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ABSTRACT: Solids can exist in polygonal shapes with boundaries unions of

flat pieces called facets. Analyzing the growth of such crystalline shapes is

an important problem in materials science. In this paper we derive equa-

tions that govern the evolution of such shapes; we formulate the correspon-

ding initial-value problem variationally; and we use this formulation to

establish a comparison principle for crystalline evolutions. This principle as-

serts that two evolving crystals one initially inside the other will remain in

that configuration for all time.

KEY WORDS: phase transitions, curvature flows, crystalline energies,

interfaces, comparison theorems.
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1. INTRODUCTION.
a. OVERVIEW

As is well known, solids can exist in polygonal shapes with boundaries
unions of flat pieces called facets. Analyzing the growth of such crystalline
shapes is an important problem in materials science. For sufficiently small
crystals, surface effects—related to the interface between the crystal and its
ancillary phase—dominate bulk effects, a phenomenon that leads one to
represent the bulk material through a constant bulk free-energy U for the
crystal relative to the other phase. The underlying crystalline structure
manifests itself in the dependences of the interfacial free energy £(n) and
kinetic modulus p(n) on the outward unit normal n to the crystal, with
n restricted to a finite set consisting of low-energy orientations of the cry-
stal. Taylor [25] proposed an evolution equation for crystalline motion in R3

under the assumptions U = 0, p(n) = tf(n)"1. Independently, Angenent and
Gurtin [2] established a continuum thermomechanical theory of crystal
growth; their study, while limited to evolution in IR2, does not make the
restrictive assumptions regarding U, p(n), and i(n),1 and leads to an
evolution equation consistent with that of Taylor.

The purpose of this paper is threefold: (i) we extend the derivation of
[2] to OR3; (ii) we formulate the underlying crystal-growth problem varia-
tionally in terms of the subdifferential of the total free energy; (iii) we use
this formulation to establish a comparison principle for crystalline motions
which, roughly speaking, asserts that two evolving crystals one initially
inside the other will remain in that configuration for all time.

b. BASIC EQUATIONS

We begin by deriving an evolution equation for crystalline surfaces.2

Let & be a crystalline motion with duration T; i.e., & is a smooth one-
parameter family >8(t), 0<t<T, of crystalline surfaces

A

= U Fa(t) (1.1)

1Cf. [29].
2For convenience, throughout the introduction we restrict attention to bounded

crystals.



(t = time) such that each (closed) facet Fa(t) has unit outward normal

(orientation) na independent of t. We restrict attention to crystalline

motions whose orientations are confined to a finite set 31CS2 of admissible

orientations; Tl is related to the lattice structure of the crystal and should

be envisaged as representing stable orientations of the interface.

Using continuum thermomechanical arguments in conjunction with

suitable constitutive assumptions we derive a basic balance lav/ for crystal-

line motions,

c =U + p(n,V)V, (1.2)

in which V(x,t) is the normal velocity of &{t) in the direction of its orien-

tation n(x,t); U represents the bulk free-energy of the crystal; c(x,t), a

tangential vector field, is a surface shear that enters the theory through the

capillary stress3

C = tf(n)P + n®c (P = 1 - n®n) (1.3)

with iin) the interfacial free energy (here equal to the surface tension);

and p(n,V) is a kinetic modulus. The balance (1.2) is required to hold

away from the edges of the crystal; force balance across the edges of the

crystal yields the edge condition

ca-^a = cab (1.4)

on each edge (a,b) of any given facet Fa. Here b labels the facets Fb ad-

jacent to Fa, t>a is the outward unit normal to 3Fa (in the plane of Fa),

and the cab are constants defined by

cab = sgn(va-nb)[(na-nb)tf(na) - tf(nb)] / [ l - (na-nb)2]i (1.5)

with na the orientation of Fa. The derivation of (1.2)-(1.5) parallels the

corresponding derivation of [2] for crystalline curves in the plane. We
3 We use the term vector for element of IP3 and the term tensor for linear
transformation of B3 into IR̂ . We write 1 for the identity tensor, CT for the
transpose of a tensor C, and a®b for the tensor product of vectors a and b.



assume throughout that

i(n)>0, p(n,V)>0 is independent of V, p(n)>0. (1.6)

If we integrate (1.2) over each facet and use (1.4), we arrive at an

evolution equation

^ava(t) = Aa(t) - U (17)

for each facet Fa, where

Aa(t) = Aa(t)-1ScabLab(t) (1.8)
b

with Lab the length of the (a,b) edge, Aa the area of Fa, Va the normal

velocity of Fa , and pa = p(na). The quantity Aa(t), called the (energe-

tically-) weighted curvature of Fa, appears first in [25] (cf. [26], [29]).

c. LOCAL EXISTENCE

We next analyze crystalline motions governed by the evolution equa-

tion (1.7). Here we consider as prescribed: a set JL of admissible orienta-

tions; for each ncTL, an interfacial free energy £(n)>0 and a kinetic

modulus p(n)>0; and a (constant) bulk free energy U. In contrast to the

planar case, crystalline motions governed by (1.7) have not been analyzed in

the past. Here the first question that arises concerns the solvability of (1.7)

for given initial data ,8(0) with orientations in Jl. The equations (1.7) are

equivalent to a system of ODEs for the position vectors Xj(t), i = l,...,C, of

the corners of /8(t). However, in contrast to the evolution of crystalline

curves, this system is generally overdetermined and cannot be solved even

locally in time. (Cf. the counterexample given in Theorem 6.2; we believe

that actual crystalline motions would overcome this difficulty through the

emergence of new facets.) On the other hand, we establish local existence

for (admissible) crystalline motions consistent with (1.7) provided each cor-

ner on the initial crystal /8(0) is a triple junction (Theorem 6.1), in which

case the system of ODEs is well posed.



d. MAXIMUM PRINCIPLE. COMPARISON

A major goal of ours is to establish a comparison principle for crystal-

line motions governed by (1.7). Such a principle has been derived for the

evolution of crystalline curves in the plane [16]; as there, the key step is to

establish, for crystalline surfaces, a maximum principle which, modulo

suitable hypotheses, has the form:

Maximum Principle. Let ^>1 and Z2 be crystalline surfaces

such that Z1 touches Z2
 at xo from inside. Then:

(i)(a)There are facets F± and F2 of Z1 and Z2 such that

x0cF1nF2 and such that the orientation of F± equals that of F2.

(i)(b)The set of orientations of facets of Zx meeting at x0 equals the

corresponding set for Z2.

(ii) / / Fx and F2 are facets of Z± and Z2 with x0cF1nF2 and

with the orientation of Fx equal to that of F2, then the weighted

curvatures A± and A2 of F± and F2 satisfy A± < A2.

For smooth surfaces (i) corresponds to the comparison of first deriva-

tives of functions whose graphs coincide with the surfaces Zit (ii) corres-

ponds to the comparison of second derivatives.

Fundamental to a precise statement of this principle is an appropriate

class of crystalline surfaces. We define such a class with the aid of hypo-

theses concerning the edges and corners of the crystals under consideration,

hypotheses that render the crystal compatible with the interfacial energy

An important concept in the discussion of interfacial energies is the

Frank diagram 7, which is the boundary of the convex hull of the set

9 = ( ^drO^m : mcTL}. 7 is a polygonal region whose vertices belong to $•

In fact, we assume that 9 = {vertices of 3F}, as then 71 coincides with the

set of orientations of the corresponding Wulff crystal. We say that a

crystalline surface Z is admissible if the orientations of adjacent facets

correspond to adjacent vertices of 7, strongly admissible if, in addition,

given any corner c of Zt the set of orientations of facets that meet at c

correspond to the complete set of vertices of a face of 7.

For strongly admissible crystals we are able to prove (i)(a) of the

maximum principle as well as a modified version of (i)(b) (Section 10):



(i)(c) There is a point y 0 sufficiently close to (and possibly equal to) x0

such that J&1 touches Z>2 at Yo from inside and such that the
set of orientations of facets of Z1 meeting at y 0 equals the corre-
sponding set for /82.

