NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



On The Dynamics of Crystalline
Motion

Yoshikazu Giga
Hokkaido University

Morton E. Gurtin
Carnegie Mellon University

Jose' Matias
Instituto Superior Te'cnico

Research Report No. 96-NA-001

April 1996

Sponsors

U.S. Army Research Office
Research Triangle Park
NC 27709

National Science Foundation
1800 G Street, N.W.
Washington, DC 20550







ON THE DYNAMICS OF CRYSTALLINE MOTIONS

¥

Yoshikazu Giga¥, Morton E. Gurtint, and Jose' Matiastt

.

tDepartment of Mathematics
Hokkaido University
Sapporo 060, Japan

tDepartment of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213, USA

ttInstituto Superior Te'cnico
Departamento de Matema'tica
Avenida Rovisco Pais
1096, Lisboa Codex, Portugal

Dedicated to Professor Koji Kubota on his sixtieth birthday




ABSTRACT: Solids can exist in polygonal shapes with boundaries unions of
flat pieces called facets. Analyzing the growth of such crystalline shapes is
an important problem in materials science. In this paper we derive equa-
tions that govern the evolution of such shapes; we formulate the correspon-
ding initial-value problem variationally; and we use this formulation to
establish a comparison principle for crystalline evolutions. This principle as-
serts that two evolving crystals one initially inside the other will remain in
that configuration for all time.

KEY WORDS: phase transitions, curvature flows, crystalline energies,
interfaces, comparison theorems.
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1. INTRODUCTION.
a. OVERVIEW

As is well known, solids can exist in polygonal shapes with boundaries
unions of flat pieces called facets. Analyzing the growth of such crystalline
shapes is an important problem in materials science. For sufficiently small
crystals, surface effects—related to the interface between the crystal and its
ancillary phase— dominate bulk effects, a phenomenon that leads one to
represent the bulk material through a constant bulk free-energy U for the
crystal relative to the other phase. The underlying crystalline structure
manifests itself in the dependences of the interfacial free energy ¥(n) and
kinetic modulus p(n) on the outward unit normal n to the crystal, with
n restricted to a finite set consisting of low-energy orientations of the cry-
stal. Taylor [25] proposed an evolution equation for crystalline motion in R3
under the assumptions U=0, p(n)= ¥(n)"!. Independently, Angenent and
Gurtin [2] established a continuum thermomechanical theory of crystal
growth; their study, while limited to evolution in R2, does not make the
restrictive assumptions regarding U, g(n), and &(n),! and leads to an
evolution equation consistent with that of Taylor.

The purpose of this paper is threefold: (i) we extend the derivation of
[2] to R3; (ii) we formulate the underlying crystal-growth problem varia-
tionally in terms of the subdifferential of the total free energy; (iii) we use
this formulation to establish a comparison principle for crystalline motions
which, roughly speaking, asserts that two evolving crystals one initially
inside the other will remain in that configuration for all time.

b. BASIC EQUATIONS

We begin by deriving an evolution equation for crystalline surfaces.?
Let R be a crystalline motion with duration T; ie.,, & is a smooth one-
parameter family 3(t), 0<t<T, of crystalline surfaces

A
At) = U F,(t) (1.1)

a=1

ict [29).

2Fox‘ convenience, throughout the introduction we restrict attention to bounded
crystals.




(t=time) such that each (closed) facet F,(t) has unit outward normal
(orientation) n, independent of t. We restrict attention to crystalline
motions whose orientations are confined to a finite set J1CS? of admissible
orientations; Jl is related to the lattice structure of the crystal and should
be envisaged as representing stable orientations of the interface.

Using continuum thermomechanical arguments in conjunction with
suitable constitutive assumptions we derive a basic balance law for crystal-
line motions,

divge =U + p(n,V)V, (1.2)

in which V(x,t) is the normal velocity of &(t) in the direction of its orien-
tation n(x,t); U represents the bulk free-energy of the crystal; c(x,t), a
tangential vector field, is a surface shear that enters the theory through the

capillary stress?
C = ¥(n)P + n®c (P=1-n®n) (1.3)

with ¥(n) the interfacial free energy (here equal to the surface tension);
and p(n,V) is a kinetic modulus. The balance (1.2) is required to hold
away from the edges of the crystal; force balance across the edges of the
crystal yields the edge condition

Ca'V, = Cap (1.4)
on each edge (a,b) of any given facet F,. Here b labels the facets F, ad-
Jjacent to F,, v, is the outward unit normal to 9F, (in the plane of F,),
and the c,, are constants defined by

cap = sgn(v,-n)(n,-np)¥n,) - ¥(ny)l/[1- (n,-n,)2]% (1.5)

with n, the orientation of F,. The derivation of (1.2)-(1.5) parallels the
corresponding derivation of [2] for crystalline curves in the plane. We

3We use the term vector for element of RS and the term tensor for linear
transformation of R3 into R3. We write 1 for the identity tensor, CT for the
transpose of a tensor C, and a®b for the tensor product of vectors a ‘and b.



assume throughout that
¥(n)>0, p(n,V)>0 is independent of V, p(n)>0. (1.6)

If we integrate (1.2) over each facet and use (1.4), we arrive at an
evolution equation

BaVa(t) = A1) - U (1.7)
for each facet F,, where
A1) = A (1)1 2 ¢ pLap(t) (1.8)
b

with L,y the length of the (a,b) edge, A, the area of F,, V, the normal
velocity of F,, and B, =p(n,). The quantity A,(t), called the (energe-
tically-) weighted curvature of F,, appears first in [25] (cf. [26], [29]).

c. LOCAL EXISTENCE

We next analyze crystalline motions governed by the evolution equa-
tion (1.7). Here we consider as prescribed: a set Tl of admissible orienta-
tions; for each neT, an interfacial free energy ¥(n)>0 and a kinetic
modulus p(n)»>0; and a (constant) bulk free energy U. In contrast to the
planar case, crystalline motions governed by (1.7) have not been analyzed in
the past. Here the first question that arises concerns the solvability of (1.7)
for given initial data &(0) with orientations in Jl. The equations (1.7) are
equivalent to a system of ODEs for the position vectors x,(t), i=1,...,C, of
the corners of 2(t). However, in contrast to the evolution of crystalline
curves, this system is generally overdetermined and cannot be solved even
locally in time. (Cf. the counterexample given in Theorem 6.2; we believe
that actual crystalline motions would overcome this difficulty through the
emergence of new facets.) On the other hand, we establish local existence
for (admissible) crystalline motions consistent with (1.7) provided each cor-
ner on the initial crystal &(0) is a triple junction (Theorem 6.1), in which
case the system of ODEs is well posed.




d. MAXIMUM PRINCIPLE. COMPARISON

A major goal of ours is to establish a comparison principle for crystal-
line motions governed by (1.7). Such a principle has been derived for the
evolution of crystalline curves in the plane [16]; as there, the key step is to
establish, for crystalline surfaces, a maximum principle which, modulo
suitable hypotheses, has the form:

Maximum Principle. Let 3, and B3, be crystalline surfaces
such that 3; touches B3, at X, from inside. Then:
(i)(a) There are facets F; and F, of 8; and 8, such that
Xo€F;NF, and such that the orientation of F,; equals that of Fj,.
(i)(b) The set of orientations of facets of 8, meeting at x, equals the
corresponding set for 23,.
(ii) If F;y and F, are facets of 3, and R, with X¢0eF;NF, and
with the orientation of F; equal to that of F,, then the weighted
curvatures /Ay and A, of F; and F, satisfy N; < N,

For smooth surfaces (i) corresponds to the comparison of first deriva-
tives of functions whose graphs coincide with the surfaces 2&;, (ii) corres-
ponds to the comparison of second derivatives. .

Fundamental to a precise statement of this principle is an appropriate
class of crystalline surfaces. We define such a class with the aid of hypo-
theses concerning the edges and corners of the crystals under consideration,
hypotheses that render the crystal compatible with the interfacial energy
¥(n).

An important concept in the discussion of interfacial energies is the
Frank diagram J, which is the boundary of the convex hull of the set
g={¥m)Im: meN). T is a polygonal region whose vertices belong to Q.
In fact, we assume that @ ={vertices of ¥}, as then Jl coincides with the
set of orientations of the corresponding Wulff crystal. We say that a
crystalline surface 8 is admissible if the orientations of adjacent facets
correspond to adjacent vertices of ¥F, strongly admissible if, in addition,
given any corner ¢ of &, the set of orientations of facets that meet at ¢
correspond to the complete set of vertices of a face of 7.

For strongly admissible crystals we are able to prove (i)(a) of the
maximum principle as well as a modified version of (i)(b) (Section 10):



(i)(c) There is a point Yy, sufficiently close to (and possibly equal to) X,
such that B, touches 3, at Yy, from inside and such that the
set of orientations of facets of ; meeting at Yy, equals the corre-
sponding set for A,.

Our method of proving (i)(a) and (i)(c) is to exhaust all possible tou-
chings of 3, by 2&; from inside. For example, strong admissibility exclu-
des the possibility that a corner of 3; touch the interior of a facet of ..

The proof of (ii) is far more difficult. In contrast to crystalline
evolution in the plane [16], the complicated nature of the weighted
curvature (1.8) makes a direct comparison of surfaces difficult, and for that
reason we give a subdifferential characterization of the weighted curvature.

The total free-energy for a crystalline surface & enclosing a region I

is given by

UvolT + [¥(n). (1.9)
3

Suppose that & is represented as the graph of a function u near a facet
F,.. Then that portion of the energy associated with u is represented by
the integral

B(u) = [[j(Vu) + Uu], (1.10)
Q

where j(q) = ¥,(-q,1), ¥, is a natural extension of ¥ to R3 (Section 5b),
and Q is a neighborhood of the projection ®(F,) of F, on the plane on
which u is defined. We consider & on the Hilbert space H=L2(Q) corre-
sponding to null Dirichlet boundary data; this definition and a modification
of j for large q allows us to consider & as a lower semicontinuous convex
function on H. This modification is inconsequential, as the functions u that
correspond to crystalline surfaces are Lipschitz continuous.

Next we show that for & admissible there is a unique fedo®(u) such
that



il = inf { lhil: hed®(w)}, ('l = norm on H). (1.11)

We write f=0°3%(u) and refer to 0°®(u) as the canonical restriction of
9%(u) at u. A key step in our argument is to characterize the weighted
curvature in terms of the canonical restriction:

2°B(u) = -A, + U (1.12)

on Q, = P(F,) (Theorem 9.1). Such a formula is derived in [13] for u a
function of a single spatial variable. (Note that, by (1.12), 9°®(u) is inde-
pendent of the choice of coordinate system used to describe 8 as a graph.)

The central steps in the derivation of (1.12) is to first note that the
characterization (1.11) of 9°®(u) implies that

0°®%(u) = -divn + U, n(x)e€oj(Vu(x)) (1.13)

for some mN. With this in mind, we construct a piecewise linear function n
such that, on Q,, divn=A, and n(x)edj(Vu(x)), and then show that, for
this n, -divn + U minimizes |lhll for hedo®(u).

A corollary of the existence of N is the existence of a (not necessarily
continuous) piecewise linear vector field & (the Cahn-Hoffman vector) on 2
such that: (i) E€d¥(n) on each facet F, of ; (ii) divPE = -A, on each
facet F,, where P is here the projection onto the plane containing F,;
(ii1) for each edge 2, the projection of E onto the plane perpendicular to @
is continuous across 2 (for & admissible).

We use (1.12) to compare weighted curvatures of touching facets.
Indeed, applying the general theory of nonlinear semigroups [5] to general
order preserving parabolic systems yields the conclusion that

-a°§1(u1) < "6"@2(112) in Q' (114)

if uygu, in Q and u;=u,; in an open set Q'CQ; otherwise wu;<u,
(Lemma 10.2). This together with (1.12) yields a curvature comparison if
R4, touches 2B, from inside over F;NF, (F; a facet of R;) with FiNF, a
nontrivial polygon. The general case encountered in (ii) can be reduced to
this case by strong admissibility. This is a rough sketch of the proof of (ii)



provided B8; and 3, may be represented as graphs near touching facets,
edges, or corners. A simple sufficient condition that ensures such represen-
tations is that any pair of adjacent orientations in Jl be acute, or, more
succintly, that Tl be acute.

