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I. Introduction

The purpose of this paper is to employ non-classical deformations (specif-

ically, the structured deformations introduced in DEL PIERO & OWEN,

1993) to describe slip at the microlevel, to derive the refinements of balance

laws induced by the presence of microslip, and to propose constitutive rela-

tions that reflect the refinements in balance laws. The principal advantage of

structured deformations as a basis for describing microslip, as opposed to de-

scriptions that employ classical deformations together with internal variables

such as plastic deformation, lies in the fact that each quantity employed in

the description of a structured deformation can be shown to be the limit of

quantities that describe geometrical changes at smaller and smaller length

scales. For example, the tensor measure of deformation without slip intro-

duced here is the limit of deformation gradients computed at points away

from slip planes; the vector measure of slip turns out to be a limit of aver-

ages of smaller and smaller slips within smaller and smaller regions containing

a given point. Besides the obvious advantage of having direct geometrical

interpretations within the mathematical context of structured deformations,

such quantities and the limiting or "identification relations" (see eqns (3) -

(5)) that they obey permit one easily to deduce from information available

at the microlevel corresponding information about continuum fields. Thus,

for example, transformation properties of the deformation without slip under

change of observer and reference configuration follow immediately from those



of the deformation gradients of which it is the limit. Moreover, not only do

structured deformations factor globally into "purely microscopic" and "sim-

ple" compositional factors, but the macroscopic deformation gradient at each

point decomposes additively into the tensor measure of deformation without

xnicroslip plus the tensor measure of deformation due to microslip. These two

tensors are expressed through identification relations, respectively, as limits

of smooth deformations away from slip planes and as limits of averages of

small jumps in displacements across slip planes.

The basic facts about structured deformations needed here were devel-

oped in earlier articles (DEL PIERO k OWEN, 1993; DEL PIERO k OWEN,

1995) and are summarized in Section II. The specific example of single slip,

where all microslips are perpendicular to a single, given direction, is presented

in Section III. The principal new developments of this article, the decompo-

sitions of flux densities and of fields induced by structured deformations, are

described in Section IV. Each term or group of terms in the decomposition

of flux densities, eqn (16), obeys an identification relation that permits us

to distinguish flux densities due to slip (or, more generally, due to any kind

of disarrangements) from flux densities without slip (or without disarrange-

ments). (The derivations of the identification relations eqns (18) and (19) will

be presented in a future article.) Examples of decompositions of fluxes are

presented in Sections V and VI for contact forces and for contact moments

in the presence of microslip, and these examples permit us in Section VII to

derive refinements, eqns (35) and (36), of the classical balance of forces and



moments for a continuum. The refined balance laws are related to the classi-

cal balance laws, written in terms of the Piola-Kirchhoff stress, in much the

same way as the latter balance laws are related to the classical balance laws,

written instead in terms of the Cauchy stress, except that the first relation

is induced by a purely microscopic structured deformation, while the second

is induced by the classical deformation that takes the reference configuration

into the deformed configuration. Thus, the refined form of the balance laws

reflects the availability of a new reference configuration that differs from the

classical one by a purely microscopic deformation. The additional terms that

appear in the refined balance laws immediately suggest refinements of con-

stitutive laws. Three such refinements are proposed in Section VII: one for

the "response without slip" and two alternative proposals for the "response

due to slip". In one proposal for the response due to slip, it is assumed that

the contact forces due to slip are self-equilibrated; in the other, it is assumed

that the contact moments due to slip are self-equilibrated. A full analysis of

these and other proposals for the response due to slip awaits further research.

