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Abstract

We are interested in the flow of a droplet of viscous ferrofluid
in the Hele-Shaw cell under a transverse magnetic field. The (two-
dimensional) phase configuration is observed to evolve into a labyrin-
thine pattern. We show that the conventional model for this flow has
the form of a gradient flux w.r.t. an energy functional, which is the sum
of magnetic and surface energy. In particular, we are interested in the
behaviour of this flow problem in the regime of large magnetization
M2 » 1. In this regime, the details of the pattern evolution are
observed to be highly sensitive to changes in the initial configuration.
This is reflected in the linear stability analysis of the circular phase
configuration, a stationary point of the dynamics which is more and
more unstable in the limit M2 f oo. In order to capture the "generic"
behaviour of the dynamical system in this regime, we need a selection
principle which dismisses those non-generic solutions. We propose
a selection principle for the limit M2 t oo which is based on the
natural implicit discretization in time of our gradient flux formulation.
We prove that this approach leads (in an appropriate scaling) to the
equation

dts-As2 = 0

for s(t, x) 6 [0,1], the local spatial average of the phase configuration
X(<,s) € {0,1} (x(t,x) = 1 if x € R2 lies in the two-dimensional
cross-section of the fluid at time t, xfax) — 0 e ^ e ) - Thus this
quantity, which contains information on the "microstructured zone",
evolves detenninistically, although x k essentially unpredictable.

AMS code: 76W05, 76E25, 35R35, 58F39



Introduction and summary

We are interested in the following experiment: A droplet of viscous ferrofluid
(a collodial suspension of magnetic particles) is trapped between two nar-
rowly spaced horizontal glass plates (the Hele-Shaw cell). Because of this
special geometry, the motion of the viscous fluid is strongly overdamped; it is
assumed to be governed by Darcy's law [17]. In absence of a magnetic field,
the effect of surface tension at the ferrofluid-water interface is such that the
droplet is at rest if its cross-section is circular. Now a vertical magnetic
field of constant and uniform strength is applied; the ferrofluid is assumed
to have constant and uniform magnetization [18]. Due to fringe field effects
[18], the circular cross-section undergoes a fingering instability; the fingers
are observed to grow into an labyrinthine pattern [18, 12]. In the regime of
large magnetization, the details of the pattern evolution are very sensitive to
perturbations of the initial configuration. Nevertheless, the envelope of the
growing labyrinthine pattern seems to evolve deterministically, see [13, 18].
We propose a deduction of the equation governing the evolution of this mi-
crostructured zone and its envelope.

Let us give a short overview of this paper's content. First, we will intro-
duce the energy of a given ferrofluid configuration, which we assume to be
a slab of the thickness of the Hele-Shaw cell and thus determined by its
two-dimensional cross-section. The energy E will be the sum of a surface
energy and a magnetic energy. E coincides with the energy given in [18].
Next, we will introduce a general principle for deriving the dynamics of the
flow of a viscous fluid in a Hele-Shaw cell. This principle states that the
two-dimensional flow map $(t,x) satisfies a gradient flux on the manifold
M of volume-preserving diffeomorphisms endowed with a metric tensor g
and w.r.t. the appropriate energy functional E. We show that this principle
is equivalent to the dynamics based on Darcy's law, which were proposed in
[17]. Those dynamics lead to an evolution problem for the phase configura-
tion x(*>£) (x(*>x) = 1 if x € JR2 lies in the two-dimensional cross-section
of the fluid at time t, x(*»x) = : 0 else). The formulation as a gradient flux
(a special form of dynamical system) provides us with a systematic method
for carrying out a linear stability analysis of stationary points of E. This
analysis will be performed for the circular phase configuration, quantifying
the competition between the stabilizing forces coming from surface energy



and the destabilizing ones from the magnetic energy. Our result coincides
with the one in [17].

In particular, we are interested in the regime of large "magnetic Bond num-
ber" (essentially the ratio between squared magnetization and surface ten-
sion) and large "aspect ratio" (the ratio between the square root of the
cross-section's area and the cell width). We rescale and thereby nondimen-
sionalize length and time in an way which is appropriate for this regime. In
this regime, the evolution of the phase configuration is observed to be very
sensitive to perturbations in the initial configuration. This is reflected in the
linear stability analysis of the circular phase configuration, which is a station-
ary point of E and thus a stationary solution of the dynamics. We would like
to capture the "generic" behaviour of this delicate dynamical system. But
the dynamical system allows for non-generic solutions like the circular phase
configuration. Hence we need a selection principle, which dismisses these
non-generic solutions. We propose a dynamic selection principle, which is
based on the three following steps

1. A gradient flux on a Riemannian manifold (M,g) w.r.t. a functional
E has a natural discretization. This "scheme" consists of a sequence
of variational problems, which only involve E and the induced dis-
tance dist, but not the metric tensor g itself. We apply this to our
gradient flux (on an infinite-dimensional Riemannian manifold) and
so obtain a scheme for the time-discrete flow map {$^}keN- We ex-
press this scheme in terms of the time-discrete phase configuration
{x^}keN and replace dist by the more tractable Wasserstein distance
d\ these distances agree infinitesimaJly. In Theorem 1 we show that
in the limit of vanishing time-step size /i, the interpolated {x^}k€N
converges strongly to a weak solution of the original evolution problem
for the phase configuration {(0, oo) 3 t H

2. For fixed h > 0, we let the magnetic Bond number and the aspect ratio
tend to infinity in the scheme for the phase configuration {x^}keN-
Theorem 2 states that any solution {x^}keN converges weakly to
{sW}*€iv> the unique solution of a new scheme which consists of convex
variational problems.

3. We let h tend to zero and show in Theorem 3 that the interpolated



converges strongly to the unique weak solution {(0,oo) B
t H* s(t)} of the nonlinear parabolic evolution equation

dts - As2 = 0. (1)

In view of the above derivation, we may interpret s(t,x) € [0,1] as the local
spatial average of the actual phase configuration x(*> s) € {0,1}, which is —
due to its sensitivity to perturbations of the initial configuration in the con-
sidered regime — essentially unpredictable. (1) is well-known as (a special
form of) the porous medium equation, see for instance [28]. In particular,
it preserves the property of having compact support and thus determines
the evolution of the free boundary d{s(t) > 0}. We would like to identify
this free boundary with the envelope of the more and more convoluted free
boundary d{x(t) = 1} of the original problem.
We also would like to interpret our selection principle in the following way:
The "energy landscape" apparently has a fine structure which lives on a scale
tending to zero when the magnetic Bond number and the aspect ratio tend to
infinity. Our selection principle consists in allowing for "fluctuations" which
are large enough to permit the dynamics to ignore this fine structure.
We intend, in future works, to compare these findings to the experimental
data of [13].