Our method of proving (i)(a) and (i)(c) is to exhaust all possible tou-
chings of J&2 ̂ y ^1 from inside. For example, strong admissibility exclu-
des the possibility that a corner of 2>1 touch the interior of a facet of J&2-

The proof of (ii) is far more difficult. In contrast to crystalline
evolution in the plane [16], the complicated nature of the weighted
curvature (1.8) makes a direct comparison of surfaces difficult, and for that
reason we give a subdifferential characterization of the weighted curvature.

The total free-energy for a crystalline surface /8 enclosing a region T

is given by

UvolT + J tf(n). (1.9)

Suppose that & is represented as the graph of a function u near a facet
Fa. Then that portion of the energy associated with u is represented by
the integral

$(u) = J[j(Vu) + Uu], (1.10)
Q

where j(q) = tfo(-q,l), lf0 is a natural extension of i to IR3 (Section 5b),
and Q is a neighborhood of the projection P(Fa) of Fa on the plane on
which u is defined. We consider $ on the Hilbert space H = L2(Q) corre-
sponding to null Dirichlet boundary data; this definition and a modification
of j for large q allows us to consider $ as a lower semicontinuous convex
function on H. This modification is inconsequential, as the functions u that
correspond to crystalline surfaces are Lipschitz continuous.

Next we show that for & admissible there is a unique fcc)<E(u) such
that



llfll = inf { llhll : h€d$(u)}, ( 11-11 = norm on H). (1.11)

We write f = do$(u) and refer to d°$(u) as the canonical restriction of

3$(u) at u. A key step in our argument is to characterize the weighted

curvature in terms of the canonical restriction:

= -Aa + U (1.12)

on Qa = P(Fa) (Theorem 9.1). Such a formula is derived in [13] for u a

function of a single spatial variable. (Note that, by (1.12), 3°i(u) is inde-

pendent of the choice of coordinate system used to describe Z as a graph.)

The central steps in the derivation of (1.12) is to first note that the

characterization (1.11) of 3°$(u) implies that

= -divTi + U, Ti(x)c3j(Vu(x)) (1.13)

for some T\. With this in mind, we construct a piecewise linear function i)

such that, on Qa, divT) = Aa and T|(x)cc)j(Vu(x)), and then show that, for

this T), -divT) + U minimizes llhll for hcc)$(u).

A corollary of the existence of i\ is the existence of a (not necessarily

continuous) piecewise linear vector field £ (the Cahn-Hoffman vector) on /8

such that: (i) £€dtf(n) on each facet Fa of Z; (ii) divPt = -Aa on each

facet Fa, where P is here the projection onto the plane containing Fa;

(iii) for each edge £, the projection of £ onto the plane perpendicular to {

is continuous across i (for & admissible).

We use (1.12) to compare weighted curvatures of touching facets.

Indeed, applying the general theory of nonlinear semigroups [5] to general

order preserving parabolic systems yields the conclusion that

- a ^ d i i ) < -a°$2(u2) in Q1 (1.14)

if ux < u2 in Q and Ui = u2 in an open set Q'cQ; otherwise u1 < u2

(Lemma 10.2). This together with (1.12) yields a curvature comparison if

&! touches %2 from inside over F1nF2 (Fj a facet of %$ with F1nF2 a

nontrivial polygon. The general case encountered in (ii) can be reduced to

this case by strong admissibility. This is a rough sketch of the proof of (ii)



provided &x and Z2 may be represented as graphs near touching facets,
edges, or corners. A simple sufficient condition that ensures such represen-
tations is that any pair of adjacent orientations in Jl be acute, or, more
succintly, that TL be acute.

Our maximum principle may therefore be stated precisely as follows:

Theorem. Let J&^ and &2 ^e strongly admissible crystalline

surfaces such that J&x touches &2
 at xo from inside. Then (i)(a) and

(i)(c) are satisfied. If, in addition, JL is acute, then (ii) is satisfied.

This result is stated as Theorem 10.2. Granted the maximum principle,
it is not difficult to establish the comparison

T h e o r e m . Assume that the set TL of admissible orientations is

acute. Let J&1 and &2 be strongly admissible crystalline motions with

common duration T and with all corners triple junctions. Assume that

J&2(0) encloses ^ ( 0 ) . Then &2{t) encloses &x(t) for 0<t<T.

A more general version of this theorem is stated as Theorem 10.1. The
proof of Theorem 10.1 closely parallels the proof of comparison given in [16].

For the existence of strongly admissible crystalline surfaces with all
corners triple junctions we need to restrict the shape of the Frank diagram
7. Since the set of orientations of facets that meet at a corner corresponds
to the complete set of vertices of a face of 7, the faces of 3* should be
triangles. There is a large class of crystalline energies whose faces are
triangles and for which Tl is acute.

As Cahn and Taylor (cf. [28]) have pointed out, there is an admissible
crystalline surface & of minimal surface free energy that is not strongly
admissible; more precisely, & is not strongly admissible near a corner c, and
its surface energy cannot be decreased by modifying the surface near c by
inserting facets, edges or corners. In our work strong admissibility is used
only to classify possible touchings. (For example, we do not use strong
admissibility to establish the existence of the Cahn-Hoffman vector field.)

Crystalline motion in the plane, as governed by the planar version of
(1.7), has been studied. As noted in [2], the evolution equation then reduces
to a system of ordinary differential equations for admissible crystalline mo-
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tions, and local existence of solutions is not difficult, although one or more

facets may disappear in finite time T. However, at such a T, the shape is

admissible (cf., e.g., [18]), and one can extend the solution beyond T. Such an

extended solution is termed weakly admissible by [16], who establish a

comparison principle for such evolutions. Applying this result, large time

behavior is studied in [16] for the case in which the sign of U is such that a

sufficiently large crystal grows. The asymptotic shape of the crystal is then

the Wulff shape corresponding to 1/p, a result proved for a smooth energy tf

in [23]. When U = 0, a bounded convex polygon shrinks. It is shown in [24]

that this shrinking is asymptotically similar to the shrinking of the Wulff

shape of * when p = IT1, provided the initial polygon has at least five

corners.

Crystalline motions are useful in computing evolutions of curves by

smooth energy tf, by approximating the Frank diagram 7 of tf by a polygon.

The crystalline motion then approximates the original motion, at least when

the initial curve is the graph of a function of one variable, and provided U=0

(cf. [18], [19], [13]; [18] obtains the convergence rate), and the analysis ex-

tends to closed convex curves (cf. [17]). For more details and a discussion of

the background of the problem, see the recent review by Girao and Kohn

[19] and the references therein.

It is interesting to study the evolution when the initial data is not

admissible; that is, when this data has a curved portion. A general definition

of solutions may be given via nonlinear semigroup theory when U=0 and

when the initial curve is the graph of a periodic function (cf. [13]); using this,

a unique global solution is constructed in [13] for general nonadmissible

initial data, and the speed of facets agrees with (1.7). Recently, [11] have

shown that weakly admissible crystalline motions are actually solutions as

defined in [13]. Unfortunately, the method in [13] does not apply to the case

U*0. Recently, a new definition of solutions, reflecting the theory of viscosity

solutions, is given in [14] for the initial curve the graph of a function. As

announced there, a unique global solution may be constructed for general

nonadmissible (periodic) initial data even if U*0. In that case (cf. [15]) our

weakly admissible solution is a solution as defined in [14]. These results

suggest that it is natural to assume that a facet remains a facet during its

evolution, at least for constant U.

