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Abstract
In recent years models describing interactions between fracture and damage have been

proposed in which the relaxed energy of the material is given by a functional involving bulk
and interfacial terms, of the form

F(Vu)dx + I
n\x Jn\K

where Q is an open, bounded subset of RN, q > 1, g € L°°(/?;R^), A,0 > 0, the bulk energy
density F is quasiconvex, K C RN is closed, and the admissible deformation u : Q -f RN

is C1 in i? \ K. One of the main issues has to do with regularity properties of the "crack
site" K for a minimizing pair (K,u). In the scalar case, i.e. when u : O —f R, similar models
were adopted to image segmentation problems, and the regularity of the "edge" set K has
been successfully resolved for a quite broad class of convex functions F with growth p > 1
at infinity. In turn, this regularity entails the existence of classical solutions. The methods
thus used cannot be carried out to the vectorial case, except for a very restrictive class of
integrands. In this paper we deal with a vector-valued case on the plane, obtaining regularity
for minimizers of Q corresponding to polyconvex bulk energy densities of the form

where the convex function h grows linearly at infinity.

1991 Mathematics subject classification (Amer. Math. Soc): 35J20, 49Q20,
49J45, 49N60

Key Words : quasiconvexity, recession function, regularity, bounded variation

1 Dipartimento di Matematica, Via Massimo D'Azeglio 85/A, 43100 Parma (Italy).
Research supported by MURST, Gruppo Nazionale 40%.
2 Department of Mathematics, Carnegie Mellon University, Pittsburgh, PA 15213.
Research partially supported by the Army Research Office and the National Science
Foundation through the Center for Nonlinear Analysis, and by the National Science
Foundation under Grant No. DMS-9500531.
3 Dipartimento di Matematica "U. Diniw, Universita di Firenze, Viale Morgagni 67/a,
50131 Firenze (Italy). Research supported by MURST, Gruppo Nazionale 40%.

» ;• y f i £» 5



2 Acerbi, Fonseca and Pusco

1. Introduction

In recent years models involving bulk and interfacial energies have been used in
the contexts of fracture mechanics, phase transitions, and image segmentation
in computer vision (see [BZ], [DGCL], [FPr], [MS]). The underlying quasistatic
problems deal with minimization of an energy functional of the form

G(K, u) := / F(Vu) dx + A / \u - g\q dx + pHN~l (K n ft)
Jn\K Ja\K

where fi is an open, bounded subset of RN, q > 1, g £ L°°(J?;E*), A,/? > 0,
and HN~l stands for the (TV - l)-dimensional Hausdorff measure, among all
pairs (K,u) with K closed in RN and u : fi -t Rk is smooth; the first two
terms in Q represent the bulk energy and the last one accounts for interfacial
energy. In order to attack this problem De Giorgi and Ambrosio (see [Al],
[DGA]) introduced the space SBV of functions of special bounded variation, i.e.
BV functions u whose distributional derivative Du, which is a finite, Radon
measure, may be decomposed into an absolutely continuous part Vw CN with
respect to the TV-dimensional Lebesgue measure £N, and a singular part whose
support is an (TV — l)-dimensional rectifiable set Su. This is the "jump set"
of u, in the sense that u has traces u+ ^ u~ jffN""1-a.e. on the two sides of
Su (for example, the Cantor-Vitali function is BV but not SBV). Then to the
functional Q one may associate the functional T defined on SBV as

T(u) := / F(Vu) dx + A / \u - g\q dx 4- 0HN'X (Su D
Jn Jn

fl)

Due to the relaxation result of Fonseca and Francfort (see [FFr]), and under
suitable growth conditions for the bulk energy density F, it is not restrictive to
take F quasiconvex. We recall that F is said to be quasiconvex if

< (
Jo

for all A; x TV matrix f, if € C£°(Q;1*), and where Q = (0,1)N. A particular
class of quasiconvex functions which plays an important role in elasticity is the
class of polyconvex functions, i.e. convex functions of all minors of the matrix £.

Under the quasiconvexity assumption, and if F is super linear and g is
bounded, the lower semicontinuity and compactness results of Ambrosio (see
[Al], [A2], [A3]) yield the existence of a SBV minimizer of T. Note that, in
general, if u G SBV then the set Su is far from being closed, i.e. HN"1((S^ \
Su) n Q) > 0.