II. Structured Deformations

The definition of a structured deformation (K.g.G) from a region A in

space £ rests on two more elementary kinds of deformations: classical de-

formations and simple deformations. A classical deformation from A is a

mapping f : A—+ £ that extends to all of £ as a C^mapping that is invert-



ible and whose inverse is of class C1. Roughly speaking, a simple deformation

is a "piecewise-dassical deformation". More precisely, a simple deformation

from A is a pair (/c, / ) with K a subset of A and / a mapping from A\K into

€ such that K has volume zero, / is one-to-one, and A\K can be written as a

finite union of regions from each of which / is a classical deformation. The

simple shearing of a rectangular block illustrates the notion of a classical de-

formation, whereas the piecewise-rigid "shearing" of a deck of cards provides

an example of a simple deformation: here, A is the region containing all of

the cards, K is the set of points on the interfaces between cards, A\K is the

set of cards (without the interfaces), and / restricted to each card is a rigid

translation that can vary discontinuously from one card to the next. For each

simple deformation («, / ) from A, the set K is here called the disarrangement

site, and the mapping / is called the transplacement for (K, / ) . (In DEL

PIERO & OWEN , 1993, 1995, the set K was called the crack site. The term

"disarrangement" was introduced in the context of structured deformations

in OWEN, 1995.)

A structured deformation (K ,£ , (7 ) from A consists of a simple deforma-

tion (K,g) from A and a tensor field G : A\K —> LinV (with V the translation

space of S and LinV the set of all linear mappings on V) such that G is piece-

wise continuous and there is a positive constant m for which

m < det G (x) < det Grad g (x) (1)

for all x in .4\AC. For example, if g is the simple shear of a rectangular block



and G is the constant field whose only value is the identity tensor / in LinV>

then the triple (0,<7, J) (with 0 denoting the empty set) is a structured de-

formation in which the simple deformation (0,p) is actually a classical defor-

mation. In this example,

det Grad g (x) = det
1 1 0
0 1 0 detG(x), (2)
0 0 1

so that (1) holds with m = 1 and with equality in both relations.

The definition of structured deformation by itself provides no interpreta-

tion for the tensor field G, but this situation is remedied by means of the

following "Approximation Theorem" (DEL PIERO & OWEN, 1993): every

structured deformation (K,0, G) is a limit of simple deformations from A

in the sense that there exists a sequence m *—> (Km^f™) of simple deforma-

tions such that g = lim fm and G = lim Grad fm. Here, the limits are
u m-»oo m-»oo

taken in the sense of L°°-convergence on A- (A limit relation between K

and the sequence m «-• Km also can be established but is not needed in the

present discussion.) As an illustration of the Approximation Theorem, the

structured deformation (0,#,/) introduced above is a limit of simple defor-

mations (Km, fm) in which fm is a piecewise-rigid shearing of a deck of cards,

m is the number of cards, and in which the relative displacement of adjacent

cards is proportional to mTl.

The relations in the Approximation Theorem

3 = J&So/m (3)

G = lim Gradfm (4)

6



justify our calling g the transplacement for (/c,p,G) and G the deformation

without disarrangements: G (x) represents the local deformation at x with-

out including the effects of separation or slip occurring at the disarrangement

sites Km for the approximating simple deformations (/Cm, f m ) . Thus, by means

of structured deformations we may distinguish between the structured sim-

ple shear (0,<7,/) and the classical simple shear (0,0, Grad p): in the former,

the deformation without disarrangements is / , that of a rigid deformation;

in the latter, the deformation without disarrangements is Grad g, the de-

formation gradient of the simple shear g appearing in eqn (2). Moreover,

the limit operations in eqns (3) and (4) permit us to interpret the defor-

mations associated with G as occurring in smaller and smaller pieces of the

body, just as the disarrangement sites Km can be considered to be diffusing

throughout the body as m becomes large. We may then call g and Grad g

the macroscopic transplacement and macroscopic local deformation. These

are the quantities one encounters in classical descriptions of the geometrical

changes in a continuous body, whereas G reflects geometrical changes at a

smaller length scale such as changes in geometry at the microlevel.