In [3] a semi-discretized implicit scheme is proposed to construct
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solutions of the planar version of (1.7) when the crystal is not restricted as a

graph. The time is discretized, and at each time-step the value of a solution

is determined via a variational problem. This scheme does not require that a

facet remain a facet. Moreover, the scheme is consistent with that for the

case of smooth energy *, where convergence to a generalized solution is

proved (cf. [4]). It is shown in [3] that the approximate solution converges to

the solution of (1.7) if that solution is admissible; this gives a further

justification of the notion of admissibility.
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2. CRYSTALLINE MOTIONS
By a crystal we mean a possibly unbounded polyhedron F in IR3;

its boundary Z = dV is called a crystalline surface and the outward unit
normal n to T is called the orientation of Z. By definition, % is the
union

A
U F a (2.1)

a-l

of a finite number of closed (maximally) connected flat sides Fa called
facets; adjacent facets intersect along closed line segments called edges, and
edges intersect in corners. If Fa and F̂  are adjacent facets, then we
refer to the corresponding edge as the (a,b)-edge. Given a field ip on &t

we write cpq, q = a,b, for the limit of <p as the (a,b)-edge is approached
from the facet Fq:

ipq(x) = lim ip(y). (2.2)
y-x

To the definition of a crystal V we add the requirement that if T is un-
bounded, then each unbounded facet F of F is regularly unbounded in
the following sense: F has at most two unbounded edges, and if F has two
unbounded edges, then the unbounded edges are not parallel. Then, if Yz

denotes the intersection of an unbounded facet F with a ball of radius e,

perimeter (FE)/area (Fe) -> 0 as e -> 0. (2.3)

We add this restriction for convenience as it simplifies the discussion; it rules
out unbounded strip-like facets for which (2.3) has a nonzero limit.

Let v be a vector field and C a tensor field, with both fields defined
on %. Then the surface divergence div^v is defined on each facet of % in
the standard manner, while div^C is defined on each facet by the relation

a-div^C = div^(CTa)
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for all vectors a.

We write

P = 1 - n®n; (2.4)

P(x) is the projection onto the tangent plane for % at x.

A crystalline motion % (with duration T) is a smooth one-

parameter family &(t), 0<t<T, of crystalline surfaces

Mt) = U Fa(t) (2.5)

such that each facet Fa(t) has orientation na independent of t, and such

that the position vector of each corner varies smoothly in time. In such

motions facets are neither created nor destroyed. We will generally consider

&(t) as an interface between the enclosed crystal F(t) and the region

exterior to F(t), which represents the ancillary phase. We denote by

V(x,t) the normal velocity to /8(t) in the direction of its orientation

n(x,t); since the facet normals are constant, each facet Fa(t) has normal

velocity Va(t) a function only of t. Finally, we write

* T = { (x,t) : X€*(t)f t€(0J) }, (2.6)

and given a scalar field ip on /8T, we denote by <p° the normal time-

derivative of ip (the derivative following the normal trajectories of J&(t)).

Let t be an evolving subsurface of &; that is, Jl(t)c,8(t) for all t

in an open time-interval v/ith dWt) a bounded, continuous, piecewise-

smooth curve that admits local parametrizations x = r(X,t) that are conti-

nuous, piecewise-smooth functions of (X,t). Then c)t(t) has a v/ell defined

outward unit normal f(x,t) that is tangential to £(t), and, given a local

parametrization, the field w(x,t) = c)r(X,t)/c)t satisfies

w-n = V, w-v = w^ctan), (2.7)

where wa t ( tan), the tangential edge velocity of t(t), is independent of
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the choice of parametrization. The rhotion of dt(t) may be characterized
intrinsically by the velocity field

= Vn +

More generally, we will use the term admissible velocity field for c& to
denote vector fields w(x,t) consistent with (2.7) on dt(t). Similarly, we
may define the tangential edge velocity v/£>F(tan) and intrinsic velocity
WaF f°r a n Y facet F(t); then, for Fa(t) and Fb(t) adjacent facets,

waFa - w a F b (2.9)

on the (a,b)-edge.
Given a facet F, let ip(x,t) be smooth in (x,t) for xcF(t). Then the

following transport identity is valid for evolving subsurfaces <r of & with
i(t)cF(t):

(d/dt) Jcp = j r + JVWat(tan)- (2.10)

Finally, we have the standard identity, valid whenever the crystal
F(t) is bounded:

(d/dt) vol F(t) = JV. (2.11)
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3. FORCES. CAPILLARY STRESS. CAHN-HOFFMAN VECTOR
Let J& be a crystalline motion with orientation n and duration T.

We associate with J& a tensor field C(x,t), the capillary stress, and a
vector field rr(x,t), the internal force. These fields, defined for all
(x,t)€/8T, are required to satisfy the force balance

JCv + JTT = 0 (3.1)

for all evolving subsurfaces h of Zt where V is the outward unit normal
to dt. The first integral gives the force on hit) exerted across c&(t) by the
portion of /8(t) exterior to 4r(t); the second integral gives the force exerted
on <r(t) by the bulk material adjacent to the interface. Although Cv is
defined on each vector v, its action on vectors normal to J&(t) is irrele-
vant, and for that reason we add the restriction

Cn = 0. (3.2)

The requirement (3.1) is equivalent to the local balance

div^C + TT = 0 (3.3)

on each facet4 in conjunction with the edge balance

(3.4)

across each edge (a,b), where we have used the notation (2.2), and where,
for q=a,b, vq is the outward unit normal to the boundary curve dFq.

Given any evolving subsurface K of >S, the rate at which the
capillary stress does work on K is given by

JCv-w, (3.5)
dt,

where w is an admissible velocity field for St. This term will enter our
4 The assertion that a differential equation hold on a facet is meant to signify that

the equation hold on the interior of the facet.
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statement of the second law, and represents the only term in that law

involving dt. For that reason we assume that (3.5) is independent of the

choice of admissible velocity field w, and hence of the choice of

parametrization for dt(t). Then, by (iii) of the Invariance Lemma of Gurtin

and Struthers [21], C may be written in the form

C = aP + n®c (3.6)

with a a scalar field and c a tangential vector field. The action Cv of C

on a tangential field v then consists of a component ov tangent to the

surface and a component (c»tOn normal to the surface, so that a is the

surface tension, while c represents the surface shear.

Choosing the intrinsic velocity (2.8) for w, we may rewrite (3.5) as

= J{cTwa<,(tan) + Vc-v). (3.7)

Further, if <r(t) is contained in the union of adjacent facets Fa(t) and

Fb(t), then, writing ta(t)=t(t)nFa(t) and similarly for ^( t ) , we may use

(2.9) and (3.4) to conclude that

(3.8)

Since n is constant on each facet,

n-div^C = div^c; (3.9)

thus, writing

IT = Tt*n, (3.10)

the normal component of the force balance (3.3) has the form

+ TT = 0 (3.11)
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on each facet. As we shall see, the surface tension a will be a prescribed
constant on each facet (cf. (4.3) and (5.3)); granted this the tangential
component of (3.3) is satisfied identically on each facet provided

PTT = 0. (3.12)

We henceforth assume that (3.12) is satisfied.
By (3.6), the balance (3.4) is equivalent to the relation

^a^a + (ca-va)na = ~[ohvh + (cb--ub)nb], (3.13)

which may be solved (uniquely) for ca«va and cb«fb: indeed, since
^a

#nb = ^b#na> taking the inner product of (3.13) with na and nb and sol-
ving the resulting equations for ca-t»a yields

[1 - (na-nb)2]ca-va = [(na-nb)aa - ab]va-nb; (3.14)

hence
ca-^a s sgn(i»a-nb)[(na-nb)aa - a b ] / [ l - (na-nb)2]I. (3.15)

In view of (3.6), C is characterized by the vector field

5 s cm - c, (3.16)

which we refer to as the Cahn-Hoffman vector for C; in fact, a = 5*n
and c = -P£, so that

C = U-n)P - n®P5. (3.17)

Thus, by (3.11),

-divj(PO + TT = 0, 5 « n « c (3.18)

on each facet. Further, substituting (3.17) into (3.4), and then acting on the
resulting equation with the rotation that carries v^ into na and na into
-t>a, we are led to
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Ua-na)na + Ua-iO^a * Ub-nb)nb + (^vb)vh] (3.19)

hence the projection of $ onto the plane perpendicular to the (a,b)-edge

is continuous across the (a,b)-edge. If 5 satisfies (3.18) on each facet and

(3.19) on each edge, then c = -P£ satisfies (3.11) on each facet and (3.15) on

each edge, and vice versa.
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4. ENERGETICS

Let & be a crystalline motion -with orientation n and duration T.