In the scalar-valued case where u : Q -> R, quasiconvexity reduces to con-
vexity and De Giorgi, Carriero and Lead [DGCL] proved that if

and if g is bounded, then
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for any minimizer u G SBV(f2;R) of T. Prom this property one immediately
concludes that the pair (3£, u) is a minimizer of the original functional Q. The
result of [DGCL] has been extended to a quite broad class of convex functions
F with growth p > 1 at infinity, and further regularity on the set Su has been
obtained (see [AFP], [AP], [B], [DG], [DS], [FFu]).

In this paper we deal with a two-dimensional, vector-valued, polyconvex
case, considering a class of functionals Q which includes in particular the model

/ [ \ IVu|2 + | det Vu\] dx + A / |tx - g\q dx + 0H1 (K n fi) ,

where u € Wl"2{fi\K\ E2) and p is bounded. In Theorem 2.1 we prove that this
functional admits a minimizingj>air of the form (Su,u), where u e SBV(f); E2)
and, moreover, u € C°tQ(fi \ Su; E

2) for every 0 < a < 1.

2. Statements and Auxiliary Results

If fi C RN is open, we say that a function of bounded variation u G JSV^i?; Efc)
is a function of special bounded variation, u € 5BV(i?;E*), if, denoting by 5U

the complement of the set of Lebesgue points of u, the distributional derivative
Du is represented by

Du = Vu C 4- (tx"1" — u ) ® v H 1 [Su ,

where Vu is the Radon-Nikodym derivative of the finite, Radon measure Du
with respect to the TV-dimensional Lebesgue measure £ N , v is the normal to
the rectifiable set 5U , u + and t*~ are the traces of u on 5U , and i / ^ " 1 denotes
the (TV — l)-dimensional Hausdorff measure.

We recall that the recession function h°° of a convex function h : E —>
[0, -f oo) is defined by

and it is convex and positively homogeneous of degree one.
In this paper we prove the following theorem.

Theorem 2.1. Let fi be a bounded, open subset o /E 2 . Let h : E -> [0, oo) be a
convex function such that h(0) < h(t) < C(l 4- |f|), and

for some 0 < m < 1, and /or all t € E, s > s0 > 0. Lcf A, 0 > 0 and de^ne

£(#, tx) := / [ i |Vu|2 + ft(det Vu)l dx + \ f \u-g\qdx + 0H1 (fiDK) .
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There exists a minimizer 0/£(•,•) of the form (S^,u), with u € SBV(fi,R2),
among all pairs {K,v) with K C fi closed and v € W1*2(fi\K;R2). Moreover,

In order to prove Theorem 2.1, we invite the reader to follow the same
steps taken in the proof of Theorem 4.1 of [FFu]. It is easy to verify that
all the auxiliary lemmas hold in this case, with one exception: the Density
Lower Bound ([FFu], Lemma 4.3) uses the Decay Lemma ([FFu], Lemma 4.4),
which was proved by Carriero and Lead [CL] only in the p-harmonic case,
i.e. F(f) = |f |p. Knowing that local minimizers are locally Lipschitz functions
played a fundamental role in the analysis.

We introduce the notation

c,A) := / [i|Vu|2 + h°°(detVti)] dx + cH1^ DA) ,

#o(t*,c,4) := inf {F0(w,c, A) : w € SBV(fi;R2),w = u in fi \A} ,

where A is an open subset of !?, c > 0, u G 5SVr(i?;E2). In the case where
u £ Wl'2(A;R2) we simply write

In the sequel, we use the notation BR, R > 0, to denote a generic open ball of
radius iZ, centered at x € fi, such that BR C fi.

Definition. We say that u € Wl>2(Q) is a W1>2-local minimizer of

I(v; fi) := / F{Vv) dx , t; € Wh2(fi)

if
{ ( ( ) ) : v € U + W*

for all balls BR(x0) C fi.

We now state the version of the decay lemma which holds in our case. The
density lower bound, and thus Theorem 2.1, follow from the decay lemma by
the same argument used in [FFu].