Our maximum principle may therefore be stated precisely as follows:

Theorem. Let 3, and A3, be strongly admissible crystalline
surfaces such that 8; touches 8, at x, from inside. Then (i)(a) and
(i)(c) are satisfied. If, in addition, T\ is acute, then (ii) is satisfied.

This result is stated as Theorem 10.2. Granted the maximum principle,
it is not difficult to establish the comparison

Theorem. Assume that the set Tl of admissible orientations is
acute. Let B3; and B, be strongly admissible crystalline motions with
common duration T and with all corners triple junctions. Assume that
B3,(0) encloses B,(0). Then R,(t) encloses B;(t) for 0s<t<T.

A more general version of this theorem is stated as Theorem 10.1. The
proof of Theorem 10.1 closely parallels the proof of comparison given in [16].

For the existence of strongly admissible crystalline surfaces with all
corners triple junctions we need to restrict the shape of the Frank diagram
F. Since the set of orientations of facets that meet at a corner corresponds
to the complete set of vertices of a face of ¥, the faces of ¥ should be
triangles. There is a large class of crystalline energies whose faces are
triangles and for which Nl is acute.

As Cahn and Taylor (cf. [28]) have pointed out, there is an admissible
crystalline surface & of minimal surface free energy that is not strongly
admissible; more precisely, 2 is not strongly admissible near a corner ¢, and
its surface energy cannot be decreased by modifying the surface near ¢ by
inserting facets, edges or corners. In our work strong admissibility is used
only to classify possible touchings. (For example, we do not use strong
admissibility to establish the existence of the Cahn-Hoffman vector field.)

Crystalline motion in the plane, as governed by the planar version of
(1.7), has been studied. As noted in [2], the evolution equation then reduces
to a system of ordinary differential equations for admissible crystalline mo-
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tions, and local existence of solutions is not difficult, although one or more
facets may disappear in finite time 7. However, at such a 7, the shape is
admissible (cf., e.g., [18]), and one can extend the solution beyond T. Such an
extended solution is termed weakly admissible by [16], who establish a
comparison principle for such evolutions. Applying this result, large time
behavior is studied in [16] for the case in which the sign of U is such that a
sufficiently large crystal grows. The asymptotic shape of the crystal is then
the Wulff shape corresponding to 1/p, a result proved for a smooth energy ¥
in [23]. When U=0, a bounded convex polygon shrinks. It is shown in [24]
that this shrinking is asymptotically similar to the shrinking of the Wulff
shape of ¥ when p = ¥°!, provided the initial polygon has at least five
corners.

Crystalline motions are useful in computing evolutions of curves by
smooth energy ¥, by approximating the Frank diagram ¥ of ¥ by a polygon.
The crystalline motion then approximates the original motion, at least when
the initial curve is the graph of a function of one variable, and provided U=0
(cf. [18], [19], [13); [18] obtains the convergence rate), and the analysis ex-
tends to closed convex curves (cf. [17]). For more details and a discussion of
the background of the problem, see the recent review by Girao and Kohn
[19] and the references therein.

It is interesting to study the evolution when the initial data is not
admissible; that is, when this data has a curved portion. A general definition
of solutions may be given via nonlinear semigroup theory when U=0 and
when the initial curve is the graph of a periodic function (cf. [13]); using this,
a unique global solution is constructed in [13] for general nonadmissible
initial data, and the speed of facets agrees with (1.7). Recently, [11] have
shown that weakly admissible crystalline motions are actually solutions as
defined in [13]. Unfortunately, the method in [13] does not apply to the case
U=0. Recently, a new definition of solutions, reflecting the theory of viscosity
solutions, is given in [14] for the initial curve the graph of a function. As
announced there, a unique global solution may be constructed for general
nonadmissible (periodic) initial data even if U=0. In that case (cf. [15]) our
weakly admissible solution is a solution as defined in [14]. These results
suggest that it is natural to assume that a facet remains a facet during its
evolution, at least for constant U.

In [3] a semi-discretized implicit scheme is proposed to construct
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solutions of the planar version of (1.7) when the crystal is not restricted as a
graph. The time is discretized, and at each time-step the value of a solution
is determined via a variational problem. This scheme does not require that a
facet remain a facet. Moreover, the scheme is consistent with that for the
case of smooth energy ¥, where convergence to a generalized solution is
proved (cf. [4]). It is shown in [3] that the approximate solution converges to
the solution of (1.7) if that solution is admissible; this gives a further
Justification of the notion of admissibility.
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2. CRYSTALLINE MOTIONS

By a crystal we mean a possibly unbounded polyhedron T in R3;
its boundary R=9I" is called a crystalline surface and the outward unit
normal n to I is called the orientation of 8. By definition, & is the
union

A
3 =U F, (2.1)
a:

of a finite number of closed (maximally) connected flat sides F, called
facets; adjacent facets intersect along closed line segments called edges, and
edges intersect in corners. If F, and F, are adjacent facets, then we
refer to the corresponding edge as the (a,b)-edge. Given a field ¢ on 3,
we write ¢q, g=a,b, for the limit of ¢ as the (a,b)-edge is approached
from the facet Fg:

9q(x) = lim ¢(y). (2.2)
y—x
yqu

To the definition of a crystal I' we add the requirement that if ' is un-
bounded, then each unbounded facet F of [' is regularly unbounded in
the following sense: F has at most two unbounded edges, and if F has two
unbounded edges, then the unbounded edges are not parallel. Then, if F¢
denotes the intersection of an unbounded facet F with a ball of radius ¢,

perimeter (F¢) /area(F¥) - 0 as ¢ — 0. (2.3)

We add this restriction for convenience as it simplifies the discussion; it rules
out unbounded strip-like facets for which (2.3) has a nonzero limit.

Let v be a vector field and C a tensor field, with both fields defined
on 3. Then the surface divergence divgVv is defined on each facet of & in
the standard manner, while divgC is defined on each facet by the relation

a-divgC = divg(CTa)
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for all vectors a.
We write

P=1-n®n; (2.4)

P(x) is the projection onto the tangent plane for 8 at x.
A crystalline motion & (with duration T) is a smooth one-
parameter family &(t), 0=<t<T, of crystalline surfaces

A
8(t) = U F(t) (2.5)

a=1

such that each facet F,(t) has orientation n, independent of t, and such
that the position vector of each corner varies smoothly in time. In such
motions facets are neither created nor destroyed. We will generally consider
A(t) as an interface between the enclosed crystal I(t) and the region
exterior to [I(t), which represents the ancillary phase. We denote by
V(x,t) the normal velocity to &3(t) in the direction of its orientation
n(x,t); since the facet normals are constant, each facet F,(t) has normal
velocity V,(t) a function only of t. Finally, we write

Br = {(xt): xel(t), te(0,T) ), (2.6)

and given a scalar field ¢ on B;, we denote by ¢° the normal time-
derivative of ¢ (the derivative following the normal trajectories of 2&(t)).

Let & be an evolving subsurface of 3; thatis, &(t)CB8(t) for all t
in an open time-interval with 0&(t) a bounded, continuous, piecewise-
smooth curve that admits local parametrizations Xx=r(A,t) that are conti-
nuous, piecewise-smooth functions of (A,t). Then dA(t) has a well defined
outward unit normal 4(x,t) that is tangential to 23(t), and, given a local
parametrization, the field wi(x,t)=0r(),t)/0t satisfies

wen =V, WY = Wo(tan): (2.7)

where wpyitan), the tangential edge velocity of #&(t), is independent of
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the choice of parametrization. The rnotion of (t) may be characterized
intrinsically by the velocity field

Wy = Vn + Wat(tan)V- (2.8)

More generally, we will use the term admissible velocity field for & to
denote vector fields wi(x,t) consistent with (2.7) on J&(t). Similarly, we
may define the tangential edge velocity Wyrtan) and intrinsic velocity
wyr for any facet F(t); then, for F,(t) and Fp(t) adjacent facets,

WaFa = Wan (2.9)

on the (a,b) - edge.

Given a facet F, let ¢(x,t) be smooth in (X,t) for xe€F(t). Then the
following transport identity is valid for evolving subsurfaces & of & with
L(t)CF(t):

(d/dt) Jo = [¢° + f\pwa.,(tan). (2.10)
L(t)  A(t) (1)

Finally, we have the standard identity, valid whenever the crystal
I'(t) is bounded:

(d/dt) volT(t) = JV. (2.11)
(1)
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3. FORCES. CAPILLARY STRESS. CAHN-HOFFMAN VECTOR

Let B3 be a crystalline motion with orientation n and duration T.
We associate with 3 a tensor field C(x,t), the capillary stress, and a
vector field m(x,t), the internal force. These fields, defined for all
(x,t)e 37, are required to satisfy the force balance

JCv + [t =0 (3.1)
N L

for all evolving subsurfaces & of 8, where 4 is the outward unit normal
to ob. The first integral gives the force on #&(t) exerted across a(t) by the
portion of B(t) exterior to A(t); the second integral gives the force exerted
on ¥&(t) by the bulk material adjacent to the interface. Although Cv is
defined on each vector WV, its action on vectors normal to 2&(t) is irrele-

vant, and for that reason we add the restriction

Cn = 0. (3.2)
The requirement (3.1) is equivalent to the local balance

divgC +m =0 (3.3)
on each facet? in conjunction with the edge balance

Cava = -Cpvy (3.4)
across each edge (a,b), where we have used the notation (2.2), and where,
for g=a,b, v, is the outward unit normal to the boundary curve oF,.

Given any evolving subsurface & of &, the rate at which the
capillary stress does work on & is given by

JCv-w, (3.5)
1) 2 )

where w is an admissible velocity field for o&. This term will enter our

4The assertion that a differential equation hold on a facet is meant to signify that
the equation hold on the interior of the facet.
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statement of the second law, and represents the only term in that law
involving o%. For that reason we assume that (3.5) is independent of the
choice of admissible velocity field w, and hence of the choice of
parametrization for o&(t). Then, by (iii) of the Invariance Lemma of Gurtin
and Struthers [21], C may be written in the form '

C = oP +nQ®c (3.6)

with o a scalar field and ¢ a tangential vector field. The action Cv of C
on a tangential field 4 then consists of a component o4 tangent to the
surface and a component (c-v)n normal to the surface, so that o is the
surface tension, while ¢ represents the surface shear.

Choosing the intrinsic velocity (2.8) for w, we may rewrite (3.5) as

ij-wa,, = I{cwat(tan) + Vel (3.7)
N ok

Further, if &(t) is contained in the union of adjacent facets F,(t) and
Fp(t), then, writing 2,(t)=(t)NF,(t) and similarly for &.(t), we may use
(2.9) and (3.4) to conclude that

JCuwy, = JCuwy, + JCu-wy,. (3.8)
ot oL, oy

Since n is constant on each facet,
n-divgC = divgc; (3.9)
thus, writing
T = T-n, (3.10)
the normal component »of the force balance (3.3) has the form

divge+m =0 (3.11)
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on each facet. As we shall see, the surface tension o will be a prescribed
constant on each facet (cf. (4.3) and (5.3)); granted this the tangential
component of (3.3) is satisfied identically on each facet provided

Pm = 0. (3.12)

We henceforth assume that (3.12) is satisfied.
By (3.6), the balance (3.4) is equivalent to the relation

Ca¥la + (Caev,)n, = -[opvy + (cpevp)n], (3.13)
which may be solved (uniquely) for c,-v, and cp-v,: indeed, since
VY,°Ny = Yp°n,, taking the inner product of (3.13) with n, and n, and sol-
ving the resulting equations for c,-v, Yyields

[1-(n, ny)?]cv, = [(n,onp)o, - opJv,-ny; (3.14)

hence
Ca¥y = sgn(v, ny) [(n,ony)o, - op]/[1- (na-nb)z]%. (3.15)

In view of (3.6), C is characterized by the vector field
E=on- c (3.16)

which we refer to as the Cahn-Hoffman wvector for C; in fact, oc=E'n
and c=-PE, so that

C = (-n)P - n®PE. (3.17)
Thus, by (3.11),

-divg(PE) + m = 0, E'n =0 (3.18)
on each facet. Further, substituting (3.17) into (3.4), and then acting on the

resulting equation with the rotation that carries v, into n, and n, into
-v,, we are led to
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(Ea-na)na + (E.,-‘va)va = (Eb-nb)nb + (Eb-vb)‘ub; (3.19)

hence the projection of & onto the plane perpendicular to the (a,b)-edge
is continuous across the (a,b)-edge. If E satisfies (3.18) on each facet and
(3.19) on each edge, then ¢=-PE satisfies (3.11) on each facet and (3.15) on
each edge, and vice versa.



