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ABSTRACT

Smectic A configurations in equilibrium display complicated focal conic textures. In the
planar case, we view these configurations as extremals of a constrained Ginzburg-Landau
Equation. This gives rise to a system governed by a variational principle that is subject to
simple rules.

INTRODUCTION

In the hierarchy of mesophases, smectic A appears between nematic and smectics of

lesser symmetry or the solid. It is characterized by the properties

• presence of a layer structure of nearly constant width and nearly
incompressible

• within each layer, centers of gravity show no long range order and each
layer is a two dimensional fluid

• the system is optically uniaxial with optic axis n normal to the layer
• n and -n are equivalent

In equilibrium, thin samples often show a complicated focal conic texture, or Dupin

cyclide structure [8]. Friedel [5] recognized this to be indicative of the layer properties

above and also derived the rules we revisit here. Indeed, we take this opportunity to

discuss our first thoughts on these issues. These configurations, in the plane, may be

interpreted as singular solutions of a Ginzburg-Landau system, studied extensively by

Bethuel, Brezis, and Helein [1], subject to constraints. An interesting consequence of the

Ginzburg-Landau viewpoint is the tendency of the material to nucleate new smectic

domains in response to defects in preference to deforming to accomodate them.

The simple conic configurations arise from a conservation condition and other

properties follow from a stability condition. We do not yet have a satisfactory explanation

of the assembly of many ellipses between hyperbolic arcs, but we are able to show that

this configuration is consistent with our rules. Moreover, a simple symmetry property

characterizes elliptical domains. All of our discussion is completely elementary.

Basic references for us have been Chandrasekhar

Some addtional papers of interest are Guerst [6], KJ

and Sethna and Huang [12].

Jerry Ericksen is our mentor and our friend. He h

convinced of the predictive authority of mathematics

1. KINEMATICS AND LOCAL EQUILIBRIUM

A simplified continuum theory may be based on the

for which we establish constraints. Following [2],[

- J n • d x = number of layers tr
d AB

d a typical layer spacing,

should be independent of path. This gives rise to the

I n I = 1 and curl n = 0.

Given a small region D of defect free material, we i

n(x) = Vf(x), x e D.

We interpret f as the layer density of the material.

general principles that f is a distance function, althc

point. From (1.2) we have that

Vn n = 0 and Vn is symmeti

so that
Vn = - K t®t, where t • n = 0,

Supose that (t,n) is a right handed system. Solve th

Then

T ^ = t(p), p(0) = x0, I s I sr
ds

* - v f . 4 = „-. = o,
ds ds



so y is a level curve of f. By using the Frenet Formulas, one sees easily that K in

(1.4) is the curvature of y. Using a variation of this idea, Virga and Fournier [13]

introduce confocal coordinates based on the fields (t,n) which serves also to illustrate the

equally spaced layer property of smectic A.

hence

The elementary condition for equilibrium is that

bj ( d i v n ) 2 d x = 0 s u b j e c t t o I n ! = 1,
D

Vdivn II n or t - V d i v n = 0.

(1.5)

After some manipulation, and writing K = K(S) for the curvature of y, we see that the

equation above is equivalent to

- - K ( S ) = 0.
ds

(1.6)

Hence in unloaded equilibrium, K is constant on each level surface of f. We conclude

that local equilibria are characterized by circular arcs or straight segments, namely,

n (x) = with f,(x) = I x - a l , or
I x - a l

n(x) = n̂  with f(x) = ^-x , a, constant.

(1.7)

2. ENERGY AND G I N Z B U R G - L A N D A U F O R M U L A T I O N

We briefly discuss an appealing Ginzburg-Landau approximation as a means of

accomodating elementary defect structures. For a mapping u: Q —> R2, let

Ee(u) = f J I Vu |2 dx + \ \ F(u)dx,
e n

(2.1)

where F(£) is a smooth non-negative function which vanishes precisely if I £ I = 1.

The usual choice is

For any such u,

I Vu I2 = (div u)2 + (curl u)2 + 2

If u satisfies the constraints (1.2), then I Vu I2 =

= f Jfl(divu)2dx,

which is the basic energy mentioned in (1.5) for a d

the Ginzburg-Landau formulation is that we know m

and how it can be used to systematically account

Bethuel, Brezis, and Helein [1]. A sequence of mi;

Dirichlet boundary condition u0 of degree M o

relabelled, such that

ue —> u* in Q\ {a , , . . . , a M }

where a, , . . . , aM are special points of fl, cf. [1], and

U*(Z) = Z ~ a i Z ~ a M IhU) j
I z — a, I I z —aM I

Ah = 0 in Q and h is a real valu

Given b , , . . . , b M e Q and p > 0 , let B^ty dene

p, Qp = n \ u BpO^), and

Ap(b) = {v e H^Qp.S1): deg(v,dBp(bj)) =

where deg denotes the topological degree or windinj

min f J |Vv|2dx = KMn I log f

where the first term on the right reflects the presence

refer to as an excess energy. Also,

inf Ee(v) = KMrcl loge l + KU(a), A = ( V G

where U(a) = limUp(a) and a is the set of defects

equilibrium positions in (2.2).



Now if u* is also, locally, an equilibrium smectic A configuration, then in (2.2) M =

l ,h = 0, and u* = n, as in (1.7).