We associate with Z an interfacial free energy tf(x,t), per unit area,

defined for each (x,t)€^T, and a constant U that represents the bulk

free energy of the crystal relative to that of the ancillary phase. Within

the purely mechanical framework considered here the second law is the

assertion that, given any evolving subsurface K of % — if we consider K as

an infinitesimally thin region whose "boundary" consists of surfaces t+On

and K- On that lie in the bulk material — then the rate at which the free

energy of K is changing minus the rate at which bulk energy is lost by t

across its "boundary" is not greater than the rate at which forces do work

on K; precisely,

(d/dt) { J O + UjV < JCv-w^, (4.1)

where v is the outward unit normal to c&. The force TT does not appear

in (4.1), as its action is internal to the "region" K.

Suppose that Kit) is contained in a facet F(t). Then using (2.10),

(2.11), (3.7), and (3.10) we may rewrite (4.1) as

< J ( a - irtwawt^). (4.2)

Given any t0, any sufficiently regular subset t 0 of F(t0), and any

smooth scalar field cp on di0, we can always find an evolving subsurface

K contained in F such that t ( t o )= t o and wd4(tan)(x,t0) = cp(x) on c&0.

We are therefore led to two important conclusions: the surface tension and

interfacial free energy coincide,

o = If; (4.3)

the dissipation inequality

r + (TT + U)V < 0 (4.4)
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hold on each facet.
Conversely, if (4.3) and (4.4) are satisfied, then (4.2) and hence (4.1)

hold for each evolving subsurface that is contained in a single facet, and we
may use (3.8) to show that (4.1) holds for all evolving subsurfaces.

Finally, we note that, for a bounded crystal, (4.1) applied with
and (2.11) yield

(d/dt){UvolT(t) + J O < 0, (4.5)

so that the total free energy decreases with time.
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5. CONSTITUTIVE EQUATIONS. FRANK DIAGRAM. CONVEXIFIED ENERGY
a. THERMODYNAMICALLY RESTRICTED CONSTITUTIVE EQUATIONS

We now restrict attention to crystalline surfaces and motions whose
orientations are confined to a finite set JLcS2 of admissible orientations.
The set Jl is related to the lattice s t ructure of the crystal and should be
envisaged as representing stable orientations of the interface. As constitu-
tive equations we allow the free energy * and the normal accretive force
TT to depend on the orientation and kinetics of the interface through depen-
dences on n and V:

if = ?(n,V), TT = fr(n,V); (5.1)

i.e., e.g., y(x,t) = £(n(x,t),V(x,t)). We assume tha t i and fr, with domain
TlxR, are smooth functions of V.

We require tha t (5.1) be consistent with the dissipation inequality (4.4).
Then for F(t) a facet with orientation nc Jl,

*v(n,V)V° + [fr(n,V) + U]V < 0, (5.2)

an inequality tha t holds for all such facets if and only if:
(i) tf(n,V) is independent of V,

(5.3)

(ii) there is a kinetic modulus p(n,V)>0 such tha t

fr(n,V) = -U - p(n,V)V. (5.4)

We assume, henceforth, tha t (5.3) and (5.4) are satisfied with

> 0, p(n,V) independent of V, p(n) > 0. (5.5)

b. FRANK DIAGRAM. CONVEXIFIED ENERGY
The Frank diagram 7 , which is the boundary of the convex hull of
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the finite set

9 = { ̂ (n)-1n:ncJl} l (5.6)

is a polyhedral surface whose vertices belong to 9- We v/ill, in fact,

assume throughout that:

9 is the set of vertices of H (5.7)

(cf. (5.12)). The construction of 7 ensures that each ncS2 correspond to

a unique point Frank (n) = oc(n)n € 7, oc(n)>0. Thus and by (5.7), the

strictly positive function Xo on S2 defined by

Frank(n) = ^(rO^n (5.8)

extends V from Jl to S2, and 7 = { i'0(n)"1n : ncS2}. It is convenient to

further extend X to IR3 by homogeniety: tfo(O) = O and

= lpU0(p/lpl) (5.9)

for all pclR3, p^O. Then

7 is the one-level set of tf0, (5.10)

so that tf0 is a convex function. We will refer to tf0 as the convexified

energy.

Both the Frank diagram and the crystal are polyhedral; to avoid

confusion v/e will use the following differences in terminology:

crystal Frank diagram

facet face

corner vertex

We will refer to TFlcTl as compatible if Frank(3Tl) is contained in a

face £ of 7; by (5.6) and (5.7), Frank(n) is then a vertex of £ for each

; if Frank(JTl) is the set of all vertices of {,, then JTl is complete.
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Finally, m,nc3"l are adjacent if the line segment from Frank(m) to
Frank(n) is an edge of 7 (in which case {m,n} is compatible); and we will
refer to TL as acute if m*n>0 for every pair of adjacent orientations
m,ncJl. Note that TL acute is incompatible with tetragonal symmetry.

c. REMARKS ON WULFF'S THEOREM.
Stable crystals T are those that minimize total interfacial energy at

fixed volume:

Ji(n) < Jkn) for all crystals 0 with vol(0) = C, (5.11)

with C>0 a prescribed constant (Wulff's Problem). This problem has a

unique solution (modulo translation), and solutions for two different values

of C differ by a dilation. Stable crystals have the following properties:

(Wl) the orientation of each facet is admissible;
(W2) the orientations — of facets that intersect at an edge — are adjacent;
(W3) each set — of orientations of facets that intersect at a corner — is

compatible.
We will refer to (W1)-(W3) as Wulff conditions; these conditions do not
uniquely characterize stable crystals, since stable crystals are also, for
example, bounded and convex, but we will find (W1)-(W3) useful as condi-
tions to be imposed on crystalline motions. We remark that (5.7) is equiva-

lent to the requirement that 71 (and not a proper subset of TO be the

set of orientations for any stable crystal
The next proposition establishes, for crystalline motions consistent with

the Wulff conditions, a one-to-one correspondence between possible crystal
corners and faces on the Frank diagram.

Proposition 5.1. Let % be a crystalline motion consistent with the
Wulff conditions, let c be any corner of &, and let 3TI denote the set
of orientations of facets that intersect at c. Then 30fl is compatible and
complete; thus there is a unique face

{ = |(c) (5.12)

of the Frank diagram such that Frank (3R) is the set of vertices of £.
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Remark. The Wulff conditions, as general requirements on crystal-

line motions, are independent. Indeed, a single evolving facet has no corners

or edges, so that (Wl) is necessary. For % an infinite wedge consisting of

two facets intersecting along an edge, (W2) does not follow from (Wl), and,

since % has no corners, (W3) is empty; hence (W2) is needed. Finally, if the

Frank diagram has as its vertices n1 = 3~* (1,1,1), n2 = 3~* (1,-1,1),

n3 = (-1,0,0), n4 = (0,0,1), n5 = (0,0,-1); if % consists of three unbounded

facets meeting at a single corner; and if n^ n2, and n3 are the orien-

tations of these facets; then (Wl) and (W2) are satisfied, but (W3) is not.
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6. BASIC EQUATIONS. EXISTENCE

a. DATA

We assume, as prescribed:

(i) a set 71 of admissible orientations;

(ii) for each ncTl, an interfacial free energy tf(n)>0 and a kinetic

modulus p(n)>0;

(iii) a (constant) bulk free energy U.

As before the terms "crystalline surface /8" and "crystalline motion ,8"

carry with them the requirement that the outward unit normal to J& be

restricted to the set Jl of admissible orientations, which is the Wulff

condition (Wl); consistency with the Wulff conditions (W2) and (W3) is not

presumed.

b. EVOLUTION EQUATIONS FOR CRYSTALLINE SURFACES

The basic equations are the facet and edge balances (3.11) and (3.15),

the thermodynamic identity (4.3), and the thermodynamically admissible

constitutive relations (5.3) and (5.4). Granted (4.3), (5.3), (5.4) (and (3.12)),

these are equivalent, not only to the original balance (3.1) with C defined

through (3.6), but, more important, to the requirement that the evolution of

each facet Fa be consistent with the balance

= U + p(na)V (6.1)

and the edge condition

on each edge (a,b) of Fa, where cab are the constants defined by

cab = sgn(ivnb)[(na-nb)J(na) - J(nb)] / [ I - (na-nb)2]*, (6.3)

while fa is the outward unit normal to c)Fa. In view of the agreements

made in Subsection 6a, the cab may be viewed as prescribed data.