19

4. ENERGETICS

Let & be a crystalline motion with orientation n and duration T.
We associate with 8 an interfacial free energy ¥(x,t), per unit area,
defined for each (x,t)ed;, and a constant U that represents the bulk
free energy of the crystal relative to that of the ancillary phase. Within
the purely mechanical framework considered here the second law is the
assertion that, given any evolving subsurface & of 8 — if we consider & as
an infinitesimally thin region whose "boundary" consists of surfaces &+0n
and &-0n that lie in the bulk material — then the rate at which the free
energy of & is changing minus the rate at which bulk energy is lost by %
across its "boundary" is not greater than the rate at which forces do work
on &; precisely,

(d7dt) {J¥} + UV < [Cu-wy, (4.1)
(1) L(t) (1)

where 4 is the outward unit normal to o&. The force m does not appear
in (4.1), as its action is internal to the "region" &.

Suppose that «&(t) is contained in a facet F(t). Then using (2.10),
(2.11), (3.7), and (3.10) we may rewrite (4.1) as

Jlyge + (m+UIV] = [(o - ¥Waitan) - (4.2)
(1) ol (t)

Given any tp, any sufficiently regular subset &y of F(ty), and any
smooth scalar field ¢ on My, we can always find an evolving subsurface
L contained in F such that &(tg) =&y and wy,tan)(X,tg)=9(X) on Ng.
We are therefore led to two important conclusions: the surface tension and
interfacial free energy coincide,

o =¥ (4.3)
the dissipation inequality

¥+ (m+UV <0 (4.4)
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hold on each facet.

Conversely, if (4.3) and (4.4) are satisfied, then (4.2) and hence (4.1)
hold for each evolving subsurface that is contained in a single facet, and we
may use (3.8) to show that (4.1) holds for all evolving subsurfaces.

Finally, we note that, for a bounded crystal, (4.1) applied with
&4(t) = 3(t) and (2.11) yield

(d/dt) { UvolT(t) + ¥ ) =< 0, (4.5)
A(t)

so that the total free energy decreases with time.
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5. CONSTITUTIVE EQUATIONS. FRANK DIAGRAM. CONVEXIFIED ENERGY
a. THERMODYNAMICALLY RESTRICTED CONSTITUTIVE EQUATIONS

We now restrict attention to crystalline surfaces and motions whose
orientations are confined to a finite set J1CS? of admissible orientations.
The set Tl is related to the lattice structure of the crystal and should be
envisaged as representing stable orientations of the interface. As constitu-
tive equations we allow the free energy ¥ and the normal accretive force
m to depend on the orientation and kinetics of the interface through depen-
dences on n and V:

¥ = ¥(n,V), n = 7(n,V); (5.1)
i.e., e.g., ¥(x,t)=¥(n(x,t1),V(x,t). We assume that § and @, with domain
xR, are smooth functions of V.
We require that (5.1) be consistent with the dissipation inequality (4.4).
Then for F(t) a facet with orientation nel,

iy (nVIVe + [[(n,V)+ UV = 0, (5.2)

an inequality that holds for all such facets if and only if:
(i) ¥(n,V) is independent of V,

¥ = ¥(n); (5.3)
(ii) there is a kinetic modulus p(n,V)20 such that

(n,V) =-U - g(n,V)V. (5.4)
We assume, henceforth, that (5.3) and (5.4) are satisfied with

¥(n) > 0, p(n,V) independent of V, p(n) > 0. (5.5)

b. FRANK DIAGRAM. CONVEXIFIED ENERGY
The Frank diagram ¥, which is the boundary of the convex hull of
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the finite set |
8 = {¥n)n:neMN}, (5.6)

i1s a polyhedral surface whose vertices belong to @. We will, in fact,
assume throughout that:

G is the set of vertices of F (5.7)

(cf. (56.12)). The construction of ¥ ensures that each neS? correspond to
a unique point Frank(n)=a(n)ne¥, o(n)>0. Thus and by (5.7), the
strictly positive function ¥, on S? defined by

Frank(n) = ¥,(n)"in (5.8)

extends ¥ from T to S2, and F ={¥,(n)In: neS?). It is convenient to
further extend ¥ to R3® by homogeniety: ¥,(0)=0 and

¥o(p) = Ipl¥,(p/Ipl) (5.9)
for all peR3, p=0. Then

F is the one-level set of ¥, (5.10)
so that ¥, Is a convex function. We will refer to ¥, as the convexified
energy.

Both the Frank diagram and the crystal are polyhedral; to avoid
confusion we will use the following differences in terminology:

crystal Frank diagram
facet face
corner vertex

We will refer to MCN as compatible if Frank(T) is contained in a
face § of ¥F; by (5.6) and (5.7), Frank(n) is then a vertex of § for each
ned; if Frank(M) is the set of all vertices of §, then T s complete.
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Finally, m,nell are adjacent if the line segment from Frank(m) to
Frank(n) is an edge of ¥ (in which case {m,n} is compatible); and we will
refer to Tl as acute if m-n>0 for every pair of adjacent orientations
m,neJl. Note that Jl acute is incompatible with tetragonal symmetry.

c. REMARKS ON WULFF'S THEOREM.
Stable crystals ' are those that minimize total interfacial energy at

fixed volume:

[¥n) < [¥n) for all crystals © with vol(®) = C, (5.11)
or' 00

with C>0 a prescribed constant (Wulff's Problem). This problem has a
unique solution (modulo translation), and solutions for two different values

of C differ by a dilation. Stable crystals have the following properties:

(W1) the orientation of each facet is admissible;
(W2) the orientations — of facets that intersect at an edge — are adjacent;
(W3) each set — of orientations of facets that intersect at a corner — is

compatible.
We will refer to (W1)-(W3) as Wulff conditions; these conditions do not

uniquely characterize stable crystals, since stable crystals are also, for
example, bounded and convex, but we will find (W1)-(W3) useful as condi-
tions to be imposed on crystalline motions. We remark that (5.7) is equiva-
lent to the requirement that Jl (and not a proper subset of Tl) be the
set of orientations for any stable crystal.

The next proposition establishes, for crystalline motions consistent with
the Wulff conditions, a one-to-one correspondence between possible crystal
corners and faces on the Frank diagram.

Proposition 5.1. Let 8 be a crystalline motion consistent with the
Wulff conditions, let ¢ be any corner of B, and let Tl denote the set
of orientations of facets that intersect at ¢. Then T\ Is compatible and
complete; thus there is a unique face

4= 10 (5.12)

of the Frank diagram such that Frank(Tl) is the set of vertices of {.
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Remark. The Wulff conditions, as general requirements on crystal-
line motions, are independent. Indeed, a single evolving facet has no corners
or edges, so that (W1) is necessary. For & an infinite wedge consisting of
two facets intersecting along an edge, (W2) does not follow from (W1), and,
since & has no corners, (W3) is empty; hence (W2) is needed. Finally, if the
Frank diagram has as its vertices n; = 371(1,1,1), n,= 378(1,-1,1),
ny=(-1,0,0), n4=(0,0,1), n5=(0,0,-1); if R consists of three unbounded
facets meeting at a single corner; and if n;, n,, and nsz are the orien-
tations of these facets; then (W1) and (W?2) are satisfied, but (W3) is not.
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6. BASIC EQUATIONS. EXISTENCE
a. DATA
’ We assume, as prescribed:
(i) a set N of admissible orientations;
(ii) for each neJl, an interfacial free energy ¥(n)>0 and a kinetic
modulus g(n)>0;
(iii) a (constant) bulk free energy U.

As before the terms 'crystalline surface 8" and '‘crystalline motion 8"
carry with them the requirement that the outward unit normal to & be
restricted to the set Tl of admissible orientations, which is the Wulff
condition (W1); consistency with the Wulff conditions (W2) and (W3) is not
presumed.

b. EVOLUTION EQUATIONS FOR CRYSTALLINE SURFACES

The basic equations are the facet and edge balances (3.11) and (3.15),
the thermodynamic identity (4.3), and the thermodynamically admissible
constitutive relations (5.3) and (5.4). Granted (4.3), (5.3), (5.4) (and (3.12)),
these are equivalent, not only to the original balance (3.1) with C defined
through (3.6), but, more important, to the requirement that the evolution of
each facet F, be consistent with the balance

divge =U + p(n,)V (6.1)
and the edge condition

Ca*Va = Cab (6.2)
on each edge (a,b) of F,, where c,, are the constants defined by

Cap = sgn (W np)l(ngeny)in,) - ¥(np)1/[1- (neeny)2)d,  (63)
while 4, is the outward unit normal to 9F,. In view of the agreements

made in Subsection 6a, the c,;, may be viewed as prescribed data.
Let



26

L,p(t) = length of the (a,b) edge,
A,(t) = area of F,(t),

V.(t) = normal velocity of F,(t),
Ba = B(n,).

Then, since the right side of (6.1) is spatially constant on F,, for F,
bounded, if we integrate (6.1) over F, and use (6.2), we find that

BaValt) = A, (1)1 ZcpLp(t) - U, (6.4)
b

where the sum is over all b with Fp, adjacent to F, (cf. (3.15) and (4.3)).
We write

A1) = A (1)1 2 cpLap(t) for F, bounded. (6.5)
b

By (6.2), the constant c,;, represents the shearing force exerted on F, by
the facet Fp, so that A,(t) represents the net shear, per unit area, on F,.
We will refer to A,(t) as the energetichlly-weighted curvature (cf.
Taylor [26], who uses the term weighted mean-curvature) and to the c,;
as the curvature constants for the facet F,.

By (6.2), there is a C>0, depending only on the set Jl and the values
of ¥(n) for neJl such that |A,|<Cperimeter(F,)/area(F,). Bearing this
in mind, and recalling our agreement to limit our discussion to crystals
which, when unbounded, are consistent with (2.3), we adopt the convention:

N(t) =0 for F, unbounded. (6.6)

We are then led to the requirement that each facet F,(t), whether
bounded or unbounded, evolve according to

BaVa(t) = A1) - U. (6.7)

One may ask if (6.5)-(6.7) by themselves characterize crystalline mo-
tions consistent with the force balance (3.1); or equivalently (cf. the discus-
sion surrounding (6.1) and (6.2)) whether, given a crystalline motion 2
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consistent with (6.5)-(6.7), there is a tangential vector field ¢ on 23 that
satisfies (6.1) and (6.2) on each facet F,(t). Thus choose a facet F,(t) and a
time t, and note that, by (6.7), (6.1) is equivalent to divge=A, on F,. To
construct ¢, we assume, without loss in generality, that n, =(0,0,1), so
that ¢ has the form (ny,n,,0) with n a planar vector field on the planar
domain F,(t)CR?2; the determination of ¢ thus reduces to solving the
boundary-value problem

A, in the interior of F,,

divn

NV, = Cap on each edge (a,b) of OF,. (6.8)

The existence of a solution will be established in Lemmas 9.6 and 9.7; in fact,
we will construct an n that is piecewise linear (and bounded even when F,
is unbounded). In this regard, note that, by (6.5), the "data" A, and c,
are compatible in the standard sense for Neumann boundary - conditions.
The solution ¢ is generally not unique, but this is no problem, as any
two solutions yield the same crystalline motion. Given ¢, we can construct
a stress field C via (3.6) with o given by (4.3) and (5.3); and, given C,
there is a Cahn-Hoffman vector &, which is related to C through (3.17)
and is consistent with (3.18) and (3.19). We will refer to C and & as a
capillary stress (field) and Cahn-Hoffman vector (field) for 3.

c. EXISTENCE OF CRYSTALLINE MOTIONS

We now discuss the existence of crystalline motions that start from a
crystalline surface 8, and evolve according to (6.7) with T, ¥(.), B(.),
and U as prescribed in Subsection 6a. Consistency with the Wulff condi-
tions (W2) and (W3) is not required, although, by continuity, if the initial
crystal 3, is consistent with a Wulff condition (W), then any crystalline
motion 3 with 28(0) =23, will be consistent with (W).

