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W(RFH,mRT,x) = W(F,m,x) for R e SO(3) and H e Hx,

where Hx is the symmetry group of the material at x e Q. In our case, Hx will be the
proper cubic group H of order 24 or one of its conjugacy classes.

In Terfenol-D, onset of ferromagnetism is associated with a stretch of the high temperature
cubic unit cell along a main diagonal, inducing a magnetization parallel to that diagonal.
Thus the energy density W for a single crystal achieves its minimum on the eight pairs of
transformation strains (Uj,±m,) given by

j f 0<T|i =1,2,3,4,

m, = -±=(lfl\
V3

= --(-1,1,1) .
V3 V3

(1.3)

V3

This leads to

W(RUj,mjRT) = W(RU!H,miRT) = minW, R e SO(3), H e H, j= 1,2,3,4.

As suggested in Figure 1, the typical configuration of TbDyFe2 rods is a twinned dendritic
structure consisting of lamellar domains separated by grain boundaries or growth twin
interfaces. Hie entire rod is viewed as a composite, that we take here to be one domain
ft+ = ( xmi > 0 } n Q and a second one Q~ = { xm\ < 0 } n f t . The lower lamellar
structure arises as a rotation of 180° about the mi axis of the original upper lattice.
Denoting by RQ this rotation, we arrive at an energy density of the composite given by

,W(F.m,x) =
W(F,m)

W(FRo,m)

xe Q+

xe Q-
(14)

Note that Ro is not a symmetry element of the original energy and, although holding
invariant the wells of (Uj,±mi), gives a different set of transformation strains and
magnetizations (U^tra1,) = (RoUljRo,±miRo).

We may now investigate the collection of twinned dendritic equilibrium structures
corresponding to H = 0. From theory ([23,24]), we know that a minimizing sequence
(yk,m^) giving rise to such a configuration must satisfy

J W(Vyk,mk,x)dx + j J 3IVyukl2dy -> minWIQI

For the Young measure v = ( v x )x € ft generated by (Vyk,mk), we then have that

L J M X S 2 W ( A ' M ) d v * ( A ' * i ) d x = min W I n I, and (1.5)

divy m = 0 where ra = J 2jidvx(A,n)

and M denotes the set of 3 x 3 matrices. This determines the variaa'onal condition for the

support of the measure v, namely

supp vx c X+ = {(RUi,dhmjRT): R e SO(3), i = 1,2,3,4} for x e Q+ and

suppvx c T = {(RUli,±mt
iR

T): R e SO(3), i = 1,2,3,4} for x e ft-(1.6)

The twinned dendritic laminates are the Young Measures with the simple form

Vx =
- ^)(S(M,m) + 8(M,-m))

- 8(M\-m')) '

where (M,m), (N,q) e £ • and (M'.nV), (N\q') e Z"

(1.7)

We confine our attention to the deformation gradients alone. It then follows from the
minors relations that we are reduced to solving an algebra problem for macroscopic
deformation gradients F composed of matrices M and N and F composed of matrices
M' and N' which satisfy

F = (1-A.)M + XN and F =(1 - \ ' )M'+ A/N\
M - N = a®n, M1 - N1 = a W , and
F # - F = b®mi

where (M,m), (N,q) e X+,(M\mf), (N'.q1) e I "

(1.8)

varia

MS

12

13

14

23

34

24

twin planes

(100) twin
(Oil)
reciprocal
(010) twin
(101)
reciprocal

(001) twin
(110)
reciprocal
(001) twin
(110)
reciprocal
(-100) twin
(01-1)
reciprocal
(0-10) twin
(10-1)
reciprocal

intersection of twin plane

with (0-11)

(011)

(100)

<100)

HID
(100)

(-111)

(100)

(111)

(OH)

parallel to (01-1)

(100)

(111)

Tablet. Twinning data for the compatible variants. The
third column gives the intersection of the twin plane with
the (0-11) plane of observation

The middle line above is the twinning equation for the individual laminates subject to the
constraint that (1.5) holds. The transformation strains (1.3) determine a coherent well
structure: any pair of wells admits two lamellar configurations, and hence 12 in all for each
of Q+ and Or. Combining these, there are 144 possible combinations satisfying the
middle line of (1.8), but imposing the condition of coherence across the growth twin
boundary, which is the last line of (1.8), reduces these to twelve. They must have i = k, j



and in this case, q is a normal direction for the interface between the two systems, either
coarse or fine phase in our Young Measure sense.

The choice q = (0,1,0) has the property

and Qm2 = ra*.

-n and the normal direction is preserved.