Let
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LabW - length of the (a,b) edge,

Aa(t) = area of Fa(t),

Va(t) = normal velocity of Fa(t),

Then, since the right side of (6.1) is spatially constant on Fa , for Fa

bounded, if we integrate (6.1) over Fa and use (6.2), we find that

PaVa(t) v Aa(t)-iIcabLab(t) - U, (6.4)
b

where the sum is over all b with Fb adjacent to Fa (cf. (3.15) and (4.3)).

We write

Aa(t) = Aa(t)'1 2cabLab(t) for Fa bounded. (6.5)
b

By (6.2), the constant cab represents the shearing force exerted on Fa by

the facet Fb, so that Aa(t) represents the net shear, per unit area, on Fa.

We will refer to Aa(t) as the energetically-weighted curvature (cf.

Taylor [26], who uses the term weighted mean-curvature) and to the cab

as the curvature constants for the facet Fa.

By (6.2), there is a C>0, depending only on the set TL and the values

of i(n) for ncTl such that I Aa I < Cperimeter (Fa)/area (Fa). Bearing this

in mind, and recalling our agreement to limit our discussion to crystals

which, when unbounded, are consistent with (2.3), we adopt the convention:

Aa(t) s 0 for Fa unbounded. (6.6)

We are then led to the requirement that each facet Fa(t), whether

bounded or unbounded, evolve according to

PaVa(t) = Aa(t) - U. (6.7)

One may ask if (6.5)-(6.7) by themselves characterize crystalline mo-

tions consistent with the force balance (3.1); or equivalently (cf. the discus-

sion surrounding (6.1) and (6.2)) whether, given a crystalline motion £
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consistent with (6.5)-(6.7), there is a tangential vector field c on J& that

satisfies (6.1) and (6.2) on each facet Fa(t). Thus choose a facet Fa(t) and a

time t, and note that, by (6.7), (6.1) is equivalent to div^c = Aa on Fa. To

construct c, we assume, without loss in generality, that na - (0,0,1), so

that c has the form (TI1,TI2,O) with T) a planar vector field on the planar

domain Fa(t)clR2; the determination of c thus reduces to solving the

boundary-value problem

divT| = Aa in the interior of Fa,
(6 8)

^•^a = cab o n each edge (a,b) of 3Fa.

The existence of a solution will be established in Lemmas 9.6 and 9.7; in fact,

we will construct an T) that is piecewise linear (and bounded even when Fa

is unbounded). In this regard, note that, by (6.5), the "data" Aa and cab

are compatible in the standard sense for Neumann boundary-conditions.

The solution c is generally not unique, but this is no problem, as any

two solutions yield the same crystalline motion. Given c, we can construct

a stress field C via (3.6) with a given by (4.3) and (5.3); and, given C,

there is a Cahn-Hoffman vector £, which is related to C through (3.17)

and is consistent with (3.18) and (3.19). We will refer to C and 5 as a

capillary stress (field) and Cahn-Hoffman vector (field) for 8̂.

c. EXISTENCE OF CRYSTALLINE MOTIONS

We now discuss the existence of crystalline motions that start from a

crystalline surface J&0 and evolve according to (6.7) with 3T, £(•), £(•),

and U as prescribed in Subsection 6a. Consistency with the Wulff condi-

tions (W2) and (W3) is not required, although, by continuity, if the initial

crystal &0 is consistent with a Wulff condition (W), then any crystalline

motion Z> with ,8(0) = &0 will be consistent with (W).

We begin with some notation. Let Zo be a crystalline surface with at

least one corner. It is convenient to:

• label the facets of &0 by a = l,2...,Q,

• label the corners of &0 by c = l,2 . . . ,C,

• write Qc for the set of facet-labels for facets that meet at a corner c,

• write Ca for the set of corner-labels for corners of a facet a.

Let yc denote the position (vector) of an arbitrary corner c of Zo,
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and let

Y = (yi.y2.-.-.ye)

denote the list of corner positions of iJ0. By "slightly perturbing" Yc(IR3)c

we can find an open neighborhood X(Y) of Y in (K3)c such that each

X = (x1,x2,... ,xc) € X(Y) is a list of corner positions of a polygonal surface

Crystal (X) each of whose facets corresponds—in an obvious manner—to a

facet of &0. This correspondence allows us to label the corners and facets of

Crystal (X) using the corresponding labels of Zo. (Note that the outward

unit normal to Crystal(X) v/ill generally not have values in TL) Further,

in the notation of Subsection 6b, for XcX(Y), each edge length Lak and

each facet-area Aa of Crystal (X) is a smooth function of X. The right

side of (6.7) is therefore a function $a(X) on X(Y) that is well defined and

smooth, a function whose form depends only on p, £(•), and U. ($a(X)s-U

if the facet a is unbounded.)

Next, let /8 be a crystalline motion starting from >80, and, for any

corner c of &, let xc(t) denote the position of c at time t. Then the

normal velocity Va(t) of each facet acQc satisfies

Va - na-(dxc/dt); (6.9)

hence, for t sufficiently small, the evolution equation (6.7) is equivalent to

the requirement that, for each corner c,

pana-(dxc/dt) = $a(X) for all a€Qc, (6.10)

where X(t) = (x1(t),x2(t),... ,xc(t)).

Suppose, for the moment, that each corner of J&0 is a triple

junction; that is, each corner of &0 is the intersection of exactly three

facets. The set {na : acQc} is then a basis for Ft3, and (6.10) may be

solved for dxc/dt; hence there is a smooth mapping § of X(Y) into (K3)c

such that (6.10) (and thus (6.7)) is equivalent, for sufficiently small time, to

an ordinary differential equation

dX/dt = 5(X) (6.11)
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for the list X(t) of corner positions of

Suppose now that we are given a crystalline surface /80 with each

corner a triple junction, and we wish to find a crystalline motion /8 that

satisfies (6.7) and the initial condition £(0) = Zo. Assume that &0 has at

least one corner, let Y denote the list of corner positions of Zo, and let

X(Y) be the open set defined above. Let X(t) denote the unique (maximal)

solution of (6.11) over X(Y) subject to the initial condition X(0) = Y. Then

£(t) = Crystal(X(t)) will have the desired properties provided:

(1) the orientation of the facet Fa(t) of Z(t) labelled a is equal to the

orientation na of the corresponding facet of /80;

(2) each facet of &(t) evolves according to (6.7).

Consider (1). By (6.10), the projection on na of the velocity of each

corner c of Fa(t) is independent of c, and hence the orientation of Fa(t)

cannot vary with time; since the orientation of Fa(0) is na, (1) is satisfied.

On the other hand, (2) is a direct consequence of (6.9) and (6.10).

Finally, assume that Zo has no corners, so that /80 is the union of

infinite facets. (Since these facets are regular, &0 is either a plane or two

half planes meeting at an edge.) Then (6.7) has the simple form Pa^tt) = "U

for each facet a, and the existence of a unique >8 satisfying (6.7) and the

initial condition /8(0) = J&0 is immediate.

We therefore have an existence theorem for crystalline motions:

Theorem 6.1. Let J&0 be a crystalline surface with each corner a

triple junction. Then there is a T>0 and a unique crystalline motion /8

with duration T such that:

(i) each facet of ,8 evolves according to (6.7);

(ii) MO) = *0-

Suppose now that ^ 0 has a corner c that is not a triple junction,

and let &(t) satisfy (6.7) and the initial condition £(0) = £0. Then for Y

the list of corner positions of Zo and v the velocity of the corner c at

t= 0, (6.10) yields

P*na-v = $a(Y) for all acQc. (6.12)
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Since Qc has more than three elements, this represents an overdetermined

system of equations for v, and will generally have no solution, an outcome

that would render J&0 incompatible as initial data for a crystalline motion

consistent with (6.7). Here we will not establish the most general conditions

on the data that lead to nonexistence, but we will give a simple example.