The energy functional

Our assumptions are those of [18]. Let b be the plate spacing. We assume
that the ferrofluid fills a slab ftx(0,6) C 2R3. Thus its configuration is
entirely described by the two-dimensional cross-section ft C M2 of this slab.
Whenever it is more convenient, we will use the characteristic function \ of
ft

f 1 for * € ft 1
= \ 0 else /

instead of ft to describe the phase configuration. Anticipating the fact that
the dynamics will preserve the volume of the incompressible ferrofluid, we
restrict our attention to phase configurations with given volume: JR2 x = OL
for some fixed a > 0. The energy E of a phase configuration is assumed



to be the sum of the surface energy E8 and the magnetic energy Em. We
suppose that the surface energy is given by

(surface tension) x (area of the ferrofluid-water interface).

Thus in terms of x

where a denotes the surface tension. /1 Vx| is, in the notation of geometric
measure theory, the length of the boundary dfl of Q, written as the total
variation of x

J |VX| := sup { fRf X dK | f € C?{1R\ M2) with |£| < 1}. (2)

For the subsequent analysis it is convenient to have this more robust concept
of the perimeter of a set. See [16, chapter 1] for an introduction.

The magnetic energy is assumed to be the energy of the magnetic field in-
duced by a uniform magnetization of the slab Qx(0,6) in vertical direction
and of magnitude M2. Thus Em can be written as

Em(X) = (47rAf)2jk|r(xe)|2 = (4nM)2 jj&Q-T<XQ* (3)

where x is the characteristic function of the slab fix (0,6), i.e.

0
if ze (0,6)1

e the upwards pointing vertical vector of unit length and F the orthogonal
projection on the gradient fields in L2(]R?)3. It is well-known that F can be
written as convolution operator with the strongly singular kernel

D2G(x,z) where G(x,z) = -& » , for (z,z) € M2xlR = i? 3 .

This allows us to rewrite the r.h.s. of (3) in terms of x rather than £:



where Kb is the convolution operator with the weakly singular kernel

*(*) = **(!) where k(x) = £ (ft - £j£

Observe that Kb is a symmetric, positive semidefinite bounded operator on
JL2(JR2). This and the information on its kernel

kb(x) = £ k ( f ) where A; satisfies A: > 0 and / a fc = 1 (4)

are the essential properties of ^ we need to derive the mean-field equation.
In the physics literature, Em is sometimes written as a double integral over
the perimeter; the reader will find all the usual representations of Em and a
proof of their equivalence in [17].

Thus the total energy E is given by

E(X) = vbf\VX\ + (4*M)2bJR2xKbX.
To gain some insight into the competition between the surface tension effects
and magnetic effects arising from EB resp. I?m, let us for a moment consider
the static problem of minimizing the energy E among all admissible phase
configurations in some bounded domain G, i.e. among all x:^2 ""* {0>l}
with JR2 x = a aad support in G. On one hand, Es wants the minimizer x of
this static problem to have a small perimeter. On the other hand, Em wants
the minimizer x t 0 be close to the constant R , as we shall argue below.
Because of x €• {0,1} and jgr € (0,1), this can only be achieved in the weak
topology and at the expense of a large perimeter.
Let us now argue that Em wants the minimizer x to be close to the constant
™. The infimum of Em on the set of all admissible phase configurations
in G coincides with the minimum of Em on the set of all s: fft2 -> [0,1]
with JR2 s = a and support in G. For small 6, the unique minimizer 5* of
this relaxed variational problem is close to the constant T̂ T in the strong
topology of L2(2R2). Thus any minimizing sequence {Xtf }/noo of Em on the
set of all admissible phase configurations with support in G converges weakly
in L2(JR2) to s\
Later, we will compute the second variation of the functional E with respect
to deformations of the circular phase configuration, which is a stationary



point of E. This will provide us with some quantitative information about
the competition between E8 and Em.

The dynamics

Let us now introduce a flexible principle for deriving dynamics for a (single-
phase) viscous flow in a Hele-Shaw cell. It is inspired by our prior work
on the multiphase flow in porous media [21, 22], We shall not attempt to
provide an entirely rigorous derivation. Let

(0, o o ) 9 M Q(t) resp. (0, oo) B t -

be the evolution of the phase configuration with initial data Q° resp. x°- It
is a conventional assumption on the flow of a viscous fluid in a Hele-Shaw
cell that the horizontal components of the Eulerian velocity have a parabolic
velocity profile in the perpendicular direction, which vanishes on the plate
boundaries [1]. For given time t € (0,oo) and x 6 Q(t) let u(t,x) € JR2

denote the average of those horizontal components in perpendicular direction.
The principle is best stated with help of the (two-dimensional) flow map
$(t,x) € M2, which is related to Q(t) by

for<€(0,oo) (5)

and to u(t, x) by

dt$(t) = u(t)o$(t) forallt€(0,oo) and $(0) = id. (6)

Reflecting the incompressibility of the ferrofluid, one assumes that

€ M foralH€(0,oo),

where M is the manifold of all volume preserving diffeomorphisms $ from Q°
onto some fi. The tangent space T*M of M in a point $ can be identified
with

We endow M with the Riemannian metric g

g*{wuw2) =

for wu tt>2 € T*M and $ € M,



where /x is the ferrofluid's viscosity. This Riemannian manifold (M>g) has
been introduced by Arnol'd [5] to study another problem of incompressible
flow: He points out that geodesies on (M,g) satisfy the Euler equations
for an inviscid and incompressible fluid, yielding a least action principle for
this flow problem (in that application, of course, the constant ^ must be
replaced). Our flow problem is just of opposite nature: due to the viscosity
of the fluid combined with the geometry of the flow domain, the motion is
highly dissipative. In fact, as we will see below, for a given "curve" [0,1] 9
t *-» $(<) e M the quantity

^ (8)

can be interpreted as the kinetic energy dissipated by friction in one unit of
time when the viscous fluid moves in the narrow gap of the Hele-Shaw cell
with (two-dimensional) velocity u given by (6). Let us also point out that
this derivation tacitely assumes that the viscosity of the other phase, in our
case water, is much smaller than // and therefore negligible, as it is supposed
in [17].

The initial phase configuration Q° being fixed, each element $ € M defines
a new phase configuration $(£2°), thus the energy functional E is naturally
defined on M by

0

Our principle can be formulated as follows

(0, oo) B t »-> $(*) € M is the gradient flux

on (M, g) with respect to E.

This means in formulas

*>) = - < dE(9{t)), w >
for all w e TmM and t € (0,oo),

where the linear form dJ5($) on T*M is the differential of E in $.

Let us now reformulate (9) in terms of the phase configuration Q(t) and the
velocity u. Due to (5,6) we have the following kinematic condition: The

8



normal velocity V of the interface dto(t) is given by the normal component
oft?