The eqns (3) and (4) that identify g and G permit one to deduce an

identification relation for M := Grad g - G (DEL PIERO k OWEN,

1995): for each sequence m H-> (Km,fm) satisfying eqns (3) and (4) and each



x € A\K,

M (x) = Grad g (x)—G (x) =lim lim f -7rr3 ) / [/m] (y)®z/ (y) dAy,f
r(/m)ns(x,r)

(5)

where T (fm) is the set of jump points of / m , [/m] (y) is the jump of fm at

y, 1/ (y) is the unit normal to T (fm) at a point y in T ( / m ) , and B (x,r) is

the ball centered at x of radius r. As noted in DEL PIERO & OWEN,1995,

the tensor M = Grad g — G represents through eqn (5) the volume density

of deformation due to discontinuities in transplacements at the microlevel,

and we shall here call M the deformation due to microdisarrangements. (The

term "deformation due to microfracture" was used in DEL PIERO & OWEN,

1995). Thus, the trivial algebraic identity

Grad g = G + M (6)

has the deeper significance of an additive decomposition of macroscopic de-

formation Grad g into the deformation without disarrangements G plus the

deformation due to microdisarrangements M.

Another useful decomposition for structured deformations is the factor-

ization

(K)g,G) = (K)9}Gradg)o(<t>1i>K) (7)

of (/c,p,G) into a simple deformation (n.g.Grad g) that follows a purely

microscopic structured deformation (0,i,/C), with i the identity mapping

and K = (Grad g)~l G. The simple deformation (0,i) in (0, i, /C) indicates
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the absence macroscopic displacements and macroscopic disarrangements, so

that when K *fi / , i.e., when Grad g ^ G, the only geometrical changes

associated with (0,i , /f) are due to disarrangements at the microlevel.

We note finally that det G represents the volume change without disar-

rangements, whereas det Grad g represents the macroscopic volume change.

Thus, the inequality (1) expresses the condition that disarrangements can

only increase or maintain volumes, the former occurring through the cre-

ation of voids. This condition is necessary in order that the transplacements

fm that approximate g be one-to-one and, hence, not cause interpretation of

matter. Of course, the equality associated with (1)

det G = det Grad g (8)

expresses the condition that no volume changes occur through disarrange-

ments.

III. An Example: Single Slip

We now shall identify a collection of structured deformations of the form

($i9>G) that are intended to describe the simplest type of slip in metallic

crystals: the discontinuity surfaces at the microlevel consist of a single family

of parallel planes, and all discontinuities in displacement at the microlevel

are translations parallel to these planes. To this end, we fix a unit vector u

and assume that there is a sequence m *-+ (ACm,/m) satisfying eqns (3) and

(4) along with the following slip conditions: for all m

9



si) the disarrangement site Km is a family of planes perpendicular to

s2) at each point y in *,», [/m] (y) • u = 0.

Condition si) tells us that the unit normal vector v (y) in eqn (5) may be

taken to be the unit vector u, so that the identification relation (5) becomes

(9)

where the vector

1 J [fm)(y)dAv (10)

will be called the slip vector at x in the structured deformation (0,£,G).

Note that s (x) is a limit of averages of slips occurring within a small sphere

centered at x as the magnitudes of the slips and the radius of the sphere tend

to zero. Hence, the dimensionless vector s (x) is a density of slip discontinu-

ities that completely determines the tensor M (x). We shall henceforth call

M = s ® u the deformation due to microslip.

It follows immediately from eqn (10) and s2) that

s ( x ) - u = 0 (11)

for all x, so that the slip vector at each point is parallel to the family of slip

planes in si). Consequently, the matrix of M (x) relative to the orthogonal

basis (u, s (x), u x s (x)) has the simple form:

0 0 0
[M (x)] = 1 0 0

0 0 0
(12)
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Moreover, the condition (1) together with eqns (6) and (9) implies

&etG(x) < det(G(x) + M(x))

- det (G (X) (I + G(x)'1 M (*)))

= det G (x) det (/ + G (x)~l 5 (x) ® u) (13)

= det G (x) (l + tr (G (X)"1 S (X) ® u))

and relation (13) tells us that G,s and u are subject to the restriction

G(xy1s(x)-u>0. (14)

Moreover, equality holds in relation (13) if and only if equality holds in re-

lation (14). Thus, the macroscopic volume change det Grad g (x) equals the

volume change without slip det G (x) if and only if G (x)~l s (x) is perpen-

dicular to u.