Theorem 6.2. Let Zo be a crystalline surface consisting of four

unbounded facets, a= 1,2,3,4, meeting at a single corner. Then there is a

choice of p(na)>0, a = l,2,3,4, for which there is no crystalline motion &

that satisfies MO) = Zo and pa(na)Va = -U for a = l,2,3,4.

Proof. Geometry requires that the set {na: acQc} have four ele-

ments. Further, (6.10) reduces to pana*v = -U, and the equations for

a = 1,2,3, say, determine v. We can always choose p4 > 0 so that the equa-

tion for a = 4 is not satisfied. D

Remarks.

(1) This failure of existence demonstrates that our framework is too

narrow to include evolution from an initial crystal whose corners are not

triple junctions; such initial data seems to require the formation of new

edges. (Cf. the remark following Theorem 10.2, which notes that a crystal-

line surface can be approximated by a crystalline surface all of whose

corners are triple junctions.) If global solvability is required it is necessary

to allow for arbitrary initial data. For a smooth energy * a level set

method ([8],[12]) is standard, but this method has not yet been developed for

crystalline energies, although it should extend to crystalline graph-curves

[14]; in this instance the solution seems to become a varifold (infinitesimally

wrinkled) solution as constructed in [7] for mean curvature flows.

(2) For /80 a crystalline surface consisting of three unbounded facets,

a = l,2,3, meeting at a single corner, the corresponding crystalline motion

established in Theorem 6.1 is a uniform translation of &0 with translational

velocity v the unique solution of pana*v = -U, a = l,2,3. This motion exists

for all time.

(3) For J&Q a crystalline surface consisting of two infinite facets

meeting along a single infinite edge, the crystalline motion of Theorem 6.1

again consists of Zo translating uniformly with velocity v. Here v is any
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solution of pana»v = -U, a = l,2, the component of v perpendicular to ni

and n2 being tangential to Z> and of no importance.

(4) The convexity assumption on 7 in Section 5b is irrelevant to the

validity of the results of this section.
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7. SUBDIFFERENTIAL OF THE CONVEXIFIED ENERGY
a. THE SUBDIFFERENTIAL

The convexified energy X0("p) is not differentiable a t points p "with
p / l p k J l . With this in mind, we introduce the subdifferential

: lfo(p + h)-JTo(p) > ft-h VhclR3 ) (7.1)

of tf0 at p; since Ko is convex, if tf0 is differentiable at p, then

Some useful properties of the convexified energy are, for p * 0, X > 0,

3Jfo(p).
( 7 3 )

The first two relations in (7.3) follow from the definition (5.9) of Vo. To
establish the third we take h = a p , la l<l , in the inequality in (7.1); this
leads to atfo(p) > ap»5, and, since the sign of a is arbi t rary, this yields the
desired result.

The next proposition relates the subdifferential to the Frank diagram
7. By a generalized tangent plane to 7 at pc7 we mean a plane TT
through p tha t does not intersect the set {zcIR3 : Jfo(z) < 1} enclosed by 7 .

Proposition 7 .1 . Let p c 7 , ScIR3, £ * 0. Then the following are

equivalent:

(a) 5€c)tfo(p).

( b ) 5 - p = l and £ - ( z - p ) < 0 for all z c 7 .

(c) The plane TT through p normal to 5 is a generalized tangent
plane to ? a t p, 5 is directed outward from 7 (^•p>0), and
l^l"1 is the perpendicular distance of TT /rom the origin.

Proof. Assume tha t (a) is satisfied. Then, for z c 7 , (7.1) yields
*0(z)- V0(p) » 5-(z-p), while (5.10) implies tfo(z) = V0(p) = 1. Thus ft-(z-p)<0.
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Further , (7.3)3 yields f p = 1- Thus (b) holds. Conversely, assume tha t (b) is
satisfied. Choose rcIR3. Then there is a scalar X>0 such tha t XrcT and

0 > £-(Xr - p) « Xf ( r - p) - (1 - X). (7.4)

But by (5.10), tfo(p) = Xtfo(r) = 1; hence (7.4) yields

0 > £ - ( r - p ) + ifo(p) - tfo(r).

Thus, since r is arbi t rary, ^€c)»'0(p). Therefore (a) and (b) are equivalent.

Next, we show tha t (b)<=*(c). Let TT be the plane through p normal
to £, and let d denote the perpendicular distance of TT from the origin.
Then the second assertion in (b) is equivalent to the requirement tha t TT be
a generalized tangent; and, since J;*p>0 implies d = p»£/l£l, £*p = l if and
only if £'P>0 and d = l^l"1. •

The energy tfo(p) is differentiable at all p with p/lpl^Jl; in fact, by
(7.3)2 a n c* the equivalence of (a) and (c) in the last proposition, given any
face -£ on the Frank diagram, Vtf0 is constant on the cone

C(|) = { a p : p c | f p/lpl^Tl, oc>0). (7.5)

We denote this constant by Vtfo0g,):

pcC( | ) . (7.6)

The next lemma, whose proof follows from the equivalency of (a) and
(c) in Proposition 7.1, will be useful.

Lemma 7.1.
(a) Let JTlcTl. // 311 is compatible and contains three or more vectors

or two vectors that are not adjacent, then Frank(3TI) is contained in
a unique face •£ of 7 and

fl d*0(n) = (Vtfo( |)}. (7.7)
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// 7U is not compatible, then

fi dtfo(n) = 0 . (7.8)
n c 3H

(b) // m,ncTl are adjacent orientations, so that the line segment from
Frank (m) to Frank (n) is an edge of *5\ and if £ and g are the
faces of 7 that intersect along this edge, then

: 0< X< 1 }. (7.9)

b. CHARACTERIZATION OF ADMISSIBLE CRYSTALLINE MOTIONS USING THE
SUBDIFFERENTIAL. CAHN-HOFFMAN VECTOR

The next result shows that the Wulff conditions (W2) and (W3) m a y be
stated in te rms of the subdifferential of the energy.

Theorem 7.1. Let & be a crystalline motion consistent with (Wl).
Then:
(a) /8 satisfies (W3) if and only if, for c any corner of /8 and 3TL the

set of orientations of facets that intersect at c,

(1 dtfo(n) is a singleton; (7.10)
nc m

(b) J& satisfies (W2) if and only if: for m and n orientations of facets
that intersect at an edge of Z>,

d»'0(m)nc)»'0(n) is a line segment. (7.11)

Proof. To establish (a)^(W3) it suffices to show tha t if c is a corner
of /8 and 3TI is the set of orientations of facets tha t intersect at c, then

3R compatible ** (7.10). (7.12)

The assertion (7.12) follows from (a) of Lemma 7.1.
Similarly, (b)<=»(W2) will follow if we can show that : for m and n

orientations of facets tha t intersect at an edge,
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m,n adjacent <=> (7.11). (7.13)

The forward implication follows from (p) of the Lemma. To establish the

reverse implication, assume that (7.11) is satisfied, and suppose that m and

n are not adjacent. Let 3Tl = {m,n}. If 311 is compatible, then (7.7) holds;

if 311 is not compatible, then (7.8) holds; in either case (7.11) is not satisfied.

D

Theorem 7.2. Let & be a crystalline surface consistent with (Wl)

and (W2). Let Fa and Fb be adjacent facets with n a and nb the

corresponding orientations, and let fa be the outward unit normal to

dFa on the (a,b)-edge. Then

[dtfo(na)na*o(nb)]-va is the singleton {-cab}. (7.14)

Further, let -g, and g denote the faces of the Frank diagram that

intersect along the line segment from Frank(na) to Frank(nb). Then, for

Jv = £,9 and n = na ,nb ,

-va = -c a b . (7.15)

Proof. Choose ^€{£,9} and nc{n a ,n b }. By (7.3)4 and (7.6),

m-W0(h) = tfo(m), m€S2nC(-fv); (7.16)

thus, given any mcS2nC(^v) there is a vector c(m) such that

J - c(m), c(m)-m = 0, (7.17)

and, by the continuity of tfo(m), (7.17) and hence (7.15)1 holds also for

m = n.