V = U'V. (11)

Next notice that (10) can be rewritten as

for all f € Cg°(lR2, JR2) with divf = 0 and all t € (0, oo),

where the one-parameter family {$((T)}T€R of volume preserving diffeomor-
phisms of JR2 is defined by

dT$((r) = €°$((T) for all r 6 M and $f(0) = id.

The computation of the first variation dr [2?(${(r, ft))]r_0 for an ft with
smooth boundary dft is classical:

Jdn Jan
for all f € C0°°(JR2,i?2) with divf = 0,

where v is the outer normal and K the curvature of dft. Observe that the
gradient fields on ft form the orthogonal complement of the set of fields f
with divf = 0 in ft and £•*/ = 0 on #ft w.r.t. to the scalar product of X2(ft).
Thus we see that (10) is equivalent to the existence of a pressure p. More
precisely,

For all t € (0, oo) there exists p(t): Q(t) -> JR s.t.

(12)

On the other hand, we have, due to the assumption that $(<) e M for all
t€(0,oo)

div u(t) = 0 in Q(t) for all t € (0, oo). (13)

Observe that at each time t, p(t) (up to an additive constant) and therefore
u(t)j is determined by Q(t) via (12,13). Together with the kinematic con-
dition (11), (12,13) defines an evolutionary free boundary problem for the
interface dfl(t). We observe that in the case of no magnetization (M = 0),



(11,12,13) is the model of [9] and [26] for the flow of a viscous fluid in a
Hele-Shaw cell of width 6. In these papers, the first part of (12) is derived
with help of Darcy's law, which itself can be obtained in the limit 6 4 0
by averaging pressure and velocity in the three-dimensional Stokes equation
in the vertical coordinate. This approach has been extended to the case of
nonzero magnetization (M2 > 0) in [17]; the result coincides with (11,12,13).
This justifies the interpretation of (8) as kinetic energy dissipated by friction.
To the best of our knowledge, a proof of global existence (in an appropriate
weak form) for this free boundary problem is not available, even for the case
M = 0 — although there are very interesting partial results [10].

Regime under consideration and appropriate scaling

Guided by [25], we identify two dimensionless parameters, the "magnetic
Bond number" and the "aspect ratio"

2M2b Ro
- j - resp. — ,

where Ro := (J)^ is the radius of the ball with area a. ^ ^ is a measure of
the relative strength of the magnetic effects w.r.t. the surface tension effects,
whereas &• is the ratio between the typical horizontal and vertical length.
We are interested in the regime of large magnetic Bond number and large
aspect ratio

l£± » 1 «d & > 1. (U)
a b

It is natural to nondimensionalize length by measuring the horizontal length
in units of JRO- In these new units, the metric tensor and the energy functional
can be normalized to

g*{wuw2) = 12ii JQWI{X) * w2{x)dx,

E{X) « *J
In order to obtain a nontrivial limit, we have to rescale (and thereby nondi-
mensionalize) time by measuring it in units of

2MH f b\2 aU)8TT i ^ • - n

12 \i

10



In these units, the metric tensor and the energy functional can be normalized
to

(15)
E{X) = cl\VX\ + LxKtX, I

with

Observe that in the regime (14), we have a convenient separation of scales

a < b < 1. (16)

This is essential in the derivation of the mean-field behaviour. Henceforth,
we will use the rescaled metric tensor and energy functional in (15).

Linear stability analysis for the circular phase configuration

To gain some insight into the features of the dynamics, let us consider their
linearization for an initial circular phase configuration

Q° = {x€JR2\\x\<l}.

This analysis has been carried through in [17]. Nevertheless, we choose to
display our calculation (which yields the same result), as the formulation
of the dynamics as a gradient flow on (M,g) w.r.t. E provides us with a
systematic method of linearization. As we will show below, id is a stationary
point of E, i.e. the differential di?(id), a linear form on T^M, vanishes. By
regarding (9) as a dynamical system on M, we see that its linearization
around the sationary point id is given by the linear operator A on T^M
defined by

gid(A£, w) = d2J£(id)(f, w) for f, w € T\&M,

where the symmetric bilinear form d2E(id) on 7]<jM is the Hessian of E in
the stationary point id (see for instance [23, 9.4.5.]). We will do a spectral
analysis of the symmetric operator A. Let us start by deriving a formula for

11



d2jE7(id). This is accomplished by computing the first and second variation
of E in id. For given £ € T^M we introduce { $ { ( T ) } T € R C M by

dT$c(r) = f o $c(r) for all r € M and $ ((0) = id.

We consider Es and Em separately. Let v and i/1 denote outer normal and
counter-clockwise tangential of dft°. According to [27, chapter 2, §9], we
have for all f € TidM

= d [ i-v = 0

and thus (see for instance [23, 9.4.3])

, 0 = fl? [£?.(*C(T))U

= a

= a / o

= a/tr(D^Dti;') + a / o

The first identity follows from

^(to-i /) = iz-Dtoi^ + w-ir1-,

whereas the second is a consequence of

div(Dftu) = (Vdiv£)-u> + tr(D^Dt«*)

12

Observe that the following identities hold for all f, w € TidAI

a / Q{vT>tv - driiv'DZv*-)} ( H (17)



Thus (17) defines a symmetric bilinear form on T^M, which coincides with
the symmetric bilinear form d2Es(id) on the diagonal. Hence both forms are
identical

d2Es(id)fow) = a] 0{i"D£i/ - d^vV^)} (wv). (18)

Now consider the first and second variation of Em. Using k-b(—x) = k-b{x),
we obtain for all f 6

<dEm(id),{> = dT[Em($((T))]T=0

= 2 / oJokb(x-x)dx£(x)-i/(x)dx = 0,

where the last identity follows from the fact that /no k-b(x — x) dx is radially
symmetric in x. Thus we have

= 2Lho W* -
As JQQQ hb{x — x) v(x) dx is parallel to

defines a symmetric bilinear form on T^M, which coincides with the symmet-
ric bilinear form d2i?m(id) on the diagonal. Hence both forms are identical

u;) (19)

= 2 L L
We now determine the eigenvalues A and corresponding eigenvectors f of -4,
that is

Aftdfc, tf>) = d2^(id) (e, w) for all w € Tid>f. (20)

It is obvious from (18,19) that the linear subspace

X := { e ( , ) |

13



of Ti&M consists of eigenvectors corresponding to the eigenvalue 0. It thus
remains to consider the orthogonal complement Xx of X in (TnM,gn),
which can be written as

Xx = {C€C°°(n°,J?2) (there exists a harmonicp with C =

In view of (7,18,19), (20) becomes for £ = Vp € Xx

X I pw-u

= 9 J^ {D2p (U, V) - dv± (D2p {y, u±))} (wu)

+ 2 / / k-b{x-

The reduced eigenvalue problem can thus be reformulated as

- A p = 0 in ft0

Xp{x) — a (D2p(f, u) — 9vx(D2p(i/, i/"1"))) (x)

4- 2 I k-b{x - x) (Vp(x) - Vp{x))'u{x) dx

for all x €

(21)

The boundary condition in (21) is conveniently expressed in polar coordinates
M)

= a (p,rr — ptr68 + P,9») (1> ̂ )

+ 2 J2* ^ fc (f |s in(^) |) (p,r(l,6>) - p,r(l,i

+ 2 [n fc k ( | sin(|)) (1 - cos 0") d0p>r(l, 9)

for all 0 € JR.

