan, and so we may consider the interior region, R. Since ft is simply
connected, we have R CC fi. We can choose r £ (0, f^) so that, for x and j / , and for zGf l ,
we have, e.g., B(z,r) fl Cij is the graph of a continuous function on a line segment, and so
it is connected. The curve B(z,r) n dj can be shown to continue, as before, by choosing
balls with radius r centered at points in dj^dB(z,r). It can be continued in R as long as
these balls stay in R and the curve does not self intersect. But by the choice of these balls,
and since dR is normal to Cij at x, the connected curve begun at x cannot self intersect
in R U {x}. Since Hl(dj) is finite and each ball adds r to Hl{dj), the connected curve
begun at x must leave R. Because dR n dj = {*,y}, the connected curve must cross dR
at j/ , and so x and y are connected in dj- Hence, Cij is connected. Since the dj are
closed in ft and mutually disjoint, they axe the connected components of d+A, and hence
each connected component of 9* A, of which there are finitely many, is C1.
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