Next, let va and vh denote the outward unit normals to dFa and

c)Fb on the edge (a,b). Then va and vb lie in the plane spanned by na

and nb with vaxna = -v bxn b , and therefore
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-[nb®vb - fb®nb] (7.18)

(the left side acting on a vector v is ±(faxna)xv; the right side is also,

with the same sign). Thus applying the left side of (7.18) to (7.17) at m = na

and the right side at m =n b , we conclude that (3.13) holds with

aq=£0(nq) and cq = c(nq), q = a,b. Thus (3.15) and hence (6.2) is satisfied,

and, since Vyo(fv)-t/a = -cq^fa, (7.15)2 is also satisfied.

Finally (7.14) follows from (7.9) with n = na and m=n b in conjunc-

tion with (7.15)2. D

The discussion in the last two paragraphs of Subsection 6b ensures the

existence of a Cahn-Hoffman vector 5 corresponding to & such that:

(a) on each facet,

a TT, 5-n = tfo(n); (7.19)

(b) the projection of £ onto the plane perpendicular to each edge is

continuous across the edge, or equivalently, c = -P5 is consistent with

(6.2) on each edge.

Let /8 be a crystalline surface consistent (W1)-(W3). Given any

corner c of J&, we refer to

) (7.20)

as the Cahn-Hoffman vector for c (cf. (5.12)). Then, by (7.15), for c a

corner terminating the (a,b) edge,

to(c)-na = tfo(na), to(c)-va = -c a b . (7.21)

Theorem 7.3. Let % be a crystalline motion consistent v/ith (Wl).

Then there is a piecewise linear Cahn-Hoffman vector ^ (which may not

be continuous) corresponding to & that satisfies (a) (in a distributional

sense) and (b). Further, for T the duration of &,

(c) £ can be taken so that

)) (7.22)
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at a.e. x of each facet of Z{t)t tcT, if Z satisfies (W2).

Conversely, given such a vector field £, if 5 satisfies (a) and (b),

then &(t) satisfies (W2).

(d) if Z satisfies (W2) and $ is the Cahn-Hoffman vector in (c), then

& satisfies (W3) if and only if for any corner c of & there is a

vector 1 independent of b such that

)-va = ^-va = - c a b

on each edge terminated by c. //(W3) holds, then £ = $0(c).

The converse assertions in (c) and (d) follow from Lemma 7.1(a); we

postpone the proof of the remaining portions until Section 9 (cf. Theorem

9.8).

c. ADMISSIBLE AND STRONGLY ADMISSIBLE CRYSTALLINE SURFACES

In theories for evolving surfaces with smooth, convex interfacial

energies the surface shear c is not indeterminate, as it is here; instead c

is the derivative c = d£(n)/c)n of the interfacial energy on the unit sphere,

or equivalently, the Cahn-Hoffman vector £ is the gradient S=Vtfo(n) on

IR3 of the convexified energy. Within the equilibrium theory these results

are a consequence of Gibbs-stability [9,22]; within a dynamical framework

they follow from thermodynamics [2,20]. The counterpart of £=Vtfo(n)

within our theory is (7.22), a condition we believe is related to the stability

of the crystal.

This discussion demonstrates the importance of the Wulff condition

(W2) and motivates our introduction of a special terminology for surfaces

with this property. By an admissible crystalline surface (or motion) &

we mean a crystalline surface (or motion) that is consistent with the Wulff

conditions (Wl) and (W2); if, in addition, % is consistent with (W3), then &

is strongly admissible. (By Proposition 5.1, the set of orientations of facets

that meet at a corner is complete if % is strongly admissible. The converse is

trivial if & satisfies (Wl) and (W2). The definition of strong admissibility

given in the Introduction is therefore equivalent to that given here.)
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8. LOCAL REPRESENTATION OF THE INTERFACE AS A GRAPH
Throughout this section % is a crystalline surface, Fa is a facet of Z,

and n a is the orientation of F a . Further, V is the standard projection
from IR3 onto K2:

*

P(x) = (x1,x2), x = (x1,x2,x3)clR3.

a. DEFINITION

We say that & is the graph of a function u near Fa if u is a
mapping from an open set QcflR2 into an open interval I and, writing

(Gl) DO& = { X€(R3 : x3 = u(xl9x2), (x

(G2) the closure of Qa = P(Fa) is contained in the interior of Q = P(D);

(G3) Q is a polygon, Dn& consists of Fa and portions of facets Fb

adjacent to Fa, P(dFb) intersects dQ transversally, and Q is
bounded if Fa is bounded.

In this case we will consistently use the notation:

^ 0 = >8nD = graphlike portion of >8,
Fb = an arbi t rary facet adjacent to Fa,

Q b = b

n a , n b = orientations of Fa and Fb,
IF I = area of a two-dimensional set F,
1(1 = length of a line segment (,
^ab = t h e (a,b)-edge (along which Fb intersects Fa),
t»a = outward unit normal to dFa,
i;ab = outward unit normal to c)Fa on i a b ,
jjiab = outward unit normal to dQa on lP((ab).

We say tha t % is essentially a graph near Fa if, modulo a rotation of
the coordinates, Z is the graph of some function u near Fa.
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Remarks.
(1) (G3) is, in a sense, superfluous: by suitably shrinking a set Q

consistent with (Gl) and (G2), Q can be made to satisfy (G3).

(2) If nb«na>0 for every Fb adjacent to Fa, then & is essentially

a graph near Fa.

(3) If Z is consistent with (Wl) and (W2) (so that nacTl), and if Jl

is acute, then nb*na>0 for every Fb adjacent to Fa; hence J& is

essentially a graph near Fa.

b. IMPORTANT FORMULAE

Throughout this subsection >8 is the graph of a function u near Fa.

We now express the various geometrical and mechanical quantities

associated with >8 in terms of their projections under P.

The areas of Fa and Qa are related through

IQal = n3 lFal, (8.1)

where n = n a = (n1,n2,n3). Let v = v a b = (t^,!^,!^). Then v*n is a unit

tangent vector to £ab, its projection

= (T1 IT2) (8.2)

is tangent to P({ab), the lengths of {ab and P({ab) satisfy

ITP(*ab)l = iTlUabL (8.3)

and \i = |jiab is given by

M = ITI"1 ( -T 2 I T 1 ) . (8.4)

It is convenient to introduce the mapping q from the upper unit

hemisphere in IR3 to K2 defined by

q(n) = -n fMPn) ; (8.5)

then q is a bijection with inverse
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n(q) = ( - q , l ) ( l + |q|2)-i/2< ( 8 6 )

and the normal n to Zo is given, away from the edges of Z, by

n = h(Vu). (8.7)

We now express the energy ITgCn),1 which is measured per unit area
on 2>0, as an energy g(Vu) measured per unit area on Q; we define

g(q) = tfo(-q.l), qeIR2, (8.8)

then, appealing to the homogeniety of JT0,

= Jg(Vu). (8.9)
^o Q Q

Since !f0 is convex, so also is g; moreover,

dg(q) = -P(a^ 0(-q, l )) . (8.10)

Further, Vg(q) = -PViC0(-q,l) whenever V!T0(-q,l) exists; in fact, by (7.6),
given any face •£. on the Frank diagram, Vg has the constant value

on the polygonal region

g q q | . (8.11)

Thus

VgGg,) := -PVtfo(|) = Vg(q) for all qeCGg.), (8.12)

which is a counterpart of the relation (7.6).
Note that, for each unit vector n,

<=> q(n)€C*(|). (8.13)

If m.neTl are adjacent, then two faces •§. and 9 of the Frank diagram
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intersect along the line segment from Frank(m) to Frank(n), and the

intersection of the polygonal regions C*(£) and C*(g) is the line segment

from q(m) to q(n).