IV. Fluxes due to Disarrangements and Fluxes without

Disarrangements

For a given structured deformation (K, p, G) from A, the factorization eqn

(7) contains the purely microscopic structured deformation (0,i, K), with

K=(Grad9y
lG, (15)

and the simple deformation (K,g,Gradg). Eqn (7) permits us to think of

carrying out (K ,^ ,G) in two steps: first, put in all of the deformations at

11



the microlevel without any macroscopic changes, and then deform the body

classically without further changes at the microlevel. This process leads

us to think of a global reference configuration associated with the structured

deformation (0, i, / ) in which the body occupies the region Ay of a final global

configuration associated with (/c,p,G) in which the body occupies the region

g{A), and of an intermediate global configuration associated with (0,i, JC)

in which the body also occupies the region A but has undergone geometrical

changes only at the microlevel. In this and the following sections, we exploit

the difference between the two configurations on A in order to obtain refined

expressions for the volume density of the flux of a vector field defined on A,

Let w : A —* V be a smooth vector field on A and consider the identity

det KDivw = Div (K*Tw) -w-DivK* + Gradw• ((det K)I-IC), (16)

where K* is the adjugate of K :

K* = det K(K-l)T . (17)

We easily can verify this identity by noting the relations

Div (K*Tw) = DivK*-w + Grad w • K*

and

Grad w • / = Div w.

From the Approximation Theorem we may choose a determining sequence

m »-• (Kmyfm) for the purely microscopic deformation (0,1,/^) and obtain

12



the following identification relations for the terms in the eqn (16):

j w(y)-v(y)dAv (18)

Div (K*TW) |X =lim Jbjn̂  r~3 £ J W ^ '

In eqns (18) and (19) for each m, C m is a collection of closed cubes C that

cover the region A and whose faces together include the disarrangement site

/Cm, and Cr (x) is a cube centered at x of side r whose faces are disjoint from

all the disarrangement sites /Cm- The surface integral in eqn (18) is taken over

the image under fm of all the faces of the parallelepiped Cr (x) DC, so that the

sum in eqn (18) represents the total flux of w across the image of the faces

of Cr (x) and across the image of the faces of cubes C in C m containing the

disarrangement sites Km inside of CT (x). Therefore, the limit on the right-

hand side of eqn (18) and, hence, the left-hand side det K (x) (Divw) (x) ,

represents the volume density of the total flux of w. The surface integral

in eqn (19) is taken over the image under fm of only those faces of the

parallelepiped Cr (x) D C that belong to the boundary of Cr (x) and not to

the images of faces of cubes C in C m containing the disarrangement sites

Km inside of Cr (x). Therefore, the limit of the right-hand side of eqn (19),

and also the left-hand side Div yK*Tw) (x), represents the volume density of

the flux of w without disarrangements. Consequently, the remaining terms

(-tz; • Div K* + Gradw • ((det K) I - Km)) \x on the right-hand side of eqn

(16) represent the volume density of the flux of w due to disarrangements.

13



We note that the volume density of total flux det K Div w and the volume

density of flux due to disarrangements — w-Div K*+Grod w- ((det K)I — K*)

need not be the divergence of a vector field, whereas the volume density of flux

without disarrangements is the divergence of the vector field K*Tw. However,

in the special case where there is no volume change due to disarrangements,

eqns (8) and (15) tell us that det K = 1 and, therefore, eqn (16) becomes

Div w = Div (K*Tw) + Div ((/ - K*T) w) , (20)

so that the obvious algebraic identity

w = K*Tw + (/ - K*T) w (21)

has the deeper significance of a decomposition of the field w into the field with-

out disarrangements K*Tw and the field due to disarrangements (i — KmTj w.