It is now easily checked that for n € IV U {0}

Xn = a n ( n 2 - l ) - 2n(«,»-«!) (22)

is an eigenvalue of (21) with eigenspace spanned by the Fourier modes

p(r,$) = rncos(n0) and p(r,0) = rnsin(n0), (23)

14



where the strictly monotone increasing sequence {/Cn}n€7v of positive numbers
is given by

sin2 (n0)d0

As the gradients of the functions (23) form a Hilbert basis of Xx, the en-
tire spectrum of A is given by (22). The representation (22) visualizes and
quantifies the competition between the stabilizing effect of surface tension
and the destabilizing effect of magnetic forces. By elementary real variable
analysis, it can be shown that (provided b < | , say)

cg(bn) <bKn< Cg{bn), (24)

where g is given by

9[Z)
.= / *2(l-lnW) *>r*<l 1
' \ l + ln(z) forz>l J

and 0 < c < C < oo denote universal constants. In particular, the spectrum
of A is bounded by below.

A dynamic selection principle

Let us interpret the above linear stability analysis for the circular phase
configuration in the regime (14): Prom (22,24) we obtain

An —> 0 for all n € IN but inf An —¥ -oo

in the limit 6, | 4 0. Hence the circular phase configuration becomes more
and more unstable with respect to high mode perturbation. This reflects
the experimental observation that the circular phase configuration is very
sensitive to small scale perturbations of the initial data in this regime [13,18].
As we are interested in a mean field theory for the regime (14), we need a

15



selection principle which dismisses those in the limit ^ ^ , ^ t °° m o r e

more unstable solutions of (11,12,13). We propose a selection principle which
is based on an implicit discretization of the gradient flux (10). More precisely,
we consider the natural discretization of (10) for time step size h > 0, first let
both 2MI* and ^ tend to infinity and ihgn h to zero. The limit ^ ^ , ^ t oo
for fixed h > 0 will dramatically simplify the "energy landscape". We believe
that this procedure is essential in capturing the "generic" behaviour of the
gradient flux in the regime (14). This procedure also has the more technical
advantage that the natural implicit discretization of the gradient flux gives
us a sequence of variational problems, whose behaviour for ^ ^ , ^ t °o
can be analyzed within the framework of F-<:onvergence. In the case of no
magnetization, this approach of writing the dynamics as a gradient flux (in
an Eulerian and thus less natural formulation than ours) and considering
its implicit discretization (which differs from ours) has independently been
followed in [3].

Let us now introduce this natural implicit discretization of the gradient flux
(9). For fixed h > 0 it is given by the following scheme for the time-discrete
flow map {&ktykeN

$W is minimizer of

JdtstC***-1),*)2 + hE(9)

among all $ € M,

where $^ = id and dist denotes the induced distance on (-M, p), i.e.

(25)

= inf{
: [0,1] -> M with $(0) = $ 0 and $(1) = $ i } .

We then think of (0, oo) 9 t *-> $h{t) G M, which is given by the interpola-
tion

$h(t) = $W forte[kh,(k + l)h) and fc€Wu{0},
as an approximation of (0, oo) B t *-* $(<) € M.

In order to formulate our principle (9) in a compact way and to derive a
natural discretization, the description in terms of the flow map is more con-
venient. We now return to a description with help of the phase configuration.

16



In terms of the time-discrete phase configuration {x^}keN, which is related
to {$><*>}*€* by

0 else

the scheme (25) reads

y W is minimizer of

hE(X) (26)

among all x- $& —• {0> 1} w^h / x = a

with x (0) = X°- Here dist(xo,Xi)2 n o w stands for

Xi? (27)

= inf { / / |5t$(<, x) |2 dx dt j $(£) is a volume preserving

diffeomorphism from Qo onto $(<, fi0) for alH G [0, l j ,

For technical purposes, it is more convenient to replace the induced distance
dist(xo,Xi) by the Wasserstein distance d(xo,Xi) between xo &ad Xi (con-
sidered as Lebesgue densities). Let us now define the notion of Wasserstein
distance in the generality we need in this paper (see [24] for an exhaus-
tive overview of distance functions on spaces of measures). We consider the
Wasserstein distance on the set KR of all Lebesgue densities with integral a
and support in {\x\ < R}

KR := | 5: JR2 -> [0, oo) measurable J

J^$ — a and 8 = 0 on{\x\> R}}.

For so, $1 € KR we introduce the set of nonnegative Borel measures on the

17



product space M2xM2 with marginals so d£2 and si d£2

•P(«o> Si) := < p \p is a nonnegative Borel measure on JR2X1R2 with

j C(«) p(dx dy) = J ^ 80(x) C(») dx for all C €

/C(y)P(dxdy) = J^.j(y)C(y)dyfor allC € <%{&)} .

The Wasserstein distance d($o,Si) between the measures SodC2 and $\dC2

is given by

d(so,si)2 = inf{ J | x ~ y | 2 p ( d x d y ) | p G P ( 5 0 , S i ) } . (28)

For the moment, we only need d on the set 5 of all phase configurations, i.e.

5 := I x : -K2 ""* {0? 1} measurable with bounded support / x == a } •

It will follow from Lemma 1 (Appendix) that we actually have for xo> Xi € 5

d(Xo> Xi)2 = m i n { / lx -" &(x)\2 dx I $ is a measure preserving map

from 17o onto Qi in the sense of

I av) dy = / C(*(*)) dx for C € C§(#2)}.

This relates (28) to (27).

FYom now on we claim mathematical rigor. We consider the scheme

X(fc) is minimizer of

Hx**-1),*)2 + hEix)
among all x € 5 ,

(29)

where x̂ 0^ = X°- We will show in Proposition 1 that (29) admits a solution.
Let us remark that this formulation of the implicit discretization allows for
changes in topology of the phase configuration (in contrast to the formulation
in [3]). It therefore might also be of interest in the study of singularity
formation — for instance if the initial phase configuration has the form of
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a dumbbell with a thin neck. In the case of no magnetization, this topic
has been extensively studied (see for instance [3]). In order to convince the
reader that despite the passage to the more tractable Wasserstein metric,
(29) is still a discretization of (11,12,13), we state a contingent convergence
result whose proof will be presented elsewhere in a broader context.