U4,

Note incidentally that since n • q = 0, Qn
Now

QUiQ = U3 and QU2Q

so by choosing Rt appropriately, we may solve (3.3). Thus a transformation path may
be
found and moreover, the interface normal is (0,1,0), independent of the volume fraction

X. For further discussion of the compatibility between different systems of variants and
connections with experiment, see Tickle [36].
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Figure 2. Computed hysteresis curves for a laminate (gray lower curve)
and for a laminate with constrained growth twin interface and under
compression (black upper curve).

Actual device performance under magnetic loading shows hysteretic behavior. Simulations
have been employed to capture this phenomena, [27,28,29], and open the issue of the
nature of metastable magnetic configurations. For a description of the experimental
magnetostrictive curve we refer to Clark [14] and the references there. Metastability from
the experimental, computational, and analytical points of view is an active topic of research
we we do not have space to review here. We wish to remark only that the ability to
produce a reliable and robust hysteresis curve by applying a general numerical method, like
the conjugate gradient method, to a nonconvex functional was unanticipated and has led to
some new ideas for analyzing such curves.

The simulation which gives rise to Figure 2 is based on linear theory in two dimensions but
includes the magnetostatic energy term. The curve corresponding to the constrained
growth twin interface more closely resembles the experimental picture, suggesting a role
for the growth twin in the magnetostrictive process which to date is not clearly understood.

On the other hand, the width of the hysteresis loop seems to be relatively insensitive to
loading or constraints. Indeed, additional simulations under a wide variety of conditions,
for example, without magnetic field energy or elasticity or single crystals with magnetic
field energy, suggest that the width of the curve is extremely robust The simulation which

8
gives Figure 2 is the first, to our knowledge, where competition between magnetic and
elastic effects is prominent.
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Abstract Jhe simulation of a magnetoelastic system subjected to magnetic field

loading gives rise to hysteresis. Examples related to Terfenol-D are presented and some

methods of analysis discussed.

KEYWORDS magnetoelastic system, Terfenol-D, simulation, magnetostriction,

metastability, micromagnetic theory

1. Introduction

We discuss the simulation of the behavior of a magnetoelastic system under magnetic field

loading. Our principle objective is to understand the magnetostrictive curve of Terfenol-D,

Tb.Dy^FCj, x - 0.3, from the viewpoint of micromagnetic theory, [3,4,9,14,15-19].

Simulations of magnetic, magnetostrictive, and pseudoelastic behavior exhibit hysteresis,

[20-23]. These systems have a highly nonlinear character involving both short range

anisotropy and elastic fields and dispersive demagnetization fields. The hysteretic

character of a simple system that moves quasistab'cally is robust. The energy profile in

terms of applied magnetic field, and in particular, the width of the hysteresis loop, is

invariant under mesh refinement This is true even in the absence of an imposed

dynamical mechanism, tike the Landau-Lifschitz-Gilbert equation. This permits us, for

example, to extract useful information by computing on fairly coarse grids. It is also very

efficient, running at an excess of 200 MFLOPS on the Pittsburgh Supercomputing Center

Cray C90. A typical simulation involves 600 to 800 field steps, each one of which

represents a complete conjugate gradient iteration procedure. For experimental

observations and theory we refer to [1,2,5-7,13]. Instabilities in Terfenol films are

studied in Wuttig et al. [27].

An important feature of this type of simulation is that computed states are only metastable.

Indeed, since the energy of configurations on loading and unloading are different for the

same value of the imposed magnetic field, not both and usually neither can be minima.

Little is known to guide us about metastability in this context. In addition, Terfenol

displays a complicated lamellar microstructure whose role in the magnetostrictive process

remains under investigation, [26]. Although confirming our ability to determine general

features of the magnetization and magnetostriction, our results do not accurately describe

the microstructure. So there is much room for improvement. However, we would like to

point out that in our attempts to account for behavior of the growth twin midrib in our

laminate, we witness a wave of magnetization reversal propagate across the domain. This

is first evidence that we are able to achieve some progress here.

We have developed a model to understand the metastability in the computation. Let us

explain the basis of this model with the comment that we have attempted to confine

ourselves to what we perceived the strategic essentials: a stored energy of deformation

and magnetization, a demagnetization or induced magnetic field energy, and a simple

magnetic loading program intended to represent behavior when a device is subjected to a

slowly oscillating field, e.g., 60 hz. If there were no demagnetization field, one would

anticipate the evolution of the system to resemble that of a single magnetic particle, as

described by Stoner and Wohlfarth [25]. Our idea is to derive a shadow energy that will

accumulate the effects of the oscillatory behavior resulting from the demagnetization field.

Although the mathematics involved here is elementary, beyond some knowledge of

modem partial differential equations, the idea is that the shadow energy serves as a model

of the complex simulation, just as formulating balance laws or energy principles serves as

model for a physical process.