V. Stresses due to Slip and Stresses without Slip

We illustrate the decomposition (21) in the case where the purely micro-

scopic structured deformation (0,i,/C) arises from eqn (15) when («,</,(?)

is the single slip introduced in Section III. In accordance with eqn (8), we

assume that equality holds relation (14), i.e.,

G"15-u = 0, (22)

6O that no volume change is associated with the slip. Eqns (6), (15), (17)

14



and (9) tell us that

(23)

Let iS : A —» Xtn V be the Piola-Kirchhoff stress tensor field associated with

a system of contact forces, let a € V be an arbitrary unit vector, consider for

each region V included in A the a-component of the contact force on V

a- j S{x)u{x)dAs = J a-S{x)u{x)dAx
bdyV bdyV

= I S(x)Ta-i/(x)dAx,
bdyV

and put w := SFa in eqn (21) to obtain

STa = KtTSTa + (i - K*T) STa

= (SK*fa+(S(I-K'))Ta

Because the unit vector a € V was arbitrary, eqn (21) is equivalent to the

relation
5 = SK* + S(I-K*)

(24)

where eqn (23) was employed in obtaining the second relation in eqn (24).

According to the interpretations obtained in Section IV, S + Su®G~ls =

SK* is the stress without slip and— Su ® G~ls is the stress due to slip. In

15



view of the identification eqn (19), S + Su ® G ls may be regarded as

determining the contact force per unit area on surfaces not affected by slip,

whereas —Su®G~ls determines the contribution to the total contact force

from the presence of slip planes. The traction due to slip at a point x on a

Burface with normal n is given by

( - S (x) u ® G"1 (x) s (x)) n = (G~l (X) S (X) • n) ( - S (x) u) (25)

and is parallel to the total traction S (x) u on a plane through x with normal

u. The traction due to slip is the contribution to the total traction from slip

planes. Eqns (25) and (22) tell us that the traction due to slip vanishes on

surfaces parallel to the slip planes and, for a fixed point x, has its largest mag-

nitude on a surface normal to the vector G"1 (x) s (x) and, hence, according

to eqn (22), on a surface normal to the slip planes.

VI. Contact Moments due to Slip and Contact Moments without

Slip

A second illustration of the decompositions eqns (16), (18), and (19) also

involves the Piola-Kirchhoff stress 5 and a structured deformation (0,<?,G)

that describes single slip and satisfies eqn (22). In this example, we let a be

a unit vector in V, let o be a point in £, and consider for each region V in A

16



the o-component of contact moment on V about o:

a- j (g(x)-o)xS(x)v(x)dAx = J a-(g(x) - o) x S (x)v(x)dA2

bdyV bdyV

j a x (g(x) - o) • S(x)v(x)dA2

bdyV

= f S{x)T(ax{g{x)-o))-u(x)dAx.
bdyV

(26)

The last integral in eqn (26) identifies the vector field

w(x) = S(x)T(ax(g(z)-o)) (27)

for substitution into eqns (16), (18) and (19). In this case, eqns (27), (20)

and the arbitrariness of a yield

(g-o)xDivS -

(g-o)xDiv(SK-) - u>Sk(SK.(Gradgf) + (28)

(g-o)xDiv(S(I-K')) - u>Sk(su_K.KGradgfy

where, for each skew tensor A € LinV, U)A denotes the dual vector for

A and, for each tensor B € LinV, SkB denotes the skew part of B. In

(28), the vector field (g - o) x Div {SK') - uSk(SK.(Gradg)T) may be called

the volume density of contact moments without slip, and the vector field

(g - o) x Div (5 (/ - K*)) - ^Sk(s(i-K-XGradgf)
 m a y b e &M*d the volume

density of contact moments due to slip.

17



Eqns (24), (6), (9), and (22) imply the formulas

S(l-K*)(Gradgf = - (Su ® G'1*) (G + s ® uf

- -Su®G(G-1s)-(Su®s)(u-G~1$)

= — Su ® s
(29)

SK'(Gradg)T = S ( / + u® G"1*) (G + M)T

) (30)

which will be used in our discussion of balance laws in the next section.