Lemma 2.2. [Decay Lemma] For all 7 € (0,1) there exists r7 € (0,1) such
that for every r € (0,r7) and for every c > 0 there exist e = e(c,T,7), 6 =
0(c,r,7), Ro = J*o(c,r,7), such that if 0 < p < Ro, and if u € SBV(fi;R2) is
such that ?o{u,c,Bp) < e2p and $0(u,c,Bp) < 6T0(u,c,Bp), then
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In order to prove Lemma 2.2, we follow the proof of Lemma 3.12 in [FFu],
and we suppose that the result is not true; then there exist 7 6 (0,1), for every
T7 € (0,1) there exists r € (0,r7), there exist c> 0, two sequences {SH}, {Oh},
with limfc Eh = linih 9h = 0, a sequence {uh} C SBV(fi; R2), and a sequence of
balls BRH (xh) CC i? with lim^ Rh = 0 such that

?o(uh,c,BRh{xh)) =ehRh , &o(uh,c,BRh(xh)) = 0hTo{uh,c,BRh{xhj) ,

and

After rescaling, it is easily seen that the rest of the proof can be carried out in
a similar way to Lemma 3.12 in [FFu], provided an estimate of the type

/ fI|Vtx|2 + ft°°(detVu)] dx < CT2

holds for local minimizers of To in Wl'2(B\\ K2), for any 0 < a < 1 or, equiva-
lently,

Theorem 2.3. If u € Wl'2(Bi,R2) is a W1*2-local minimizer of To then

f \Vu\2 dx < Cr2'a f \Vu\2dx (2.1)

for all a,r £ (0,1) and some constant C > 0, C = C(a, h°°).

This is, therefore, the only result still needed to prove Theorem 2.1. As an
immediate consequence of (2.1), it follows that u G C°'a for all a € (0,1) (see
[G], Theorem 1.1, Chapter 3).

The rest of the paper will be dedicated to proving Theorem 2.3. Although
we will rely strongly on the arguments used by Dougherty [D] to obtain higher
integrability of local minimizers in the case where h G C1(E), we could not find
an easier way to adapt directly his proof to more general Lipschitz functions h
by means of a simple approximation and density approach.

The following lemma may be found in [G] (Chap. 3, Lemma 2.1) in the case
where with 7 = /?; although stated in a slightly weaker form, its proof yields
the result below.

Lemma 2.4. Let <\>: [0, +00) —» [0, +00) be a nonnegative, nondecreasing func-
tion, such that

for allO < p< R<Ro and for some constants H, K > 0 and 0 < 0 < a. Then
for every 7 G [/?, a) there exists a constant C = C(H, a, /?, 7) such that

for all0< p<R<
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Next, we prove a decay estimate for solutions of a well known elliptic equa-
tion.

Lemma 2.5. Let f2 C RN be an open, bounded domain. If f € I^(/2; VLN),
p > 2, and if v € Wl*2(fl) satisfies

Av = div / in i?

then for any S € (0,2N/p) there exists a constant C = C(p, N, S) such that if
BRCf2and0<p<R then

J ( l y / P ] . (2.2)

Proof Fix a ball BR C i?, and let w be the harmonic function which minimizes

\ V z \ 2 d x , z € v + W*>2(BR).

Since \Dw\2 is subharmonic we get

/ \Dw\2dx<(£)N [ \Dw\2dx (2.3)

\f\p dx)VP. (2.4)

for all p < R.
We claim that if p < R then

/ \Dv\2dx<2(£)N f \Dv\2dx + CRN

JBP
 KRJ JBR

If (2.4) holds, then (2.2) follows from Lemma 2.4, setting

4>(p):= [ |Vu|2<*r, a :=JV, 0:=N- — , 7 := N - 6 .
JBP P

To prove the claim, we start by noting that

/ Dv - (Dv - Dw) dx= I f • (Dv - Dw) dx ,
JBR JBR

f Dw - (Dv - Dw) dx = 0 ,
JBR

so that
/ \Dv-Dw\2dx= I f-(Dv-Dw)dx.

JBR JBR

Using Cauchy-Schwartz, Young's, and Holder's inequality, we obtain

/ \Dv-Dw\2dx<[ \f\2dx<CRN-2N/p([ \f\pdx)V\
BR JBR KJBR '
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which, together with (2.3), yields

/ \Dv\2dx<2([ \Dw\2dx+f \Dv-Dw\2dx)
JBP

 KJBP JBR '

<2(£)N [ \Dw\2dx + CRN-2N/»([ \f\pdx)VP.
KR/ JBR V B H '

This inequality reduces to (2.4) since, by definition of w,

I \Dw\2dx< j \Dv\2dx.
JBR JBR

3. The Main Theorem

The main result of this section is the following.