We begin with some notation. Let 3, be a crystalline surface with at
least one corner. It is convenient to:
+ label the facets of &, by a=1,2...,G,
- label the corners of &, by c¢=1,2...,C,
« write Q. for the set of facet-labels for facets that meet at a corner c,
- write C, for the set of corner-labels for corners of a facet a.

Let y. denote the position (vector) of an arbitrary corner c¢ of 3,
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and let

Y = (yl;yZ: LR ;Yc)

denote the list of corner positions of &, By "slightly perturbing" Ye(R3)°C
we can find an open neighborhood X(Y) of Y in (R3C such that each
X =(xy,%;,...,%Xe) € X(Y) is a list of corner positions of a polygonal surface
Crystal (X) each of whose facets corresponds—in an obvious manner—to a
facet of &,. This correspondence allows us to label the corners and facets of
Crystal (X) using the corresponding labels of 3,. (Note that the outward
unit normal to Crystal(X) will generally not have values in Tl.) Further,
in the notation of Subsection 6b, for XeX(Y), each edge length L,, and
each facet-area A, of Crystal(X) is a smooth function of X. The right
side of (6.7) is therefore a function &,(X) on X(Y) that is well defined and
smooth, a function whose form depends only on B, ¥(+), and U. (§,(X)=-U
if the facet a is unbounded.)

Next, let & be a crystalline motion starting from 2&,, and, for any
corner ¢ of B, let x.(t) denote the position of ¢ at time t. Then the
normal velocity V,(t) of each facet a€Q. satisfies

V., = n,-(dx./dt); (6.9)

hence, for t sufficiently small, the evolution equation (6.7) is equivalent to

the requirement that, for each corner c,
Ban,e(dx./dt) = @,(X) for all aeQ,, (6.10)

where X(t) = (x,(t),x,(1),...,xe(1)).

Suppose, for the moment, that each corner of 23, is a triple
junction; that is, each corner of B8, is the intersection of exactly three
facets. The set {n,:a€Q.} is then a basis for R3, and (6.10) may be
solved for dx./dt; hence there is a smooth mapping & of X(Y) into (R3)C
such that (6.10) (and thus (6.7)) is equivalent, for sufficiently small time, to
an ordinary differential equation

dX/dt = &(X) ' (6.11)
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for the list X(t) of corner positions of 2(t).

Suppose now that we are given a crystalline surface &, with each
corner a triple junction, and we wish to find a crystalline motion 3 that
satisfies (6.7) and the initial condition &(0) =23, Assume that 3; has at
least one corner, let Y denote the list of corner positions of 3,, and let
X(Y) be the open set defined above. Let X(t) denote the unique (maximal)
solution of (6.11) over X(Y) subject to the initial condition X(0)=Y. Then
B(t)=Crystal (X(t)) will have the desired properties provided:

(1) the orientation of the facet F,(t) of B3(t) labelled a is equal to the
orientation n, of the corresponding facet of 3;
(2) each facet of B(t) evolves according to (6.7).

Consider (1). By (6.10), the projection on n, of the velocity of each
corner ¢ of F,(t) is independent of ¢, and hence the orientation of F,(t)
cannot vary with time; since the orientation of F,(0) is n,, (1) is satisfied.
On the other hand, (2) is a direct consequence of (6.9) and (6.10).

Finally, assume that &, has no corners, so that 3, is the union of
infinite facets. (Since these facets are regular, 3, is either a plane or two
half planes meeting at an edge.) Then (6.7) has the simple form g,V,(t)=-U
for each facet a, and the existence of a unique & satisfying (6.7) and the
initial condition 3(0) =3, is immediate.

We therefore have an existence theorem for crystalline motions:

Theorem 6.1. Let R, be a crystalline surface with each corner a
triple junction. Then there is a T>0 and a unique crystalline motion 3
with duration T such that:

(i) each facet of 8 evolves according to (6.7);
(ii) 8(0) = 3,.

Suppose now that B, has a corner c¢ that is not a triple junction,
and let 2(t) satisfy (6.7) and the initial condition 3(0)=2,. Then for Y
the list of corner positions of 8, and v the velocity of the corner c¢ at
t=0, (6.10) yields

BaNa'v = &,(Y) for all aeQ.. (6.12)
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Since Q. has more than three elements, this represents an overdetermined
system of equations for v, and will generally have no solution, an outcome
that would render 3, incompatible as initial data for a crystalline motion
consistent with (6.7). Here we will not establish the most general conditions
on the data that lead to nonexistence, but we will give a simple example.

Theorem 6.2. Let &, be a crystalline surface consisting of four
unbounded facets, a=1,2,3,4, meeting at a single corner. Then there is a
choice of p(n,)>0, a=1,2,3,4, for which there is no crystalline motion 3
that satisfies 8(0) =28, and B,(n,)V,=-U for a=1,2,34.

Proof. Geometry requires that the set {n,:a€QG.} have four ele-
ments. Further, (6.10) reduces to p,n,v=-U, and the equations for
a=1,2,3, say, determine v. We can always choose B4>0 so that the equa-
tion for a=4 is not satisfied. O

Remarks.

(1) This failure of existence demonstrates that our framework is too
narrow to include evolution from an initial crystal whose corners are not
triple junctions; such initial data seems to require the formation of new
edges. (Cf. the remark following Theorem 10.2, which notes that a crystal-
line surface can be approximated by a crystalline surface all of whose
corners are triple junctions.) If global solvability is required it is necessary
to allow for arbitrary initial data. For a smooth energy ¥ a level set
method ([8],[12]) is standard, but this method has not yet been developed for
crystalline energies, although it should extend to crystalline graph-curves
[14]; in this instance the solution seems to become a varifold (infinitesimally
wrinkled) solution as constructed in [7] for mean curvature flows. _

(2) For R, a crystalline surface consisting of three unbounded facets,
a=1,2,3, meeting at a single corner, the corresponding crystalline motion
established in Theorem 6.1 is a uniform translation of 8, with translational
velocity Vv the unique solution of p,n,v=-U, a=1,2,3. This motion exists
for all time.

(3) For R, a crystalline surface consisting of two infinite facets
meeting along a single infinite edge, the crystalline motion of Theorem 6.1
again consists of 3, translating uniformly with velocity v. Here v is any
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solution of B,n,v=-U, a=1,2, the component of v perpendicular to n;
and n; being tangential to & and of no importance.

(4) The convexity assumption on F in Section 5b is irrelevant to the
validity of the results of this section.
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7. SUBDIFFERENTIAL OF THE CONVEXIFIED ENERGY
a. THE SUBDIFFERENTIAL

The convexified energy ¥,(p) is not differentiable at points p with
p/lpleNl. With this in mind, we introduce the subdifferential

o¥,(p) = {E€R3: ¥y(p+h)-¥,p) 2 E-h VheR3 ) (7.1)
of ¥, at p; since ¥, is convex, if ¥, is differentiable at p, then
d¥,(p) = {V¥,(p)). (7.2)

Some useful properties of the convexified energy are, for p=0, A>0,
Ecdyy(p),

¥o(AP) = A¥,(p), o¥,(Ap) = 9¥,(p),

¥o(P) = E-P. (7.3)
The first two relations in (7.3) follow from the definition (5.9) of ¥,. To
establish the third we take h=ap, lal<l, in the inequality in (7.1); this
leads to o ¥,(p) 2 «p:E, and, since the sign of « is arbitrary, this yields the
desired result.

The next proposition relates the subdifferential to the Frank diagram
F. By a generalized tangent plane to ¥ at peF we mean a plane TI
through p that does not intersect the set {zeR3:¥,(2)<1} enclosed by ¥.

Proposition 7.1. Let pe¥, EcR3, &=0. Then the following are
equivalent:
(a) E€d¥,(p).
(b) E-p=1 and E-(z-p)<0 for all z¢¥.
(¢) The plane TI through p normal to & Is a generalized tangent
plane to ¥ at p, & is directed outward from F (E:p>0), and
|[EI"1 s the perpendicular distance of T from the origin.

Proof. Assume that (a) is satisfied. Then, for ze¥, (7.1) yields
¥5(2) - ¥,(p) 2 E-(z-p), while (5.10) implies ¥,(2) = ¥,(p)=1. Thus &-(z-p)=0.
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Further, (7.3)z yields &-p=1. Thus (b) holds. Conversely, assume that (b) is
satisfied. Choose reR3. Then there is a scalar A>0 such that Are¥ and

02 E-(Ar-p) = AE(r-p) - (1-2). (7.4)
But by (5.10), ¥,(p) =A¥y(r)=1; hence (7.4) yields
0 2 E-(r-p) + ¥,(p) - ¥,(r).

Thus, since r is arbitrary, Ee€d¥,(p). Therefore (a) and (b) are equivalent.

Next, we show that (b)e(c). Let TT be the plane through p normal
to &, and let d denote the perpendicular distance of TI from the origin.
Then the second assertion in (b) is equivalent to the requirement that TI be
a generalized tangent; and, since E:p>0 implies d=p-E/IEl, E-p=1 if and
only if E-p>0 and d=Iel"l. O

The energy ¥,(p) is differentiable at all p with p/Ipl¢T; in fact, by
(7.3), and the equivalence of (a) and (c¢) in the last proposition, given any
face -g, on the Frank diagram, V¥, is constant on the cone

C) ={ xp: pef, p/lpl¢N, «>0 ). (7.5)
We denote this constant by V¥,({):

The next lemma, whose proof follows from the equivalency of (a) and
(c) in Proposition 7.1, will be useful.

Lemma 7.1.
(a) Let McTN. If M is compatible and contains three or more vectors
or two vectors that are not adjacent, then Frank(I) is contained in
a unique face 4 of ¥ and

nel
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If M is not compatible, then

N 9¥,(n) = 2. (7.8)
ne
(b) If m,neTl are adjacent orientations, so that the line segment from
Frank(m) to Frank(n) is an edge of ¥, and if { and g are the
faces of ¥ that intersect along this edge, then

9¥o(m)NA¥y(n) = {AVE,(§) +(1-A)V¥,(g) : O<rs<1 ). (7.9)

b. CHARACTERIZATION OF ADMISSIBLE CRYSTALLINE MOTIONS USING THE
SUBDIFFERENTIAL. CAHN-HOFFMAN VECTOR
The next result shows that the Wulff conditions (W2) and (W3) may be
stated in terms of the subdifferential of the energy.

Theorem 7.1. Let 8 be a crystalline motion consistent with (W1).
Then:
(a) B satisfies (W3) if and only if, for ¢ any corner of 8 and T the
set of orientations of facets that intersect at c,

N 9¥,(n) is a singleton; (7.10)
nel

(b) R satisfies (W2) if and only if: for m and n orientations of facets
that intersect at an edge of 2,

9¥o(m)No¥y(n) is a line segment. (7.11)

Proof. To establish (a)e (W3) it suffices to show that if ¢ is a corner
of 83 and Tl is the set of orientations of facets that intersect at ¢, then

M compatible & (7.10). (7.12)
The assertion (7.12) follows from (a) of Lemma 7.1.