We introduce a two dimensional energy density based on a three dimensional linear elastic

density with magnetic easy axes parallel to the (111) directions. The three dimensional

density is projected onto the (0-11) plane containing the [-211] rod axis. Then we ignore

out of plane strains and magnetizations. Note that the [ 111 ] and [-111] easy axes lie in the

plane of projection. After performing these computations, we relabel axes in our two

dimensional configuration so that e, = (1,0) and e2 = (0,1) correspond to the [111]

and [-211] directions. In these coordinates, the [111] easy axis becomes e2 and the [-

2^2. 1
111] easy axis becomes q = ( , - ) . Set



Figure la Single crystal with magnetic easy axes.

Fig lb Growth twin laminate with magnetic easy axes.

(ii) single crystal with demagnetization energy The configuration destabilizes from the

precursor prior to Hlcr and descends gradually through the shoulder regime achieving

absolute minimum slightly after H^

(iii) growth twin laminate with demagnetization energy The configuration destabilizes

from the precursor subsequent to passing the field value H,a achieving absolute minimum

slightly beyond H^..

(iv) growth twin laminate with demagnetization energy and constrained growth twin

boundary The general features are the same as in (iii) with a somewhat smoother ascent

to H^. The magnetostrictive strain is diminished.

We are able to provide a qualitative comparison with experiment. Material parameters

useful for a more detailed comparison are not available. The computed curves in Figure 2

bear a strong resemblence to the experimental curve [6]. The strain increases with

increasing positive and negative applied field and has the butterfly suucture characteristic

of this material. The X-jumping described in [2] is evident in the steep section of the

curve, although this is less pronounced in the experimental picture. In [7], an unbiased

rod achieves about 66% of its maximum magnetostrictive strain according to one of the

authors. In our simulation we achieve about 50%, which leads us to believe that our

choices of parameters are reasonable.
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Figure 2. Energy portraits: without demagnetization energy (lowest curve),
single crystal with demagnetization energy (intermediate curve), and laminate

with demagnetization energy (top curve). Critical fields are labeled.
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Figure 3. Magnetostriction curves: without demagnetization energy (lowest curve),
single crystal with demagnetization energy (intermediate curve), and laminate

with demagnetization energy (top curve).



Let ot° be a given magnetization, perhaps depending on H or other parameters, and let

<*h = OL°xa + (4-a°)XD» ' S 1 = 1. D = (0 ,h )x (0 , l )u (Wi ,L)x (0,1), (3.1)

where h > 0, be a variation of of. We shall interpret a° as a suitably stable precursor.

The energy of the system is given by

E(H.a) = E(H,a°) + IDI
E(H,a)-E(H,a°)

IDI

Our shadow energy E* is given by

BJHM°A) = E(H,a°) +

E(H,a)-E(H,a°)

(3.2)

lim
k-*0 IDI

- <p(cO -

lim ¥b(H,a°,$), where

±-\\ (|Vu|2-|Vu°|2) dx,(3.3)
2h * *»22h

with

Au = d i v a ^ in R2 and Au° = diva°xflin R2.

The essence of the problem is to evaluate with care the demagnetization term. Note that

from the differential equation we obtain that

J (|Vu|2-|Vu°|2) d* = f V(u + u°M5-a°) dx
t2 o

We suppose a° and £ to be independent of x e D. Introduce the auxiliary functions Wj

and vjh) as the solutions of the equations

= • £ - & and Av
<7Xj

'n R2. j = 1.2.

Moreover, we shall need explicit representations for dw,/dx, and dvj^/dx,. These are

given by the classical Plemelj formulas [24]. Namely, in the case at hand, if w denotes

the solution of

Aw = — xA in R2, where A is a rectangle with sides II to the axes,
dx,

then (z = x, + ix^,

— J , where F, and F2 are the vertical sides.

So

10

dw
3x7(z) Re-Lj JL i-(e,(z) +63(z)),

where J Idx =

where 0/z) is the angle subtended by z and Vy

Returning to (3.3), we express the field potential

u = u° + (£, - aj)v{h) + (£2-<

which, after some manipulation, gives that

V(u + u°M5 - a°) = 2 a; (£, - a?)—1-
dx,

1 l dx, 2 2 dx2

by symmetry. From (3.4) we observe that

| e dv i r
lim — J -T-1— dx = 1 and lim — I _ ? dx = 0.
»->° IDI J D dx, >-<> IDI ^D dx2

We introduce a domain dependent "magic number" X by

. f dw, . .. 1 f dw, .
A, = I -r-^ dx2 = lim J —*• <**»

'r, dx, ^ I D l ' o dx,

so in particular, by (3.4) again,

1 - X = f ^ dx2 = lim — f ^ dx.Jr, dx2 *-* IDI 'D dx2

We then obtain for the demagnetization portion of the shadow energy,

) = lim — i f ( |Vu|2- |Vu°|2) dx

(3.4)

(3.5)

(3.6)

- X) (3.7)
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