3. THE ELLIPSE AND THE HYPERBOLA

In view of the conclusion above, we may anticipate difficulties in seeking

configurations with more than one defect or even configurations with a single defect not

satisfying the special condition detailed in [1]. Assume initially a configuration in

equilibrium with a single defect at a e Q,

n(z) = n,(z), z e Q, (3.1)

and that this defect is displaced nearby to b e Q without alteration of the loading

environment. Thus

IVvpdx < min ^ f |Vv|2dx (3.2)

and a convergent subsequence of minimizers (u e ) of Ec converges to na.

We may envision two scenarios. First the system may fail to be in equilibrium with the

displaced defect b because of (3.2). Second, we may nucleate a region D, with a,b e

D, so that, for example, the resulting configuration is given by

n(z) =
nb(z)

zeQ\D'
(3.3)

What sort of region can D be? Assume that V = dD is a simple closed curve. Let us

simply impose the condition (1.1) on F, that the number of traversed layers is the same

on any subarc on approach from D and from QXD. Accounting for orientation, and

reverting to real notation,

J nb(z)dx = - J n.(z)dx or fb(z,) - fb(z2) = -(f/z.) - f,(z2)). (3.4)
Hence

fb(z) + f.(z) = fb(z,) + f,(z,) = C for all z e T, (3.5)

and F is an ellipse with foci at a and b. Morever

symmetry of the ellipse that

f J |Vnb|2dx = f J |Vn.|2d>
1 D\B(b) l < / D \ B ( )

whence

f J |Vn|2dx = f J |Vn.|2dx = ii
Z n\Bp(b) L Q\Bp(i) z

where U(a) is the minimum possible value of the exa

so that (3.2) holds, with, say, a € Q, achieving the

response of the system is to nucleate an elliptical domai

energy.

Consider again a configuration with a defect in Q i

environment, two defects are now seen. By a small chi

the boundary condition remains of topological degree

inconsistent with the presence of two defects, but we m

them which meets 9Q. Imposition of the condition (1

conclusion that T is an arc of a hyperbola with foci at 1

Interestingly, from the viewpoint of free boundary prc

martensitic like materials, the coherence condition (1.1

particular form of boundary. The solution to the nuclea



of confocal elliptical domains, one focus governing the nucleated region and the other

focus the exterior, or (b) a family of confocal hyperbolic arcs separating a and b.

Finally, the point of view given here is not completely novel but may be viewed as a

somewhat more systematic formulation of considerations already present in the literature,

cf. de Gennes [7].

4. LOCAL STABILITY

Applying the coherence condition in the form (3.4) to two equilibrium domains Q,

and Qb in contact on an arc a leads to (n, + nb)v = 0 on a, where nt and nb

denote the respective directors and v is the external normal referred to one of the

domains. If the region of contact a now shrinks to a point z, we obtain the stability

condition

(n, + nb)v = 0 at z. (4.1)

This leads to one of Friedel's rules, cf. [7] p. 468. If Qa and 1 \ are ellipses tangent at

z, then z is the intersection of the straight lines joining their foci. Just recall that the

Figure 2. Tangent ellipses: the point of tangency z is the
intersection of ab' and a'b.

normal to the ellipse at z bisects the angle Zaza'.
= 9b so that

0b = 9 , = (p.

Since the normal is common to both domains, czc*

This places stringent restrictions on the placemer

example, unless the point of tangency lies on the axi

a disc.

More generally, if two domains of arbitrary shape \

the visible focus of one domain, (4.1) determines

location of b or b' nor which of the two is the visi

5. MANY DEFECTS AND THE PLAGES A EVENTAII

In an equilibrium configuration with two defects, i

stability condition (4.1), so in general, once two d

theory, infinitely many. This leads to the problem of

and â  € Dj such that

n = Zn
Q = U

satisfies ( n . + n

and of establishing a suitable variational criterion. V

best way to do this, that is how to pack the domains

believe that it will involve the DeGiorgi P-limit i

conditions, [3].

One solution may always be found by choosing fc

covering of Q by discs with centers { a, }. In

corresponds to an ensemble of tori, which are deg

argues that these are energetically unfavorable and,

rarely seen.

Ellipses may be characterized by a simple symmetr

two solutions na and nb,

(n, - nb) • v = 0, v normal to 3D,

and D is symmetric about the perpendicular bisector

ellipse.



Figure 3. Simplified texture d
iventails

A frequently observed configuration is the lenticular

region between two hyperbolas. This arrangement

has the property that the fine structure, represented by

infinitely many defects, is limited to the lens while

outside the possible defects are the foci of the

hyperbola. To construct this solution requires

verifying that (4.1) can be satisfied by ellipses

tangent to the hyperbolas and each other. We

elucidate the constraints and show how this is

possible in a subsequent and more complete paper.

An interesting feature is that the general form

depicted in Figure 9.1,[7], is a consequence of the

construction: the ellipses above the segment joining

the foci of the hyperbola point downwards. The lines joining the tangential points of the

ellipses intersect at a focus of the hyperbola, no surprise in view of the discussion in §4,

but these segments do not extend to the visible foci of the ellipses. We have drawn

Figure 3 to illustrate the situation; its geometric configuration is very special just to give

the idea.

6. REMARKS

Figure 4 Visible foci lie on different segments joining all the foci of the ellipses

10

In Figure 4, we depict the appearance of two ellipses

question, not completely resolved in our minds, of

segments joining the foci of the ellipses. We are inv<

fluctuations in the texture and the stability condition

weak solutions, but at this writing have not been able
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