Similarly, (b)e (W2) will follow if we can show that: for m and n
orientations of facets that intersect at an edge,
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m,n adjacent & (7.11). (7.13)

The forward implication follows from (p) of the Lemma. To establish the
reverse implication, assume that (7.11) is satisfied, and suppose that m and
n are not adjacent. Let M={m,n}. If M is compatible, then (7.7) holds;
if M is not compatible, then (7.8) holds; in either case (7.11) is not satisfied.
D

Theorem 7.2. Let 8 be a crystalline surface consistent with (W1)
and (W2). Let F, and Fp, be adjacent facets with n, and n, the

corresponding orientations, and let v, be the outward unit normal to
OF, on the (a,b)-edge. Then

[9¥y(n, )N ¥ (np)l-v, s the singleton {-cup ). (7.14)
Further, let -g, and g denote the faces of the Frank diagram that
intersect along the line segment from Frank(n,) to Frank(n,). Then, for
h=4.,9 and n=n,,n,
V¥, (h)n = ¥5(n), Vig(h) v, = -cup. (7.15)
Proof. Choose he{{,g} and ne{n, n,}. By (7.3); and (7.6),
m-V¥,(h) = ¥,(m), meS2NC(h); (7.16)
thus, given any me S2NC(A) there is a vector ¢(m) such that
V¥y(h) = ¥,(m)m - &(m), é(m).m = 0, (7.17)
and, by the continuity of ¥,(m), (7.17) and hence (7.15); holds also for
m=n.
Next, let v, and v, denote the outward unit normals to 9F, and

oFp on the edge (a,b). Then v, and v, lie in the plane spanned by n,
and np with v,xn,=-v,xn,, and therefore
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n,®v, - v,8n, = —[nb®vb - vb®nb] (7.18)

(the left side acting on a vector v is 2 (v,xn,)xv; the right side is also,
with the same sign). Thus applying the left side of (7.18) to (7.17) at m=n,
and the right side at m =n,, we conclude that (3.13) holds with
Oq= S’O(nq) and cg=c¢(ng), g=a,b. Thus (3.15) and hence (6.2) is satisfied,
and, since V¥y(h)-v,=-cqv,, (7.15), is also satisfied.

Finally (7.14) follows from (7.9) with n=n, and m=n, in conjunc-
tion with (7.145),. DO

The discussion in the last two paragraphs of Subsection 6b ensures the
existence of a Cahn-Hoffman vector E corresponding to & such that:
(a) on each facet,

divg (PE) = m, En = go(n); (7.19)

(b) the projection of & onto the plane perpendicular to each edge is
continuous across the edge, or equivalently, ¢=-PE is consistent with
(6.2) on each edge.

Let B8 be a crystalline surface consistent (W1)-(W3). Given any
corner ¢ of &, we refer to

Eolc) = V¥g(§(c)) (7.20)

as the Cahn-Hoffman vector for ¢ (cf. (5.12)). Then, by (7.15), for ¢ a
corner terminating the (a,b) edge,

Eole)n, = ¥,(n,), Eole) v, = -cpup- (7.21)

Theorem 7.3. Let 8 be a crystalline motion consistent with (W1).
Then there is a piecewise linear Cahn-Hoffman vector & (which may not
be continuous) corresponding to 8 that satisfies (a) (in a distributional
sense) and (b). Further, for T the duration of 8,

(c) E can be taken so that

E(x,t)ed¥y(n(x,1)) (7.22)



37

at a.e. x of each facet of &(t), teT, if 8 satisfies (W2).
Conversely, given such a vector field €, if E satisfies (a) and (b),
then A&(t) satisfies (W2).

(d) if B satisfies (W2) and E is the Cahn-Hoffman vector in (c), then
B satisfies (W3) if and only if for any corner ¢ of & thereisa
vector E independent of b such that

a(x't)'va = E"va = ~Cab
on each edge terminated by c. If (W3) holds, then E=Eg(c).

The converse assertions in (¢) and (d) follow from Lemma 7.1(a); we
postpone the proof of the remaining portions until Section 9 (cf. Theorem
9.8).

c. ADMISSIBLE AND STRONGLY ADMISSIBLE CRYSTALLINE SURFACES

In theories for evolving surfaces with smooth, convex interfacial
energies the surface shear c¢ is not indeterminate, as it is here; instead ¢
is the derivative c=0¥(n)/dn of the interfacial energy on the unit sphere,
or equivalently, the Cahn-Hoffman vector E is the gradient E =V¥y(n) on
R3 of the convexified energy. Within the equilibrium theory these results
are a consequence of Gibbs-stability [9,22]; within a dynamical framework
they follow from thermodynamics [2,20]. The counterpart of & =V¥,(n)
within our theory is (7.22), a condition we believe is related to the stability
of the crystal.

This discussion demonstrates the importance of the Wulff condition
(W2) and motivates our introduction of a special terminology for surfaces
with this property. By an admissible crystalline surface (or motion) 23
we mean a crystalline surface (or motion) that is consistent with the Wulff
conditions (W1) and (W2); if, in addition, & is consistent with (W3), then &
is strongly admissible. (By Proposition 5.1, the set of orientations of facets
that meet at a corner is complete if 3 is strongly admissible. The converse is
trivial if B3 satisfies (W1) and (W2). The definition of strong admissibility
given in the Introduction is therefore equivalent to that given here.)
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8. LOCAL REPRESENTATION OF THE INTERFACE AS A GRAPH

Throughout this section 8 is a crystalline surface, F, is a facet of 23,
and n, is the orientation of F,. Further, ® is the standard projection
from R3 onto RZ%:

’

P(x) = (x1,%5), x = (xy,%X5,X3) €RS.

a. DEFINITION
We say that B3 is the graph of a function u near F, if u isa

mapping from an open set QCR? into an open interval I and, writing
D=QxI:

(G1) DNB = { xeR3: x3 = ulxy,x;), (x1,%)€Q };
(G2) the closure of Q,=TMP(F,) is contained in the interior of Q = P(D);

(G3) Q is a polygon, DNA consists of F, and portions of facets Fy
adjacent to F,, P(9F) intersects 0Q transversally, and Q is
bounded if F, is bounded.

In this case we will consistently use the notation:

By = AND = graphlike portion of 23,

Fp = an arbitrary facet adjacent to F,,

Q, =P(F,),

Qp =P(Fp)NQ,

n,, ny = orientations of F, and Fy,

IF| = area of a two-dimensional set F,

[2] = length of a line segment 2,

2.p = the (a,b)-edge (along which Fp intersects F,),
v, = outward unit normal to 0F,,

V,p = outward unit normal to 9F, on {,,

M.p = outward unit normal to 9Q, on P(2,).

We say that 8 is essentially a graph near F, if, modulo a rotation of
the coordinates, & is the graph of some function u near F,.
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Remarks.

(1) (G3) is, in a sense, superfluous: by suitably shrinking a set Q
consistent with (G1) and (G2), Q can be made to satisfy (G3).

(2) If ny'n,>0 for every Fp, adjacent to F,, then B3 is essentially
a graph near F,.

(3) If 8 is consistent with (W1) and (W2) (so that n,eN), and if T
is acute, then ny-n,>0 for every Fp adjacent to F,; hence 3 is
essentially a graph near F,.

b. IMPORTANT FORMULAE

Throughout this subsection & is the graph of a function u near F,.
We now express the various geometrical and mechanical quantities
associated with & in terms of their projections under ®.

The areas of F, and Q, are related through

Q. = n3IF,l, (8.1)

where n=n,=(n;,n,ns3). Let ¥ =v,,=(v;,v,5,v3). Then vxn is a unit
tangent vector to {,,, Its projection

T = Ty = P(wxn) = (vyn3z-wv3n,, vsng - vinsz) = (14,7,) (8.2)
is tangent to ®(2,,), the lengths of 2,, and ®(2,,) satisfy
1P ) = 1Tl (8.3)
and W= H,, isgiven by
Ho= Tl (-14,714). (8.4)

It is convenient to introduce the mapping g from the upper unit
hemisphere in R3 to R? defined by

q(n) = -nz 1 (Pn); (8.5)

then q is a bijection with inverse
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n(q) = (-q,1) (1 +Iql?)-1/2 (8.6)
and the normal n to 3, is given, away from the edges of &, by
n = n(Vu). (8.7)

We now express the energy ¥,(n)," which is measured per unit area
on R, as an energy g(Vu) measured per unit area on Q; we define

g(q) = ¥,(-q,1), qeR?, (8.8)

then, appealing to the homogeniety of ¥,

J¥(n) = J¥(n)(1+Vul2)i/2 = [g(Vu). (8.9)
3, Q Q

Since ¥, is convex, so also is g; moreover,

og(q) = - P(d¥4(-q,1)). (8.10)
Further, Vg(q)=-PVy¥,(-q,1) whenever V¥,(-q,1) exists; in fact, by (7.6),
given any face § on the Frank diagram, Vg has the constant value
-PV¥,(§) on the polygonal region

C*{) = {qeR?: (-q,1)eC{) ). (8.11)
Thus

Vg(§) 1= -PV¥,(§) = Vglq) for all qeC*({), (8.12)

which is a counterpart of the relation (7.6).
Note that, for each unit vector n,

neC{) & &neC @) (8.13)

If m,nell are adjacent, then two faces {, and g of the Frank diagram
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intersect along the line segment from Frank(m) to Frank(n), and the
intersection of the polygbnal regions C*(§) and C*(g) is the line segment
from q(m) to q(n).

Let F, and F, be adjacent facets, write n, =(ng,ny,nz),
Y,p = (V1,V,,v3), and define constants ¢,, through

ITaplCap = Nz Cap + V3 Xo(n,). (8.14)
The next result is a direct analog of Theorem 7.2.

Theorem 8.1. Let 8 be a crystalline surface satisfying (W1) with
R, the graph of a function near F,. Let F,, be a facet adjacent to F,;
let n, and n,, assumed adjacent, denote the orientations of F, and
Fp; let q,=a(n,), q,=3a(ny); and let § and g denote the faces of the
Frank diagram that intersect along the line segment from Frank(n,) to
Frank(ny). Then, for A=-g.,8,

Vg(h)-Hap = Cap,

- (8.15)
[ag(qa)nag(qb)]’uab = ag(qa)'uab n ag(qb)'uab = {Cab}'

Proof. An argument analogous to that used to establish (7.9) yields
the conclusion

9g(q,)Ndg(qy) = {AVg(f) +(1-AVg(g) : Or=1 ). (8.16)

Thus to establish (8.15); and the identity [9g(q,)Ndg(qp)]-Hap = {Cap ), it
suffices to show that

Cab = 1TapInz 1, Va(h) - v3¥,(n,/n3). (8.17)
For convenience, we write C=C(h), C*=C*(h), n=Vglh), E=Vi¥,(4),
e=(0,0,1). In view of the remarks containing (7.5), E=V¥,(m) for every

m in the interior of C. Thus, by (8.12),

E:Vap = ~VU1N; - YNy + vze-V¥y,(m) (8.18)
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for all such m. Further, since ¥, is homogeneous, ¥,(m) =m -V¥,(m);
hence (8.12) yields

msze-V¥,(m) = ¥,(m) + mn; + myny; (8.19)
therefore
EVap = V1M1 - VoMo + vzmsz i{¥(m) + myn; + myn,l. (8.20)

Letting m—n, from C (which is equivalent to letting q(m)—q, from
C*) and rearranging terms, we find that

EVap = Y3¥y(n/n3) + n3"ini(njvs - vins) + na(nyvs - vons)l. (8.21)

By (7.15), c,p=-E-v,,; thus (8.2), (8.4), and (8.21) yield (8.17).
It remains to show that