Theorem 3.1. Let Q be an open subset o/R2, and let u € W1^2(f2,R2) be a
Wl>2-local minimizer of

F(v;fi) := [ \l\Dv\2 + M\detDv\]dx
Jni2 J

with M>0.Ifa£ (0,1), BRC J?, and if p < R, then

f \Du\2dx<c(£)2a f \Du\2dx
JBP

 KK' JBR

for some constant C. In particular, u G C7°'Qr(/?; IR2).

Before proving this result, we show how Theorem 2.3 can be derived as a
simple corollary.

Proof of Theorem 2.3. Let u be a Wlt2-local minimizer of

JFo(^ ) := / [^|Vt;|2 + /i°°(det Vi;)] dx , v£ W^2{f

where the recession function is given by

at if t > 0

I -bt if t < 0

for some a, b > 0. Since v >-• det Vv is a null-lagrangian, i.e.

/ detVvdx= /
JA JA

detVvdx= / detVwdx
JA
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whenever v,w € W l j2(l?;R2), A C fi has Lipschitz boundary and v = w on
3A, we conclude that w is a W^Mocal minimizer of

A) = / \l\Vv\2 + a(detVv)+ + 6(detVv)" + ^Z£<iet Vul dz
J L i 2 J

The result now follows from Theorem 3.1. D

Next we recall some algebraic inequalities used by Dougherty [D], and which
will enter in the proof of Theorem 3.1. For completeness, we include the proofs.

Consider a 2 x 2 matrix

• • (
Then

= a d - 6 c , adj£>= (*b ~*Y tv(DTD) = \D\2 = a2 + 62 + c2 4- d2 ,

where (adj D)TD = detZ) I, and we define

A := - ( a 2 + c2-b2-d2) , S := a6-hcd, a := sign(det£>) whenever det£> ^ 0.

Lemma 3.2. The following inequalities hold:

(i) \A\ + \B\ < \D? ;

(ii) |£>|2 < 2{\A\ + \B\) if det D = 0 ;

(iii) \a adj D - D\ < 4V|A\ + \B\ if det D ^ 0 .

Proo/. It is clear that

|>1| + |J5| < «(lal "̂ 1̂ 1) ^~ o(lcl "̂  1̂ 1)2 2

proving (i). Also, consider the right stretching tensor U := VDTD; then its
eigenvalues v\ > V2 > 0 are the principal stretches of JD, and it can be seen
easily that

| det D\ = 2 ( 1

By virtue of the polar decomposition, we may find rotations R,Q € 50(2) such
that

D = i?C7 , 1/ = <5

and so

»)<>,
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_\QT(V\-V\ 0

~2Q { 0 V\-
Hence

If det D = 0 then i/2 = 0, and

and we conclude (ii). K det£> > 0 then

because (as a direct computation shows)

|o-d| = tr
171 0 \ _
(o -01 5 .

=*[(; \)RQTh °)Q]

(3.1)

(3.2)

Finally, (3.1), (3.2), and (i) yield

V\ -h

If det D < 0 then set

D := RoD, where RQ :

With obvious notation we have

- ( ! ! )

while det JD > 0, and so



10 Acerbi, Fonseca and Pusco

|ff adj D - D\ = | i # adj RQD - D\

< Ay/\A\ + \B\ .

To avoid overburdening the reader with indices, we change the notation just
for the length of the proof of Theorem 3.1, conforming to the one employed
in [D]: we denote by U the local minimizer of F, replacing the former u. Then
we are free to denote by (u, v) the components of W, whereas the variables
are X = (x,y). We also use $ = (<t>,ip) to designate any smooth function
# G Co (#; ®2) w i t h support in a ball BR C /?.

Proof of Theorem 3.1. Step 1. Following the argument of Dougherty [D],
we consider a variation of the domain for the local minimizer W, i.e. we study
the variation U(I + e$) near e = 0, obtaining a first set of Euler-Lagrange
equations.

Let BR CC i?, fix $ € C%(BR,R2), and e > 0 small. Setting U€{Y) :=
U(Y + e$(Y)), due to the minimality of U we have

F(U£;BR)-F(U;BR)>0,

and since a simple change of variables yields

/ \detDUe\dY= f \detDU\dX ,
./£* •/£*

we deduce that
( \ D U £ \ 2 - \ D U \ 2 ) d Y > 0 ,

and so
(3.3)

where, using the notations introduced above,

B := uxuy + Vẑ j, .

Hence A,B G Ll{Q)^ and (3.3) can be written, in the sense of distributions, as

^ + By = 0
JB^ - A, = 0 ,

and so A, B are harmonic in BR. In particular,

\B\)dX. (3.4)
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Step 2 . For t > 0 define

n+ :={X ef2:detDU>t} ,
f?r — {X efi: detDU < -t} ,
nt:={X €fi:\detDU\<t} .