THEOREM 1. For given h > 0 let {x^jkeN be a solution of (29). We
consider the interpolation

Xh(t) = xjf> fort€[kh,(k + l)h) and kelVU{0}.

Then there exist a measurable x' (0, oo)xJR2 -» {0,1} and a u € £2((0, oo)
xJR2) satisfying

Xh-+X in Ll((0, T) xJR2) for all T < oo,

for a subsequence, and

() (30)
for allC e CS°((-oo, oo)xM2).

If the length of the interface does not drop in the limit h^O, i.e. if

limsup / / \Vxh(t)\ dt < f f |V*(*)| dt for allT<oo, (31)
/40 Jo J Jo J

we have in addition for a.e. t € (0, oo)

+ 2 j KiX{t)Z-v{t)\VX{t)\ (32)

for all f e CZ°(R2
t R

2) with div^ = 0,

where u(t) = |vj$j| ** ̂ c Radon-Nykodym derivative of the vector valued
measure Vx(t) w.r.t. its total variation \Vx(t)\, see [16, chapter 3].

Observe that (30) is a weak formulation of (11,13) and that (32) is a weak
formulation of (12). The proof of Theorem 1 relies on many techniques
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introduced in [19]. A condition of the form (31) is also typical for convergence
results of more conventional implicit discretizations of geometrical evolution
problems which can be written as a gradient flux w.r.t. the area functional,
as for instance mean-curvature flow [20].

The main result: the limits ^ * , ^ t oo and h 10

As motivated in the previous section, our selection principle consists in first
passing to the limit 2J^*6, fy t oo and then considering the limit h 4 0. The
rigorous convergence results are stated in Theorem 2 resp. Theorem 3, which
are the main mathematical results of this paper. Throughout the sequel, let
the initial configuration x° € S satisfy / |Vx°| < oo.

According to (16), the limit ^ ^ , ^ t oo corresponds to 6, | X 0. Theorem
2 states that any solution of the scheme (29) converges weakly to the solution
of a new scheme. The new scheme (33) retains the form of time-discretization
of a gradient flux w.r.t. the Wasserstein metric d and an energy functional.
The new energy functional

L s2 for s e K

(K is defined below) is the F-limit under weak convergence of the original
energy functional (15)

for x € 5.

We observe that, in contrast to (29), (33) consists of convex variational prob-
lems.
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THEOREM 2. For given b,a > 0 let {xltykeN be a solution of (29). Then
we have for 6, | i 0

Xil a *W in L°°(R2) for all k € N,

where {s^jteN is the unique solution of

s^ minimizes

h f
J R

+ h Is2 (33)

among alls € K

with s(0> = x°. Here K is defined by

K := | s: JR2 -> [0,1] measurable with bounded support I s = a } .

Theorem 3 states that the solution of scheme (33), appropriately interpolated
in time, converges strongly to the solution of the nonlinear diffusion equation
(34).

THEOREM 3. For given h > 0 let {ai*}}*€jv be the solution of (S3). Then
the interpolation 5/,: (0, oo)x2R2 -> [0,1] given by

sh(t) - 4*} for t€[kh,(k +1)h) and keNU{0}

converges for h \. 0:

sh —y s inLl{{0,T)xB2) forallT<oo,

where s is the unique weak solution of

dts - As2 - 0 (34)

with initial data x°.
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The proof of Theorem 2 and Theorem 3

All Lebesgue integrals are — if not otherwise stated — to be taken over M2.

PROPOSITION 1.

i) There exists a solution {x^}keN of (29).

ii) There exists {R^}keN C (0,oo) depending only on a and ̂  (not on
a and b) s.t. any solution {x^}keN of (29) satisfies x^ € KRW for

all he IN.

Proof of Proposition 1
We divide the proof into two parts.

• First we will show with help of familiar compactness and lower semi-
continuity arguments that for given x ^ G 5 and R < oo there exists
a minimizer of

among all x € S n KR.

• Then we will demonstrate the harder part, namely that for given
oo and x(0) € 5 n KR{o) there exists an R^ < oo depending only on a,

{ / | X | / x ^ X } and

inf F(x(0),-) < F(X
(O),X)

snxK{1)

Proposition 1 obviously follows from these two parts by iteration.

Let {xWtftoo *>e a minimizing sequence of F(x (0V) in S n KR. Because
{/|Vxiv|}Ntoo is uniformly bounded, {xNl^too is compact in Ll(R2), see

22



for instance [16, 1.19 Theorem]. Thus there exists a x(1) € L^-K2) s.t. we
have for a subsequence

XN—>X(1) i n L 1 ^ 2 ) .

The strong convergence assures that we have again x*1^ € 5 n KR. It is
a straightforward consequence of the definition (28) that d(x(0),-)2 & l o w e r

semicontinuous w.r.t. weak-* convergence in CS(«R2)*:

d(x(0),X(1))2 < liminfd(X
(0),XAr)2.

(In fact, it follows from Lemma 2 that d(x^°\ -)2 is continuous w.r.t. weak-*
convergence in Co(JR2)*). Likewise, it is an immediate consequence of the
definition (2) that the total variation is lower semicontinuous w.r.t. weak-*
convergence in Co(JR2)*:

Because K-b is a symmetric and positive semidefinite operator in L2(iR2),
the corresponding quadratic form is lower semicontinuous w.r.t. weak con-
vergence in L2(M2):

(Actually, the fact that K-b is a convolution operator yields continuity of the
quadratic form w.r.t. weak convergence in L2(2R2)). Thus x*1^ is a minimizer.
Observe that the strong convergence of the minimizing sequence {XN}N^OO

only was required to assure that the nonconvex constraint XN € {0,1} is
preserved in the limit.

Let us now demonstrate the second part. Let R < oo be s.t. x € S — KR.
We consider XR given by

f X(V) for |y| < Ji \

I 0 for \y\ > R J
and record that

< / | V x | and J'XRK-bXR < / x ^ X - (35)
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Because of

= J J
and

we obtain the estimate

J XR,TR K-bXR,rR

( ) / ^J (39)

for some universal constant C < oo. Let us now estimate d(x®\ XR,TR)2 in
terms of rf(x(0), x)2- To this end, we will construct &pR € P(X(0\XR,TR) for
a given peP(x(0), x)-

« * •

In particular we have, using (37),

J\x-y\2pR{dxdy)

Let us now estimate the two terms on the r.h.s. using the fact that \x\ <
p~a.e.
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< J\x-y\2p{dxdy) -

- *rM\p(dxdy)

< / 1 * - yI2 P(dx dy) - (a - o*) (R -

whereas the second term is estimated by

Thus we obtain with some universal constant C

< <*(X(O), X)2 + (a " oj,) ( - ( * - 2RU)2 + C (R™)2) . (40)

Collecting (35), (38), (39) and (40), we gather

F(x(0),X«,rJ < F(x^,x) +

(a - oa) [i (-(R- 2 ft"? + C(RVf) + ± {& J |VX| + / x % } ] a

PROOF OF THEOREM 2

Roughly speaking, Theorem 2 follows from

• the fact that the functional

J$2 for seK

is the F-limit under weak-* convergence in L°°(JR2) of

+.

which is a consequence of the separation of scales (16),
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• and the continuity of d2 w.r.t. weak-* convergence in Cjf (JR2)*, which
is shown in Lemma 2 (Appendix).