[ag(qa)ﬂag(qb)]'uab = Dg(qa)'uab N ag(qb)-uab. ' (8.22)

Note that q,-qy is parallel to W,;, and that, for 9G the subdifferential of
G(o) = glq,+olqy - q,))

0g(q,)-Hap = 9G(0), oglqp):Hap = OG(1). (8.23)

Since G is convex and linear on [0,1], the intersection of 9G(0) and 9G(1)
is a singleton (and is, in fact, the derivative of G in [0,1]). Finally, since

{Cap) = [9g(q)Noglap))-Hap € 98(qa) Hap N Ig(Qy) Hap = 9G(0) N AG(1),
(8.24)
the desired conclusion (8.22) follows. O

The crucial ingredient in the evolution equation (6.7) is the
energetically-weighted curvature A,(t) defined in (6.5). The next theorem,
the main result of this section, gives this "curvature" in terms of quantities
associated with motion as a graph.
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Theorem 8.2. Let 8 be an admissible crystalline surface
represented as the graph of a function near a facet F,, with F,
bounded. Let the subscript b label the facets adjacent to F,. Then the
energetically-weighted curvature A, Is given by

Ae = 1Q. M1 & 1P, (8.25)
b

Proof. Let 4 denote the outward unit normal to 0F,, so that, in
terms of the notation used above, wvz=e:v =e:v,, on the (a,b)-edge. By
(2.4) the projection h=P(n,)e of e onto F, is constant and thus, since
ev =h:v, the divergence theorem applied on the facet F, yields the
identity

Zevlyl = Jus = Jew = 0. (8.26)
b oF,  oF,

In the current notation the relation (6.5) has the form
Aa = IFal-l 2 Cab Mabl: (8.27)
b

and therefore, applying (8.14) in conjunction with (8.1), (8.3), and (8.26), we
are led to (8.25). O
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9. VARIATIONAL FORMULATION
a. INTRODUCTORY REMARKS
Our next step is to express the evolution equation

BaVal(t) = Ag(t) - U , (9.1)

for bounded facets F, in terms of the subdifferential of the total free-
energy

UvolT(t) + [¥4(n). (9.2)
3

Here A, is the energetically-weighted curvature (6.5) (or (8.25)).
If B is a crystalline surface represented as the graph of a function u
near F,, then, in the notation of Section 8, and using (8.9), we can associate

an energy

®(w) = [[g(Vw) + Uw] (9.3)
Q

with the graphlike portion &, of 3; modulo a constant, &(w) represents
the free energy of the interface when perturbed over R3;; that is, the free
energy the interface would have were the graph u replaced by w on Q,
where w:Q—= R with w=u on 0Q. For each w the subdifferential
0®(w) 1is a subset of functions on , and, as the main result of this section,
we show that there is a "canonical element” fed®(u) such that f=-A_,+U
on Q,, provided that R is admissible. We now make these ideas precise.

b. SUBDIFFERENTIALS IN HILBERT SPACE. TRACE LEMMA
Let QCR"®™ be a bounded domain with Lipschitz boundary, let j be a
continuous convex function on R?, with j coercive in the sense that

lim j(q)/Igl = eo, (9.4)
lql—beo

and let H denote the Hilbert space H=L2(Q) with standard inner product
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<+,+>. Then for prescribed functions UeH, ¢€Lip(dQ), we consider the
functional & defined on H by

JLjVw) + Uw] if VwelLHQ)]", j(VwW)eLl(Q), wlyp =V
(w) = 2
e otherwise; (9.5)

and we let
o%(w) = { feH: &(w+h)-&(w)2<¢h,f> for all heH }.

Lemma 9.1. The functional ® is convex and lower semicontinuous
on H, and @ # «. Further, given f,weH, the following are equivalent:
(a) feod(w),
(b) f=-divn+U for some me[ly (Q)" with n(x)€dj(Vw(x)) for a.e.
xeQ.

The convexity of & is not difficult to verify; the lower semicontinuity
follows from an application of the Dunford-Pettis Theorem as in [6]. The
assertion of equivalency, which is far more difficult to prov;e, can be
obtained by a suitable modification of a proof found in [1, Theorem 2.15],
where the underlying functional ¥ is defined as follows: extend ¢ to Q so
that YyeHNWLL(Q); then ¥(v)=3(w) with v=w-¢y e HNW11(Q) restricted
by &(v)<o. (Note that the continuity of j is required by the proof.)

If n=1 and U=0, the characterization (b) of 0% can be proved for
lower semicontinuous j:R — (-e0, o] under periodic boundary conditions by
adopting an idea of Brezis [6] (cf. [13]). We do not know whether such a
characterization of 9% holds for general lower semicontinuous convex and
coercive j(# e), even when U and ¢ vanish identically.

Lemma 9.2. Let Q'CR" be a bounded domain with Lipschitz
boundary. Suppose that Q' is the disjoint union of Q%, Q~, and Z,
with Q% subdomains of Q' and I a Lipschitz hypersurface such that
the portions of Q%Y and 9Q~ in the interior of Q each coincide with
2. Let v denote the unit normal on I directed outward from Q.
Suppose that pe[L2(Q))" with divt €L2(Q"). Then the normal trace
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tri(g.-v) from Qf belongs to HY2(Z) and trt(g-w)=tr-(g-v). If ¢
is bounded, i.e. £e(L™(Q))", then tri(g-v)eL™(Z).

Proof. By localizing the problem and regarding X as the graph of a
Lipschitz function, we may assume that Q'=R” and that I is the plane
{x,=0}. We may also assume that ¢ has compact support. Since
LelL2(R™M)™ with dive e L2(R™), if we write x€R® in the form (x',x,),
then

p(x',e) := (L-v)(x',te), (9.6)

as a function of X', is well defined and bounded in H!/2(R™?!) uniformly
for €20 (cf. [27]). Further, since p? is compactly supported,
pt(x',e) = p(x',0) in HW28R"Y) for any 8>0. Thus for @eCy™ (R"),
letting A(ze)={x: tx,>¢},

Jedive = lim [ Jodive + Jodive ]

RP e=0 A(+g) A(-g)
= [Vp-t + lim [ [ (p*(x,e)e(x'e) - p~(x',e)ep(x',e)]dx".
an €=0 [Rn-l
But
Jedive = [Ve-¢;
R" RrR"
hence

J[ (p*(x',0)p(x',0) - p~(x',0)e(x',0)]dx' = O.
mn'l

Since @eC®(R"), this yields the desired result p*(x',0)=p~(x',0). If
eec(L=(Q))", so that p(x',e) is bounded, then its weak= limit agrees with
p¥(x,0), independent of the choice of subsequence, as €—0. Thus
pt(x,00eLT(2). O

c. SUBDIFFERENTIAL OF THE TOTAL ENERGY
Throughout this section & is an admissible crystalline motion with
B(ty) the graph of a function u near F,. We assume that F, is



47

bounded, so that Q is bounded. (Cf. (G3); here and in what follows, we use
the notation of Section 8.) Since B8 satisfies (W1), there is a Lipschitz
constant K for u:

[Vu(x)] < K for all xeQ. (9.7)

We let j denote a coercive, convex, continuous function on R2 with the
property that

J@ =glq) for Iql=K+1 (9.8)
(such a function exists). In addition, we let
"P = uIan (9.9)

so that, by (G3), ¢ is Lipschitz continuous. Finally, we define & on
H=12(Q) by (9.5) with this choice of j and ¢, and with U the constant
bulk free-energy of the crystal.

We now show that the subdifferential 0%(u) has a 'canonical
element"” that coincides with -A,+U on Q,. Precisely, we look for an
element fed®(u) with the property that

Hfll < llhll  for all heo®(u). (9.10)

Since @ is lower semicontinuous and convex with & #e, -0% becomes a
maximal monotone operator and 0%(u) is a convex closed set in H for
fixed u. Thus (9.10) has a unique solution f, which we write as f=09°®(u);
we will refer to 9°®(u) as the canonical subdifferential of & at u. The
next result is the main result of this section; the proof requires only that
R(t) satisfy (W1) and (W2) at t=t,.

Theorem 9.1. Assume that 8 is an admissible crystalline surface
represented as the graph of a function u near F,. Then the canonical
subdifferential 9°%(u) is constant on Q,=T(F,) and is related to the
energetically-weighted curvature A, and the bulk energy U through
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9°@(u)(x) = -A, +U for x€Q,. (9.11)
Proof. We first note that, by (9.7) and (9.8),
j(Vu) = g(Vu) on Q. (9.12)
Further, since Q is the union of a finité number of polygons with Vu

constant on each, functions ¢ with g(x)edg(Vu(x)) for a.e. x€Q belong
to [L=(Q)]%. It is convenient to define, for ©cQ,

G(O) = { telL=(®))%: p(x)edg(Vu(x)) for a.e. xe® ). (9.13)

Lemma 9.3. Let feH.
(i) feo®(u) if and only if

f = -dive +U for some teG(Q). (9.14)

(ii) Granted (9.14), the normal trace tr(8:M,,) from Q, agrees with
C.p on each of the edges T, of Q,.

Proof (Lemma). Assertion (i) follows from Lemma 9.1 and (9.12).
Next, Lemma 9.2 yields tr,(8:H,p) = trp(8-H,p) (as elements of L=(0Q,))
on each edge ®(2,,) of Q,, where tr. is the trace from Q. c=a,b. Let
n, and np denote the orientations of F, and F,, and let q,=q(n,),
qp = q(ny). Then ¢(x)eodg(g,) for xeQ, and ¢(x)edglqy) for xeQy;
hence

tra (8 Hap) € 98(q.) Hap N Og(Qy) Hap (9.15)
and (8.15) yields the conclusion tr (8:M,p) =Cap. O

Our next step shows that solutions & of (9.14) with f=const. on Q,
have divg=A, on Q,.

Lemma 9.4. Suppose that £elL=(Q))? and
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divg = const. on Q,,
- (9.16)
€:HUap = Cap on each edge W,, of Q,.
Then
divg = A, on Q,. (9.17)

Proof (Lemma). We simply apply the divergence theorem to the
integral of divg over Q,, and then use (9.16) and (8.25). O

We now investigate the canonical subdifferential 0°%(u), which, by
Lemma 9.3(i) has the form

9°®(u) = -divn + U, NeG(Q). (9.18)

By Lemma 9.4, to complete the proof we have only to show that 0°%(u) is
constant on ,. The next result shows that 0°%(u) has this property
provided condition (%) below is satisfied. In stating (x) note that Vu=q, on
Q. with q,=q(n,).

(%) given any © whose closure is compact in Q,, Nn(x) is uniformly away
from the boundary of 9dg(q,) for x€®©.

Lemma 9.5. Let n in (9.18) satisfy (x). Then
9°®(u) = const. on Q,. (9.19)

Proof (Lemma). By Lemma 9.3(i) and the definition of 0°®(u), 7
minimizes |ldive-Ull over all £e€G(Q). Choose tpe,[Cé”(Qa)]z. Then, by (%),

n+ePeG(Q)

for all sufficiently small €. Thus, since n is a minimizer,

0 = (d/de)|,., JIdivin+eg) - U2 = -2[¢-VIdivn - U],
Q. Qa

and the desired conclusion (9.19) follows, since ¢ is arbitrary. O
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The final step in the proof is to show that (9.18) has a solution 7
satisfying (). To accomplish this we first show that 7n in (9.18) can be
chosen to be piecewise linear on Q,.

Lemma 9.6.
(a) There is a piecewise linear minimizer T (satisfing (x)) of

Jldive - UJ?
Q.

over all £eG(Q,) that satisfy the boundary condition
C-Map = Cab on each edge Wl,, of Q,. (9.20)

(b) Let n satisfy (9.18), let T\ be as in (a), and define teG(Q)
through

e(x) = (%), xeQ,,
g(x) = n(x), xeQ-Q,.
Then
9°%(u) =-dive +U on Q, (9.21)

so that (9.18) has a solution T satisfing (x).