VII. The Refinements of Balance Laws and Constitutive Equations

Induced by Slip

Classical balance laws for forces and moments in terms of the Piola-

Kirchhoff stress S and body force b per unit mass take the local forms:

0 (31)

(g - o) x Div S - wSfc(s(Grod9)T) + (g - o) x pob = 0, (32)

or, equivalently,

DivS + pob = 0 (33)

(Gradp)T)=0. (34)

18



The decompositions, eqns (24) and (28) along with eqns (29) and (30) yield

the following refinements of eqns (33) and (34):

0 (35)

Sk (SGr + 2Su ®s)-Sh (Su ® 5) = 0. (36)

The balance laws in classical form, eqns (33) and (34), and the balance laws

in refined form, eqns (35) and (36), are equivalent, but the refined form

displays the individual contributions of contact forces and moments without

slip and those due to slip. Just as the balance laws, eqns (31) and (32), are

transformed versions of the balance laws

pb = 0 (37)

Sk (T) = 0, (38)

with T the Cauchy stress, p = po/det Gradg, and with the transformation

being induced by the simple deformation ($,g,Gradg), the refined balance

laws, eqns (35) and (36), are transformed versions of eqns (33) and (34)

induced by the purely microscopic deformation (0,i, K).

The refined balance laws, eqns (35) and (36), contain quantities that

describe the details of the process of slip and that can enter into refined

constitutive relations. For example, S(I + u®G~ys) describes the stress

without slip, and G describes the deformation without slip. Therefore, it is

reasonable to identify the response of the portion of the body away from sites
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of slip through a relation between S(I + u®G 1s) and G:

S ( / + u ® G~ls) = S\ (G). (39)

The function S\ may be called the response without slip, because it relates

the stress without slip to the deformation without slip. When the structured

deformation (K, g,G) is a classical deformation, 8 is zero and G equals Gradg,

so that eqns (33), (34), and (39) reduce to the balance laws and constitutive

equation for an elastic body.

Eqns (35), (36), and (39) amount to twelve scalar relations to be satisfied

by S,<?,G,s, which, in component form, amount to twenty four unknown

scalar fields. The decomposition eqn (6) together together with eqn (9) yield

the relation

Gradg = G + s®u (40)

which accounts for nine additional scalar relations, yielding 21 in total and

leaving three more unknowns than equations. Of particular interest here is

the fact that the refined balance laws, eqns (35) and (36), point to some

reasonable possibilities for additional constitutive equations. For example, a

material may respond to slip in such a way that the contact forces due to

slip are self-equilibrating:

DivfSuQG"1*) = 0. (41)

This situation might occur in a body in which the slip is constrained by the

relation

s = \s\ k (42)
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in which A; is a fixed unit vector normal to u. Relation (42) would be satisfied

in a deck of very thin cards in which each card in the deck slips in a fixed,

preassigned direction relative to the one below it, so that the cards above

and below a given one would pull it in oppositive directions. We note that

eqn (41) is equivalent to

Grad (Su) (G~ls) = -Div (G~ls) SU, (43)

and eqns (35), (36), (39), (40) and (43) provide twenty-four scalar relations

for the twenty-four unknown scalar fields.

Alternatively, a material might respond to slip in such a way that the

contact moments due to slip are self-equilibrating:

Sk (Su ® 5) = 0. (44)

This situation would require in a deck of cards that the cards above and

below a card that slips react to the slip by cooperatively pulling in the same

direction. The cooperation required might be available in a material on which

slip planes are concentrated in very thin bands separated by regions without

slip. Eqn (44) asserts that Su ® s is symmetric, which is equivalent to the

assertion that Su and s are linearly dependent: for each x there exist scalars

a (x), /? (x) not both zero such that

a (x) 5 (x) u + 0 (x) s (x) = 0. (45)

Thus, eqn (44) requires that the slip vector s (x) and the traction S (x) u on

the slip plane through x have the same or opposite directions. Eqns (45) and
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1%

(11) then imply that

a(x)S(x)u-u = O, (46)

so that a (x) = 0 or 5 (x) u • u = 0. Suppose that S (x) u • u ^ 0. Then

a (x) as 0 and, therefore, f3(x) ^ 0; we conclude that 5 (x) = 0. Thus, eqn.

(44) implies that at a point where the traction S (x) u on a slip plane is not

tangential, s (x) = 0, i.e., no slip occurs. In other words, when the moments

due to slip are self-equilibrating, slip can occur only on slip planes having

purely tangential tractions, i.e., arbitrarily small normal tractions on slip

planes will prevent slip from occurring. When slip does occur at x, s (x) and

S (x)u are proportional through eqn (45).
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