First observe that the scheme (33) admits at most one solution. Indeed,
the map K B s i-f d(so, s)2 is convex (an immediate consequence of the
definition (28)), the map K 3 s H> J $2 is strictly convex and the space K
is convex.

Fix a k e 2V. Assume we had already shown that

X(*-D *S ,(*-« i n x« ( J? ) (41)

for some 5(*""1) € K. Thanks to Proposition 1 ii) we know that x£*- €
mm OfO

S D KR(k). Thus there exists an s^ € K s.t. we have for a subsequence

£> « 2 (42)

Let us prove that Xj j being a solution of the variational problem in (29)
implies that s^ is a solution of the variational problem in (33). In the spirit
of F-convergence we do this by showing, on one hand, that (41,42) implies

(43)

and by constructing, on the other hand, for given s £ K a sequence {X6,*}s,£
in 5 s.t.

Xt, » 5 in X«(^2) (44)

and

/ 2 (45)

Let us derive (43). Because <P is lower semicontinuous w.r.t. weak-* conver-
gence in CQ{JB?)* (this is an straightforward consequence of (28)), it remains
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to show

We prove this by an argument of functional analysis: K-b is a symmetric,
positive semidefinite bounded linear operator on the Hilbert space L2(1R2).
Hence there exists a (unique) symmetric, positive semidefinite bounded linear

operator Jfi s.t. K-b = K$ K$ (see for instance [6, Chapter 21.1]). On the
other hand, we have due to (4)

Kbs 4 5 in L2(R2) for all 5 € L2(R2).

From the definition of K$ we infer that this implies

K?$ -» s in L2(M2) for all s € L2(R2).

Together with (42) this yields

and thus ___

Let us now for given s G JT construct a sequence {xj^H,* c ^ s.t. (44,45)
holds. Because of the separation of scales (16), we may choose a A s.t.

We partition M2 into squares of length A. Let C be such a square; we
partition C into two rectangles Co and C\ s.t.

|O'i| = / 8

and define Xhj by

{ 1 ifa;€Ci 1
} for a; e C and all C.

o if x e Co J
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(44) follows from A <: 1. Due to a <C A we obtain

and A <: 6 yields

Erom this we deduce (45), noticing that (41) and (44) imply

by Lemma 2 (Appendix) D

PROPOSITION 2. Let {s^}keN be the solution of (S3). We then have for all

f (46)

< \ sup |D2C| i rf(5^1),

forall(eCg°(lR2). (47)

REMARK. A finer analysis yields that $W is Lipschitz continuous and that
we have an "energy estimate"

and an "entropy estimate"

+ h]\Vs^\2 < ]s^lnsW.

Proof of Proposition 2
Proposition 2 is a consequence of the first variation of the variational prob-
lems in (33). Considering the fact that (33) was derived from the Lagrangian
point of view, it is natural to investigate the first variation w.r.t. the inde-
pendent variables.
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Before investigating the first variation, we observe that the constraint s <
1 in the definition of admissible functions in (33) can be neglected. This
amounts to prove a maximum principle for (33): Let R < oo be so large that
$(*), 5(*-x) e KR. Let us show

minimizes

among all s €

+ hj (48)

By the elementary compactness and lower semicontinuity arguments of the
first part of the proof of Proposition 1, this enlarged variational problem has
a solution s». We have to show that s» < 1. Assume that this is not the
case. Let p* € P(s(k~l\s+) be optimal in the definition of d(s(k~l\ s*)2 in
(28); the existence of such an "optimal transfer plan" is assured by standard
compactness and lower semicontinuity arguments. Define t^*"1) and v« by

fv^l\x)C(x)dx = / a*)p(dxdy) for all C € C0°(iR
2),

[v.(y)S(y)dy = / C(y)p(dxdy)

s*(v)C(v)dv forallC€C0°(2R2).

Then for t € [0,1],

f

C(x,v)p(dxdy)

C{x,y)p{dxdy)
(v)>l)
C(x,x)p{dxdy)

defines a pt € P(/hmml\s^) with

We then have
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- 2tfs. (v. - v(k~V) + t2]{v. -1 /*

and because of 0 < v(k~1^ < 1

« /(s.-l)(t;,-t;(*-l)) > 0

— a contradiction for small t> 0.

Let us now consider the first variation of (48) w.r.t. the independent vari-
ables. More precisely, let a smooth vector field with bounded support, f 6
C^°(JR2,iR2), be given. Consider the corresponding flux, a one-parameter
family {$((T)}TeR of diffeomorphisms, given by

ar* f(r) = £o* f(r) forallreJR and *e(0) = id.

For any T € M,
5r o $ f (r) = 5

defines an s r € A'H, if R < oo was chosen large enough. Thus we have

!«*(*<*-« «T)
2 + / t / ^ > Jd^*-1),^*))2 + hJ{sWf. (49)

Using
^[detD$f(r)]r=0 = dive,

we easily obtain

We now argue that

limsupj ( I d ^ - ' U ) 2 -

(51)
where p 6 P^*"1*, «<*>) is optimal in the definition of d(s^-l\ s™)2 in (28).
Indeed,

J((x,y)pT(dxdy) =
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defines a pT € P{s^k"l\ sT) and thus we have

1 ( |d («<*- l U) a - I

< / J (2 l*c(T>»)

which entails (51). We infer from (49,50,51) (and the symmetry in
that

/(y - /
J(^2,^2), J

which is the first variation.

Because of

J(y-x)<(y)p(dxdy)\ < * *

we deduce from (52) that V(s<fc>)2 € L2(-R2) and the estimate (46). Finally
we observe that

s(*) _ S(*-D) C - / ( y - «)• VC(y) P(dx dy)

= | / (C(») - C(x) - (y - x)-VC(y)) p(dx dy)

< isup|D2C| / | y - x | 2 p ( d x d y )

= i sup |D2C| d(s^k-l\ SW)2 for all C €
K2

This and (52) obviously implies (47).