Proof (Lemma).

(a) Let q;,91,...,9y denote the corners of Q,, listed in counter-
clockwise order, and let H; (1=j<k) denote the outward unit normal of
the segment q;qj.; with the agreement qy.;=9q;. Then each segment
qjqj.; is an edge W,;, of Q, with M= M,y for convenience, we write
€j=Cap.- Let Q be a polygon with corners q3,q;,...,Qx such that the
outward unit normal to @;qj.; is MH; and such that q;qj.; is contained
in the line §:M;= EJ-. .Then, since 3 is admissible, we may conclude from
Theorem 8.1 that 9g(Vu(Q,))=Q, so that Q is convex.
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Next, by Lemma 9.4 and the proof of Lemma 9.5, minimizers of

Jldive - U)?
Q

subject to (9.20) satisfy (9.17).

It now suffices to prove that there is a piecewise-linear function
RelL=(Q)]? satisfying (9.16) and (9.17) (with £=71) such that the image of
i on Q, is contained in the interior of Q. Note that the constants ¢,
and the weighted curvatures A, are related through the sense of the rela-
tion (8.25), at least for Q, bounded.

We will argue by induction on k. If k=3 we may—modulo a linear
coordinate change with translation—assume that , is a triangle with
vertices at (0,0), (0,1), and (1,0). Then an appropriate choice of o and
b renders the function

N(x) = xx +b

consistent with (9.16) and (9.17); such a choice of o and b are unique
even if o is regarded as a matrix. (That is, there is a unique affine
function satisfying (9.16) and (9.17) if A, in (9.17) and ¢&,, are given.) As
a consequence, T(Q,) is contained in the interior of Q.

It remains to establish the existence of T for a polygon that has k+1
corners assuming the existence of such a field 7 for any polygon with p
corners, where 3<ps<k. To accomplish this we divide 2, into two polygons
Q and Q by connecting two nonadjacent corners by a segment 2. Let u
be a unit normal to ?. If divi=A, on Q,, then the normal component

=8-4d of ¢ on 2 is uniquely determined by the divergence theorem
provided ¢-n is assumed to be constant. Let Q and Q be the polygons
constructed from Q and E) as in the first paragraph of the proof with
Cap replaced by ¢, on !. We may then construct the functions f| and 7
for Q and 5 using the induction assumption. Since the images of | and
n, respectively, are contained in the interiors of 6 and 6 the function 7
on Q, S-)U?') whose restrictions to Q and ‘§-2, respectlve]y, are N and
7N, has its image in the interior of the union of Q and Q, which is the
interior of Q. Further, since | and T each satisfy (9.16) and (9.17) with
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¢ equalto | and 7 in Q and Q, respectively, (9.16) is automatically
satisfied for T, while (9.17) holds for i on Q and Q. Also, since
tr(f-m) =tr(N-W), divii-A, is a function supported on 2; hence divf-
N, =0. Thus (9.17) is satisfied for § on all of Q,, which completes the
proof of (a).

(b) Since tr(fi-H,p) =tr(8-H,,) on 9Q,, the distributional divergence
of ¢ is a function across 0Q,. Thus (9.21) is satisfied. O

A consequence of the proof of (a) is

Lemma 9.7. Let Q be a polygon in R2? with 2,, b=1,2,....M,
the edges of 900, assumed connected. Let c¢p, b=1,2,...M, and A be
constants.

(i) Assume that Q 1is bounded. Then there is a (bounded) piecewise
linear function M (not necessarily continuous) such that

divn = A in Q,

N'Mp = Cp on each edge 0 of Q (9.22)
if and-only if the following compatibility condition is satisfied:

Zeply = 1QIA. (9.23)

b

(ii) Assume that Q is regularly unbounded and that A=0. Then
there is a bounded, piecewise linear function M satisfying (9.22).

Proof. Regarding (i), the existence of n is established in the proof of
Lemma 9.6(a). If n satisfying (9.22) exists, then integrating divn by parts
yields the compatibility condition. '

To establish (ii), we note first that if Q 1is all of R2, then any con-
stant 7 provides a solution of (9.22), and if Q is a halfspace, say x; < O,
then n=(cy,0) provides a solution of (9.22), where c¢; is the boundary data
on the single edge x;=0. To complete the proof we have only to consider
unbounded with exactly two unbounded edges !; and 2,, and with 2,
and 2, not parallel. By an affine coordinate change we may restrict

attention to the following two cases:
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(L1) &y = { (x4,0): x4 2 o} for some o >0,
2, = {(0,x,): X, 2 p } for some p>0,
Q contains Q' = { (x;,%2) : X;,%,20, Xx; 2 h or x,2h} for some
sufficiently large h>0;
(L2) the closure of the complement of a region of (L1)-type.
We will consider only case (L1); (L2) is analogous. We begin by dividing Q

into four polygonal regions:

Qo = { (x1,%2)eQ : x3sh, x,sh},
Q, = { (x1,x)eQ': %32 h,x,<h},
Q, = { (x1,%)eQ"': X3« h,x2h },
Q= { (x1,x)€Q": %32 h, x,2h};

then Qg 1is bounded, while Qi, Q,, and Q;, are unbounded. Next we
define a constant c¢* such that the compatibility condition (9.23) with A=0
is valid for Qg with cp=c* on the portion of 9, that lies on the line
X,=h and on the portion of 9Qy that lies on the line x;=h. By part (i)
there is a piecewise linear function n on Qg satisfying (9.22) with A=0.
We extend n to all of Q by defining m=(c*,~c4) on Q4, n=(-cy,c*) on
Q,, and n=(-cy,-¢cy) on Qi, the resulting function n on Q is then
bounded, piecewise linear, and consistent with (9.22) (in the sense of
distributions). D

The existence of ¢ in (9.17) leads to the existence of the Cahn-
Hoffrman vector E; that is, a function E on 3 such that
(C1) divPE = -A, on each facet F, (cf.(24);
(C2) given any edge ? of B, the projection of E onto the plane
perpendicular to ? is continuous across 2;
(C3) Eeco¥(n) on each facet of 3.

Theorem 9.8. Let 3 be a crystalline surface consistent with (W1).
Then there is a piecewise linear function & on 8 that satisfies (C1)-(C3)
if and only if (W2) holds.

Proof. We first assume that & is bounded and construct E on each
facet F,. Thus choose F, and, without loss in generality, assume that
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n, = (0,0,1). It suffices to solve (9.16) and (9.17) subject to the restriction (=)
given after (9.18); indeed, this system has a piecewise linear solution & as
in Lemmas 9.6 and 9.7. Further, we may use the homogeniety of ¥ to
conclude that €& =(-¢,-¥(0,0,1))ed¥(n,). Rotating coordinates yields a
solution E of (C1) and (C3).

If (W2) holds, then by Lemma 9.3,

Ea'Ma = =8*Map = =Cap = ~Cap, n,=(0,0,1),

on the (a,b)-edge, where F, is a facet adjacent to F,. By (3.15) or (3.19),
this yields (C2). Finally, if (W2) does not hold, then -8:H,, =-C,p, for some
choice of b. Thus (C2) does not hold.

Finally, if 8 contains an unbounded facet then the construction in
Lemma 9.7 is satisfied for £, and the remainder of the proof is as above. O
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10. COMPARISON PRINCIPLE FOR ADMISSIBLE CRYSTALLINE MOTIONS
We continue to assume, as prescribed:
(i) a set NN of admissible orientations;
(ii) for each neTl, an interfacial free energy ¥§(n)>0 and a kinetic
‘modulus g(n)>0;

‘ We now establish the main result of the paper: a comparison principle
for admissible crystalline motions 3 whose facets F, evolve according to
the facet evolution equation

B.V.(1) = A1) - U (10.1)

with p,=p(n,) and A,(t) the energetically-weighted curvature defined in
(6.5). Our proof of the comparison principle is based on Theorem 9.1, which
characterizes the right side of the evolution equation (9.1) in terms of the
canonical subdifferential 0°®(u).

Before stating the comparison principle, we note that if the set Jl s
acute, then given any admissible crystalline surface & and any facet F,
of B, B is essentially the graph of a function u, near F, (cf. Remark (3)
of Section 8a). Moreover, modulo a translation and rotation of coordinates,
u, may be chosen so that F, is contained in the set {u,=0}. Let &; and
2, Dbe crystalline surfaces. We say that B8, encloses 28; if the
corresponding closed polyhedra I'y and T, (8;=0I;, 8,=0I,) satisfy
rycr,.

Theorem 10.1. Assume that the set Il of admissible orientations
is acute. Let 3; and 2R, be bounded, strongly admissible crystalline
motions with common duration T, and assume that the facets of 3,
and R, evolve according to the facet evolution equation (10.1) with
possibly different bulk free-energies U; and U,, respectively. Let

U1 2 U2
and assume that 23,(0) encloses 8:(0). Then R8,(t) encloses B8,(t) for

0<t<T provided each corner of one of the B8, is a triple junction if
U1=U2. '
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The proof depends on a natural extension of a maximum principle for
crystals in the plane established in [16]. Let R2;=0; and R8,=0; be
crystalline surfaces. We say that 8; touches 38, at x; from inside if
Xp€81NAB,, and if there is an open neighborhood W of xy such that:

(a) W contains all facets of 3; that contain x, or all facets of &, that .
contain X, and

(b) TyNW cIhnWw.

There are exactly six possibilities for the touching of 3; and 3, at xq:

(1) facet-facet: there are facets F; of B; such that F;NF, is a
nontrivial polygon containing Xxg;

(2) edge-edge: (a touching that is not facet-facet) for which there are
edges {; of B; such that 2;N2, is a nontrivial line segment containing
Xo;

(3) facet-edge: (a touching that is neither facet-facet nor edge-edge) for
which there are an edge ¢ of one of the crystals and a facet F of
.the other such that 2NF is a nontrivial line segment containing Xg;

(4) facet-corner: (a touching that is not facet-facet, not edge-edge, and
not facet-edge) for which there are a corner ¢ of one of the crystals
and a facet F of the other such that {¢}NF consists of Xy lying in the
interior of F;

(5) edge-corner: (a touching that is not facet-facet, not edge-edge, not
facet-edge, and not facet-corner) for which there are a corner ¢ of one
of the crystals and an edge ? of the other such that {c}N? consists of
Xg with Xg not an endpoint of {;

(6) corner-corner: (a touching that is not facet-facet, not edge-edge, not
facet-edge, not facet-corner, and not edge-corner) for which x, is a
corner of both crystals.

(The terminology here is somewhat different from that of [16]; in particular,

the improper edge-edge touching in [16] is included in (1) above.)

Lemma 10.1. Let B3; and R, be admissible crystalline surfaces
such that B; touches 3, at X, from inside.
(i) Then the touching cannot be facet-edge. It can be edge-edge only if the
set of orientations of facets of 3, meeting at X, equals the
corresponding set for B,.
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(ii) Let B8; and R, be strongly admissible. Then the touching cannot
be facet-corner nor can it be edge-corner. It can be corner-corner only
if the set of orientations of facets of 2; meeting at X, equals the
corresponding set for 23,.

Proof (Lemma). The proof of (i) is identical to the proof of (i) of the
Maximum Principle of [16]. To verify (ii), let Xy be a corner of, say, 23,
and let Ty be the set of orientations of facets meeting at Xo. Suppose that
R, touches 2B, at Xy from inside. By Proposition 5.1, Tlp is complete.
Let F be a facet of 8, that contains x,. Since 7Jlp is complete, the
orientation n of F is contained in Tl;, and therefore facet-corner and
edge-corner touchings are not possible for F. In addition, the set of
orientations of facets of 8, meeting at Xy equals Tl,. O

The next result is an analog of the classical maximum principle.