Let a(X) denote the sign of det DU(X) whenever the determinant is not equal
to zero. Cleary, if t > 0 and e is sufficiently small then X € fif implies that
det(DU+e$)(X) > 0, while det(DU+e$)(X) < 0 whenever X € /?f. Therefore

/ _ dx + M I —
Jn2 £ Jnt

dx

. . f det D(U + e$) - det DU , . , f I det I>(W + e*)| - I det DU\ ,
— M / dx+M I eta > 0 .

Jn: e Jpt e

Since

detD(U + e*) = det JDZ/ -f eadjDUD& + e2 det JD$ ,

and

>

we obtain, letting e -> 0,

f f f
I DU - D$dX + M I a adj DU D$dX + M I \ adj DU • D$ | dX > 0 .

./r? Jn\nt Jnt

Replacing ^ by — #, this inequality reduces to

f DU-D$dX + M I a a,diDUD$dX -M [ \ adj DU • D$\ dX < 0 ,
Jn Jn\nt Jnt

or, equivalently,

(M + I) [ DU - D$dX + M [ (a adj DU • D$ - DU - D$) dX
Jn Jn\nt

<M f (| adj PW • D$\ + DU • D$) dX .

Letting t —• 0, and setting M' = 1 4- 1/M, we conclude that

M' [ DUD$dX+ [ (a adj DU • D$ - DU - D$) dX
Jn Jn\n0nX(i0 (3.5)

Jn0
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Step 3 . We compare U with the solution of a more regular problem: fix
BR C n, and let V € W^2(BR/2;R

2) be the solution of

iM'AV = -div [Xn\n0 (p adj ZW - DU)] in B f l / 2

(3.6)
V = U on 9Bfi/2 •

By Lemma 3.2 (iii) it follows that the right hand side of the equation is the
divergence of an L2 function, and so we have, in weak form,

M'DV-D4>dX f

for all # G W0
1'2(J5JR/2;IR2). Subtracting this equation from (3.5), and choosing

# = U — V, we obtain

M'\DU - DV\2 dX < f (| adj DU\ + \DU\)\DU - DV\ dX ,
BR/2 JBR/2r\Q0

and noticing that |adjD£/| = \DU\, by virtue of Cauchy-Schwartz inequality
and Lemma 3.2 (ii), we have

\DU - DV\2 dX < 4 f \DU\2 dX
JB""nn° (3.7)

(\A\ + \B\)dX.

Step 4 • Fix BR C fi. Since A and B are harmonic functions, by Lemma
3.2 (iii) we have Xn\no(

(7 adjDW ~ DU) G Lfoc(f2) for every p > 2, and so,
applying Lemma 2.5 to (3.6) with S = 2/p, we obtain

/ \DV\2

JBP

dX

/
BR/2

for all p < R/2, where C = C(p). This estimate, together with (3.7), yields
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/ \DU\2

JB,

<2 /
JB,

£C(£
\DVf

y-v,

<
~ IA]

H

"" L v j

Finally, by

/ |OW|2

-J
J BR/

r\ \ 2 — 2

JBR/

3\2-2;

+ 2 /" |PW - PV|2 dX

' /" |DV|2 dX + Cp2~i/P ( /" (|A|p/2 + |£|p/2) d x ) 2 / P

JBR/2 JBR/2

\DU - DV\2 dX

'P f \DU\2dX + p2-^p(f (|yi|p/2 + |B | p / 2 )dx) 2 / P

JBR/2 JBR/2

\DU - DV\2 dX]

(|A| + |B|) dJf]

/P f \DU\2 dX + i*2~4/p ( /" (|A|P/2 + |B|p/2) dx\2/P]

Lemma 2.4 with 7 = 0 := 2 - 4/p, a = 2 — 2/p, we conclude that

dX
IB,

BR/2

for all p < R/2, where the constant C does not depend on R. FVom (3.4) and
Lemma 3.2 (i), it follows that

dX

\DU\UX + C?££sup(\A\ + \B\)
*l BR/2

DU\2dX+ f {\A\ + \B\)dx]
BR JBR

 J

for all p < R/2, and the arbitrariness of p > 2, together with standard C°'a

regularity results (see [G], Chapter 3, Theorem 1.1), concludes the proof. D
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