PROOF OF THEOREM 3

Let us first show that {s/J/40 is compact in ^((O^TJxJR2) for all T < 00.
Starting point is the a priori estimate

2 < 2 / ( x 0 ) 2 = 2 a . (53)
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First we infer

(<? 2aNh + JX°(x)\x\2dx,

which translates into the following thightness property

Jsh{T,y)\\y\*dy < 2aT + fX\x)\x?dx. (54)

Prom (46) and (53) we deduce compactness in space

/ \Vs\\2 < 2a. (55)

Let us now consider compactness in time. Compactness in time follows from
equicontinuity in the Wasserstein metric

and compactness in space, in the form of (55) for instance, by some elemen-
tary interpolation argument. However, we derive a more explicit estimate
with help of Lemma 3 (Appendix). Fix k,N € N and let R < oo so large
that s£\ 4*+JV) € KR. Let (<£.,V.) € TR be optimal in the dual representa-
tion of d(4*\ 4*+N)) m Lemma 1; we have

y and (56)

for all C € C$(#2) ,(57)
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which we will use for C :=
quantity

We estimate the following

dt

E d(
We sum over all k G JV and obtain

k€N

+ ( E

This translates into

<4ar foral lr>0. (58)
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Let us remark that (55) and (58) are precisely the estimates one obtains
for the conventional implicit scheme for (34), which is stated in the variable
u = s2 and is given by

minimizes

J2J\u\ - js<-k-»u + h\J\Vu\
among all measurable it: R2 -4 [0, oo),

see [4, 1.7. Existence Theorem]. (54), (55) and (58) yield (if the support of
X° is contained in {|a;| < Ft?})

J sh(T,y)dy < % (2T + (R0)2) for all T € (0, oo) and R < oo,

f°° f\sh(t,x + e)- sh(t,x)\4dxdt < 2a |e|2 for all e € R2,
Jh J

f f\sh{t + T,x)-sh(t,x)\3dxdt < 4ar forallr>0.

According to [2, 2.21 Theorem], this implies the desired compactness.

Now let 5 be s.t. we have for a subsequence

sh —f s inLx((0,T)xJR2) foral ir<oo, (59)

and let us show that 5 is a weak solution of (34) with initial data x°> i-e.

s € L°°((0yoo),Ll(lR2)) and Vs2 €

s > 0 a.e. on(0,oo)xiR2 and

for all C € Co°°((-oo, oo)xR2).

Of course we have

s € [0,1] a.e. on (0, oo) x R2 and / s(t) - o. for all t € (0, oo),

thus s € L°°((0, oo), Ll(R2)). FVom (55,59) we infer that Vs2 € L2((0, oo) xR2)
and

Vs2
h A Vs2 inL2((0,oo)xR2). (60)
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Now let C € Cg°((-oo,oo)x.R2) be given; (47) translates into

p p
(-oo,+oo)XH2

)

< a sup |D2C|/i.
2

We pass to the limit with help of (59) and (60). Owing to the uniqueness
result for weak solutions of (34) (see for instance [28]), the entire sequence
converges to the unique weak solution of (34) with initial data x° n

Appendix: some properties of the Wasserstein metric

The Wasserstein distance has a dual representation which will be given in
Lemma 1; we need some more notation

TR := { (<£, XJJ) <t> and tp are convex on M2 with Lipschitz constant R,

<£(0) = 0, |-0(O)| <R2 and

<f>(x) + 7p(y) > x-y for (x, y) € R2xM2 s.t. |z|, \y\ < R } .

LEMMA 1. Let s0, sx € KR be given.

i) We have the identity

ini{lJ\x-y\7p(dxdy)\peP(s0,Sl)}
= supj JSo(x)l\x\2dx + JSl(y)l\y\2dy

- J so(x) <f>{x) d x - J sx(y) ip(y) dy | (<f>, rp)
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ii) Minimizers p* and maximizers (#»,V0 are related by

for all (eC$(lR2xlR2).

Proof of Lemma 1
As we have adapted this result of Brenier for our purpose, we give a sketch
of Brenier's proof [7, Proposition 3.1] with the simplification by Gangbo [15,
Lemma 2.4]. Observe that the elements of P(SQ,SI) have mass bounded by
a. Thus P(s0, Si) is compact with respect to the weak-*-convergence and
hence there always exists a minimizer p*. According to Arzela-Ascoli, TR
is compact with respect to uniform convergence on bounded domains; hence
there always exists a maximizer (<£»,̂ *).

Let (<£*, ip*) be such a maximizer of

*dx + jSl{y)\\y\*dy

- J 80(x) <f>(x) dx - Jsi(y)xp(y)dy

on TR. Let us argue that (<j>,,ip*) is actually maximizer of F on the larger
class

(SQ, SI) := ( {<j>, ip) <f>andxpare lower semicontinuous and

4>{x) + i/>(y) > x-y for all (x, y) € f20xfii } ,

where {f i j^o. i} is given by

Qi := | z € M2 \z is Lebesgue point of Si with Si(z) > 0 } C {|z| < R}.

Indeed, observe that for (̂ ,V>) €

4>{x) := sup{
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where c := inf^ %f>, defines a (0, rp) € TR with

^ < ^ + c on QQ &&d ip < %j> — c on Qi.

Instead of working with (0*,^*)> it will be more convenient to deal with
(<£•, $•) € T(s0, Si) defined by

$*(y) := s u p { y - x - ^ ( a : ) | x e - R 2 } -

Observe that now

«̂ and t/i» are Legendre transforms of each other (62)

and as above

<f>* is Lipschitz continuous on JR2 with constant R (63)
0* < *̂ on Qo and $• < ^ on £2i.

Thus (̂ *, T/J») is also a maximizer of F on !F(s0, si) and we have

$0 = ^ on Qo and ^ = ^ on fii. (64)

Referring back to (61), we infer that

4>.(x) := sup{ x-y - xp.(y) \ y € Qi } . (65)

Let us now consider the first variation: For given £ G CQ (JR2) and t 6 M we
compare (<£•,$•) to (<h,if>t) € ^(50,5i) given by

{ | } (66)

We deduce from (65) and (66)

| H ^ ( ^ ) - ^ ( ^ ) ) | < sup|C| fora l lx€J2 2 . (67)
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It is well known that, because of (63), ^* is differentiate for a.e. x € JR2 (see
for instance [27, 5.2 Theorem]). Let us show that for those x

limsup 1 (*(*) - fax)) < -C(V&(*)). (68)

Indeed, let {t^^oo C (0, oo) be an arbitrary sequence converging to zero.
According to (66), there exists {y^N^oo C fy s.t.

4kN(x) < x-yN-ihN(yN) + #N. (69)

Because Qi is bounded, there exists a y € JR2 s.t. we have for a subsequence
yx —> y. Prom (69) and (67) and the lower semicontinuity of tj>m we infer

fax) + fay) < x-yy

which according to (62) yields y € dfa{x) (d denoting the subgradient of a
convex function) and thus y = V4>*(x). Hence we have shown

VN —• ^7 fax).