Theorem 10.2. Let B3; and 2B, be bounded, strongly admissible
crystalline surfaces such that &, touches 2R3, at X, from inside.
Then:

(i) There are facets F; and F, of &, and B3, such that x,eF;NnF,
and such that the orientation of F; equals that of F,. Further, the
touching is either facet-facet, edge-edge, or corner-corner; and there is
a point yqo sufficiently close to (possibly equal to) xo such that 2,
touches B, at y, from inside and such that the set of orientations
of facets of B; meeting at y, equals the corresponding set for 3,.

(i) For N\ acute, if F; and F, are facets of 8, and 8, with

Xo€F1NF, and with the orientation of F; equal to that of F,, then

the energetically weighted curvatures A; and A, of F; and F,

satisfy

Strong admissibility is needed only for the cases in which F; and F,
meet at edges or at corners. Further, (W3) is not needed if the touching is
facet-facet.

Assertion (i) of Theorem 10.2 is a direct consequence of Lemma 10.2. A
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key element of the proof of assertion (ii) is a maximum (comparison)
principle for subdifferentials. Let &, denote the functional on H=L2(Q)
defined by (9.5).

Lemma 10.2. Let u; and u,; be Lipschitz continuous functions
on Q with ujsu; in Q. Let {§; be the trace of u; on 9Q (i=1,2).
Let u;=u; Iin an open set Q'CQ. Assume that 0°%;(u;)(x) is
continuous for x in Q', where &;=8,. Then

-0°®;(uy)(x) < -0°%,(uy)(x)  for all xeQ'.

Proof (Lemma).
1° We consider the initial-value problem for an abstract differential
equation in H:

dU;/dt € -0%,(U)) for a.e. t> 0,

Uilt-0 = u;.

Since &; 1is lower semicontinuous and convex (Lemma 9.1), the abstract
theory yields the unique existence of a solution U;eC([0,e) H) with U;
absolutely continuous in [0, =) (cf., e.g., [5, IV, Theorem 2.1)).

2° Since uj;<u,, it follows that U;(t,x)<U,(t,x) for a.e. x for all
t2 0. This may be verified by approximating j in (9.5) by smooth, convex,
coercive Jjg as in the proof of {13, Theorem 3.3]. Here we shall only sketch
the proof. Since the comparison principle holds for approximate solutions
Ugi, Uegp=Ugs in [0,00)xQ. It is possible to take approximate j. so that the
stability theorem [30, Remark 2.7] applies; hence U — U; in C([0,T],H) for
each T>0. This yields U;(t,:) cU,(t,r) a.e.in Q for all t20.

3° The generator of the evolution equation in 1° is given by -0°%; (cf.
[5)). Thus
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-a°§1(u1) = lim t'l[Ul(t,‘) -ul]
t— 0"

lim t-1[Uy(t,") -uy]
t—0*

lim t-1 [Uz(t,') ‘U2] = ‘6°§2(U2) a.e. in Q‘,
t—0*

where "lim" denotes the L? strong limit on Q'. Since 9°3;(u;) is contin-
uous in ', this completes the proof. D

Proof (Theorem 10.2). Without loss in generality we may assume that
B; is the graph of a function u; near u; such that u;=0 on ®(F)=Q;
and that the outward unit normal to the crystalline surfaces on the facets
F, point upward.

Case A. The intersection of F; and F, is a nontrivial polygon F.

1° Suppose that, for each i, R, is a graph of u; in a common open
set 2 containing

RO = QJ_UQz,

with Q consistent with (G1)-(G3).. Since &; touches 3, from inside and
since the intersection of &; and &, contains F, uj;s<u, in Q with
u; =u, on F. Thus, by Lemma 10.2, -0°%;(u;)(x)<-0°%,(u,)(x) for all
x€P(F) € Ry, where &;=% is the functional defined in (9.5) with  =tru;
on 9Q and U=0. Thus, since A; is given by =-0°3;(u;)(x) (cf. Theorem
9.1), this yields A < A,.

2° We now complete the proof of Case A by showing that Aj; <A,
without assuming that 1R; is a graph of u; in a common open set Q
containing Rg. Since 3; is the graph of a function u; near F; (i=1,2), there
is a polygon Q'; containing Q; such that (G1) holds for Q' ie.,,

BiNQxR = { (x, u(x)) : xeQ'; }
and such that Q'; satisfies (G2)-(G3) in section 8(a) for Q. Let F; be any facet

adjacent to Fy such that u; <0 on ®(F;)NQ'; and such that ®(F,)nQ",
intersects the interior of Q,.
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For §>0 we set

v1(x) = max {u;(x), -8} for xe ®(F,)NQ",

and

Vl(X) -8 for X€Q'2\Q'1.

Similarly, let F, be any facet adjacent to F, such that u,20 on ®(F,)NQ,
and such that P(F,)NQ'; intersects the interior of Q;.

For §>0 we set

min {u,(x), 8} for xeP(F,)NQ",

Vz(X)
and

vo(x) = 8§ for xeQ'4{\Q',.

For sufficiently small 6§ and for some R the graph of v; on R is a
surface, which we denote by S; (i=1,2). Since 3, encloses R&;, S, lies
above S; near Rp; and R, {resp., R;} is located above {resp., below}
both S, and S; near Q, (resp., Q,} for sufficiently small 6. Further,
we may assume that S; and S, satisfy (W1) and (W2) over R if 2B,
and B, satisfy (W1) and (W2). (Of course, if B3; and R, satisfy (W3),
then so do S; and S, for sufficiently small 8§, but (W3) is not needed for
this step.) We may also assume that R satisfies (G1)-(G3) for S; and S,.
In a neighborhood of Q, (resp., Q,)}: 8; {resp., 38,)} is the graph of u;
{resp., u,}; S; {resp., S,} is the graph of wv; ({resp.,, vy}; u;=svy
{resp., vVosu,}. Thus Lemma 10.2 yields

-a°§1(u1)(x) < -a°§1.(v1)(x), x€Q1,
-9°%,.(vy)(x) = -0°%,(ujy)(x), xeQ,,

where &;, (i=1,2) is defined by (9.5) with Q=Q;, U=0, and ¢=trv; on
0Q;, while &; is defined similarly with ¢ =tru; on 0Q;. Next, comparing
vy and v, on R using Lemma 10.2,

-9°%., . (v)(x) £ -9°%,..(Vy)(x), xeRy,

where &;.. is defined by (9.5) with Q=R, U=0, and ¢=trv; on OR.
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Fortunately, Theorem 9.1 implies that
-9°%,,(Vv)(x) = -9°%;..(v(x), xeQ;,
and since the facet v;=0 is F;, independently of R,
-0°® (u(x) = -0°8,(uy)(x), xeRg;

thus Theorem 9.1 yields Aj;<A,.
(Note that Step 2° actually includes Step 1°; we give Step 1° explicitly as it
contains the central idea of the proof.)

Case B. The intersection of F; and F, is along an edge of each or at
a corner of each.

Since 2&; touches 3, at xy from inside, there is a neighborhood W
of %o such that I'{iNnW c I'h,NW and W contains all facets of 2; that
contain Xy or all facets of 3, that contain Xg. Assume, without loss in
generality, that W contains all facets of 3; that contain x;. We use a
sliding argument. Choose a facet J of R3; that is different from F; and
that contains xgo. Let J,, b=1,2,...,M, denote the facets adjacent to J
and let

intersections with J are corners. Let

¢» ¢=1,2,...,m, denote those edges of the facets J, whose
denote the line containing ¢,
c=1,2,....m. We move J a small amount § in the direction of its
orientation letting J grow so that its corners remain on Q_C. We denote the
new facet by Jg. For & sufficiently small this procedure defines a new
crystalline surface Sy that satisfies (W1)-(W3) if 3; does. (We now invoke
(W3), because without it Sg may not satisfy (W2) even when 38, satisfies
(W1) and (W2).) At the points of J that intersect 28, we have the
orientational relations asserted in Lemma 10.1; hence, for § sufficiently
small, Sg touches B, at Xy from inside. On the other hand, by the con-
struction, R; touches Sg at xy from inside, and both touchings are
facet-facet; that is, there is a facet Fg of Sg such that FgnNF; and FgnF,
are nontrivial polygons. Let Ay denote the energetically weighted curva-
ture of of Fs. By Case A, Aj<Agy and Ag=s A, so that A;<A,. ]

Remark. In the sliding argument the new crystal Sg has only triple
Junctions at corners in W for all sufficiently small §. In some sense this
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indicates the pathological nature of nontriple junctions, as they are unstable
under small perturbations.

Proof (Theorem 10.1). Conceptually, the proof is similar to that of the
First Comparison Theorem of [16].

1° The case Uj;>U,. Assume that 2R,(t) does not enclose 2;(t) at
some te€(0,T). Then

0 <ty=sup{t: B,(t) encloses 3,(t)}

satisfies to<T. By continuity and Lemma 10.1, 3,(ty) encloses 3,(ty) and
B1(tg) touches B,(ty) at some point Xy from inside with the touching of
one of the following three types:

(o) facet-facet. There are facets F; of B8,(tg) such that F;NF, isa
nontrivial polygon containing X,. At t=t; the normal velocities V; of F;
in the direction of their common orientation satisfy V;2V,.

(p) edge-edge. There are edges {; of B;(tg) such that §;N2, is a
nontrivial line segment containing Xg. Moreover, ?;, is an edge of adjacent
facets Fj; and Fj; of 2Ri(ty) (i=1,2) and, by Lemma 10.2, F;; and Fy;
have the same orientation nj (j=1,2) (by renumbering if necessary).
Further, at t=ty the normal velocities V;; and V,; of F;; and Fj; in
the direction of n; satisfy V332V, or V52V,

(¥) corner-corner: By Lemma 10.1 the sets {Fij' j=1.2,....M} (i=1,2)
of facets of B8,(ty) (i=1,2) meeting at the corner x; have the following
properties for j=1,2,...,M:

(1) F;; and Fp; have the same orientation nj

(ii) Fy;nFy5 = {x0).

Further, at t=ty the velocities V;; and V,; of Fi; and Fj; in the
direction nj satisfy V;;2Vg; j=1,2,....M.

By Theorem 10.2 we have, for the cases (x)-(¥), respectively:
() AysA, with A; the (energetically weighted) curvature of F;.
(B) Ayjs Ay (j=1,2) with Ay the curvature of Fj;
(¥) AgjsAy; (G=1,2,...,M) with A;; the curvature of Fj;
Using the facet equation (10.1) in each of the cases (x)-(¥) we see that the
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signs of the velocities and curvatures yield in each case the inequality
U, =U,, a contradiction.

2° The case U; = U,. Assume that each corner of 3, is a triple
Jjunction. By a standard theorem on continuous dependence on data, applied
to the ODE system (6.10), one can show that for each €>0 there is a
strongly admissible crystalline evolution 3, that satisfies 3.(0)=2,(0),
that evolves according to the facet equations (10.1) with U, replaced by
U,-¢, and is such that
(i) its duration T, satisfies T.—=T as €—0;
(ii) dist(B8¢(t),8,(t))=0 as €—0 uniformly for t in any closed interval of

[0,T).

Here dist(8.(t),8,(t)) =inf {Ix-X|: xel.(t), XeB,(t) }. By Step 1°, 8.(t)
encloses 3,(t) for 0st<T,. Letting €—0 we conclude that 3,(t) encloses
R4(t) for 0=<t<T.

If each corner of B; (rather than R;) is a triple junction we
approximate 2R; instead of 3, by 2R3, with U; replaced by U;+e. D

Remarks.

(1) The triple junction property is used only to obtain the approxima-
tion A,.

(2) As in the first comparison theorem in [16], one can prove that
dist (R¢(t),3,(t)) is nonincreasing in t.

(3) As remarked in [16, Section 4], if U;>U,, then 28,(t) does not
touch R;(t) for O0s<t<T.

(4) The second comparison theorem and the comparison theorem for
weakly admissible evolving crystals in [16, Section 4] extend to the three-
dimensional theory discussed here with essentially the same proofs.

The proofs of Remarks (1) and (2) parallel those of the analogous
assertions in [16].
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