But on the other hand we have

_ (69)

which proves (68). With help of (67) and (68) we obtain from the first
variation

Jsi(y)C(y)dy > j8Q(x)C(Vfaz))dx.

Replacing £ with — £ we end up with

Jsi(v)((y)dy = Jso(x)C(Vfax))dx for all C € C°0(M
2). (70)

Let p € P(s0 , si) and (^, xp) € ^(^o, Si) be given. Because of the relation

§ k " I/I2 = J |xp - x-y + | |y|a > I |xp - ^(x)

39



we always have

If\x-V\2p(dxdy) >

which establishes the ">"-part in Lemma 1 i). Thanks to (62) we have the
identity

<f>*(x) + &(V&(x)) = x-V^(x) for a.e. x € M2. (71)

According to (70),

fC(x>v)P.(dx,dy) = Jso(x)C{x^Mx))dx for all C € C%(M2xlR2)

defines a p» € P(so, 5 i) which satisfies

This proves the "<"-part in Lemma 1 i).

Thanks to (62) we have for a.e. x € M2 and all y € 2R2

*)) > 0

with equality if and only if y = V^»(rr).

Because the minimizer p* has marginals which have Lebesgue densities, (72)
also holds for p«-a.e. (x,y) G JR2xM2. Together with the identity

0 > lj\x-y\2p.(dxdy) - ±J\x-y\2p.(dxdy)
( =

this yields
y = V^(x) forp«-a.e. (x,y)

and thus

But according to (63) and (64), V^, and V^» coincide a.e. on {s0 > 0} D
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LEMMA 2.

i) d is a distance function on the set KR, i.e. we have for all So, si, 52 €
kR

d(so,s2) < d(so,si) + d(sus2), (73)
d(so,si) = d(su $0)j

d{so, Si) = 0 if and only if so = Si.

ii) Let us endow KR with the linear structure and the weak-*-topology
' °f Cl(]R?y. Then d is compatible with this structure in the following
sense: For every s € KR and {S^^QO C KR we have

d(s, *)2 is strictly convex on KR ,
d(s, spf)7 -* 0 if and only if s^^ s.

Proof of Lemma 2
Part i): The only property that is not obvious from the definition is (73). Let
Pox € P(so, si) and pn € P($i, s2) be given. It is well-known that there exist
parametrized probability measures {A$}y€je2 and {v%\yzR* on JR2, weakly
measurable in j/, s.t.

= Jsl(y)Jc(x,y)iio
y(dx)dy

see for instance [14, Theorem 10]. Then

for all CeC%(R2xlR2)

defines a P02 € P($o, $2) which satisfies
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j J \*-V? fi

Part ii): It follows easily from the definition that

d(s, -)2 is convex on KR ,
CL(S) Sjyj mmm¥ U 1.1. }• 5 w "—̂  S •

For the strict convexity and the "if-part", we have to use the dual represen-
tation.

Let us start with strict convexity. For given so, $1 € KR and t € (0,1) we
have to show

d{8,181 + (1 -1) sQ)2 = t d(s, si)2 + (!-*) d(s, s0)
2 = » 8X = so. (74)

We set for convenience st := <$i + ( l - t )5 0 . Let pT € P(5,5r), r € {0,1},
be optimal in the definition of (28), i.e.

d(s,sT)2 = J\x-y\2pr(dxdy).

Then pt := tp\ + (1 -t)po defines a pt € P(5, a*) with

j\x-y\2pt{dxdy) =

which according to the l.h.s. of (74) implies that pt is optimal in (28). Due
to Lemma 1, for r € {0,t, 1}, there exists {<t>r^r) € J ^ s.t.

Jax,v)Pr(dxdy) = Js(x)((x}V<f>T(x))dx

Hence we have

f
forallC€C0°(iR2x^2).
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In this case we infer that

V(f>t(x) = * V^(x) + (1-i) Vfo(x) and

|V^(x)|2 = *|V^(*)|2 + (l.*)|V^(«)|a fora.e .x€{5>0>,

which yields V^i = V^o &e. on {5 > 0} and hence Si = $0 a.e. on

Now we prove the continuity property. For fixed N € JN let (^jy, I/>N) € FR
be optimal in the dual representation of d(s, 5^)2. Because TR is compact
under the topology of locally uniform convergence, there exists (<f>, ip) € TR
s.t. for a subsequence

(<t>Ni *4>N) —>• (<f>, il>) uniformly on bounded subsets of M2.

We thus obtain

= ]s{x)\\x\2dx + jsN{y)\\y\*dy

- Js(x)<f>N(x)dx - j sN{y)%l)N{y)dy

a{x) {\x\2 - 4>{x) - xl>{x)} dx < 0D

LEMMA 3. Let s e K and rp: M2 -+ M be convex s.t

< Jc(x)dx
2

J J
for all nonnegative £ € CQ(M2) .

Then we have for all t e [0,1]

< fc(x)dxf f
for all nonnegative £ € CQ(M2) .

Proof of Lemma 3
If xp is smooth, the result follows immediately from the transformation for-
mula and the fact that

Sym+ 9 M ^ (det M)% is concave, (77)
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where Sym+ is the set of positive semidefinite 2x2-matrices (we learned of
this property from [8]).

In the general case, we observe that due to Aleksandrov,

ip is twice differentiate almost everywhere on JR2, (78)

see for instance [11, Theorem A.2.]. If y is such a point of differentiability
of V>, we denote by M(y) 6 Sym+ the matrix of second derivatives. Observe
that we have

J j
for all nonnegative C € C$°(M2) and e € 2R2.

Let us now deduce from (75) that

detM > s a.e. on-R2. (80)
Indeed, let j/o € M2 be s.t. ip is twice differentiable in jfo and that s has a
Lebesgue point in yo- For any c > 0 and 6 > 0, there exists JR > 0 s.t. for all
r 6 [0, R] and a.e. y € R2

Thus we obtain from (75)

/ s{y)dy < I ldx,
J{\(M(yo)+eid) (y-yo)|<r) «'{|x-VV(vo)|<(l+2*)r}

which after affine transformation reads

det (M(yo) + e id)"1 / s (yo + (M(y0) + e id)~xyj dy

< I dx.
i{|*|<(l+2*)r}

In the limit r 4- 0 we obtain

det (M(yo) + c id)"1 s(y0) < 1 + 2S.
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Fix a nonnegative <f> G Co°(]R2) with / ^ = 1 and introduce for c > 0 the
mollification operator J€ by

(J€C)(x) := /**(«=

First observe that

i (79) i (77) l (8°) l

(detD2JcV)* > (det J€Af)* > Jc(detM)* > Jes*

and thus

Hence we obtain with help of the transformation formula for t € (0,1) and
nonnegative C € C$(M2)

which turns into (76) for c 10 D
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