Let Fa and Fb be adjacent facets, write n a = (n 1 , n 2 , n 3 ) ,

(^11^2^3^ and define constants cab through

The next result is a direct analog of Theorem 7.2.

Theorem 8.1. Let Z be a crystalline surface satisfying (Wl) with

/80 the graph of a function near Fa. Let Fb be a facet adjacent to Fa;

let n a and nb, assumed adjacent, denote the orientations of Fa and

Fb; let qa = q(na), qb = q(nb); and let £ and g denote the faces of the

Frank diagram that intersect along the line segment from Frank(na) to

Frank(nb). Then, for b> = \>%,

^ a b = c a b ,
(A 1 Ri

ndg(qb)J-Uab = dg(qa)-uiabn 3g(qb)-Hab = {cab}.

Proof. An argument analogous to that used to establish (7.9) yields

the conclusion

c>g(qa)nag(qb) = {XVg({) + (l-X)Vg(9) : 0 < X < 1 }. (8.16)

Thus to establish (8.15)! and the identity [c)g(qa)ndg(qb)]* | j a b = {c a b}, it

suffices to shov/ that

- vz JT0(na/n3). (8.17)

For convenience, we write C=C(fv), C* = C*(^), T\=Vg(h), ft 0

e = (0,0,1). In view of the remarks containing (7.5), 5 = Vtfo(m) for every

m in the interior of C. Thus, by (8.12),

(8.18)
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for all such m . Further , since JT0 is homogeneous, tfo(m) = m •ViC0(m);
hence (8.12) yields

m3e-Vy0(m) = *0(m) + m^x + m2T)2; (8.19)

therefore

m2T)2]. (8.20)

Letting m - > n a from C (which is equivalent to letting q (m) -*q a from
C*) and rearranging terms, we find that

= vzV0(n/nz) + n3-1[Ti1(n1i;3 - vxnz) + T\2(n2vz - ^2n3)3. (8.21)

By (7.15), ca b*-5-i^ab; thus (8.2), (8.4), and (8.21) yield (8.17).
It remains to show that

[c)g(qa)nc)g(qb)]-uab = d g ( q a ) ^ a b n 8 g ( q b ) ^ a b . (8.22)

Note tha t q a - q b is parallel to |JLab and that , for dG the subdifferential of
G(a) = g(q a

+ cr (q b -q a ) )

3g(qa)-Uab = 3G(0), Sg(qb)-Uab • 5G(1). (8.23)

Since G is convex and linear on [0,1], the intersection of c)G(O) and c)G(l)
is a singleton (and is, in fact, the derivative of G in [0,1]). Finally, since

( c a b ) = Idg(qa)nc>g(qb)].|!ab C c)g(qa)-Uab n Sg(qb)-Hab = dG(0)ndG(l),
(8.24)

the desired conclusion (8.22) follows. D

The crucial ingredient in the evolution equat ion (6.7) is t he
energetically-weighted curvature Aa(t) defined in (6.5). The next theorem,
the main result of this section, gives this "curvature" in terms of quantities
associated with motion as a graph.



Theorem 8.2. Let & be an admissible crystalline surface

represented as the graph of a function near a facet Fa, with Fa

bounded. Let the subscript b label the facets adjacent to Fa. Then the

energetically-weighted curvature Aa is given by

Aa = IQar
lZcabl1P(«ab)l. (8.25)

b

Proof. Let v denote the outward unit normal to c)Fa, so that, in

terms of the notation used above, vz-e*v * e*vab on the (a,b)-edge. By

(2.4) the projection h = P(na)e of e onto Fa is constant and thus, since

e*v = h*v, the divergence theorem applied on the facet Fa yields the

identity

2e-<uab|{abl = Jvz = Je-v = 0. (8.26)

In the current notation the relation (6.5) has the form

Aa = iFal^IcabH^I, (8.27)
b

and therefore, applying (8.14) in conjunction with (8.1), (8.3), and (8.26), we

are led to (8.25). n



9. VARIATIONAL FORMULATION

a. INTRODUCTORY REMARKS

Our next step is to express the evolution equation

paVa(t) « Aa(t) - U . (9.1)

for bounded facets Fa in terms of the subdifferential of the total free-

energy

UvolHt) + J*0(n). (9.2)

Here Aa is the energetically-weighted curvature (6.5) (or (8.25)).

If ,8 is a crystalline surface represented as the graph of a function u

near Fa, then, in the notation of Section 8, and using (8.9), we can associate

an energy

$(w) = J[g(Vw) + Uw] (9.3)
Q

v/ith the graphlike portion Zo of Z; modulo a constant, §(w) represents

the free energy of the interface when perturbed over /80; that is, the free

energy the interface would have were the graph u replaced by w on Q,

where w:Q—>IR v/ith w = u on dQ. For each w the subdifferential

c)i(w) is a subset of functions on Q, and, as the main result of this section,

we show that there is a "canonical element" f€d$(u) such that f = -Aa + U

on Qa, provided that J& is admissible. We now make these ideas precise.

b. SUBDIFFERENTIALS IN HUBERT SPACE. TRACE LEMMA

Let QclRn be a bounded domain v/ith Lipschitz boundary, let j be a

continuous convex function on Rn, with j coercive in the sense that

lim j(q)/lql = ~ f (9.4)

and let H denote the Hilbert space H = L2(Q) with standard inner product



<• , •> . Then for prescribed functions UcH, ^cLip(c)Q), we consider the

functional § defined on H by

J[j(Vw) + Uw] if

S(w) = Q

oo otherwise; (9.5)

and v/e let

) = { f€H : $(w + h) -$(w)><h, f> for all hcH }.

Lemma 9.1. The functional $ is convex and lower semicontinuous
on H, and $ ^ «». Further, given f,w€H, the following are equivalent:
(a) f€d§(w),
(b) f = -divn + U for some T\t[L\0C{Q))n with 7i(x)€3j(Vw(x)) for a.e.

xcQ.

The convexity of $ is not difficult to verify; the lower semicontinuity
follows from an application of the Dunford-Pettis Theorem as in [6]. The
assertion of equivalency, which is far more difficult to prove, can be
obtained by a suitable modification of a proof found in [1, Theorem 2.15],
where the underlying functional $ is defined as follows: extend ^ to Q so
tha t ^€HnW1*1(Q); then $(v) = $(w) with v = w - ^ c H n W 1 ' 1 ( Q ) restricted
by $(v)< oo. (Note that the continuity of j is required by the proof.)

If n = 1 and U s 0, the characterization (b) of d$ can be proved for
lower semicontinuous j : IR —» ( -» , «>] under periodic boundary conditions by
adopting an idea of Brezis [6] (cf. [13]). We do not know whe the r such a
characterization of d$ holds for general lower semicontinuous convex and
coercive j ( ^ ° ° ) , even when U and ^ vanish identically.

, Lemma 9.2. Let Q'clRn be a bounded domain with Lipschitz
boundary. Suppose that Q1 is the disjoint union of Q+, Q", and 2,
with Q± subdomains of Q1 and 2 a Lipschitz hypersurface such that
the portions of 5Q+ and 3Q" in the interior of Q each coincide with
Z. Let v denote the unit normal on T directed outward from dQ.
Suppose that Cc[L2(Q')]n with div C € L2(Q'). Then the normal trace
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tr±(C»v) from Q± belongs to H"1/2(2) and tr+(C"v) = tr'it'V). If C
is bounded, i.e. e€(L°°(Q))n, then tr±(C-v)€L°°(2).

Proof. By localizing the problem and regarding E as the graph of a

Lipschitz function, we may assume that Q'= IRn and that 2 is the plane

{ x n = 0}. We may also assume that C has compact support. Since

C€[L2(IRn)]n with divt € L2(IRn), if we write xclRn in the form (x',xn),

then

pitx'.e) := (e-w)(x'l±e), (9.6)

as a function of x', is well defined and bounded in H"1/2(IRn"1) uniformly

for e > 0 (cf. [27]). Further, since p± is compactly supported,

p±(x',z) — p±(x',0) in H"*1725"8^"'1) for any 6>0. Thus for ip€Co°° (IRn),

letting A(±e) = {x: ±xn>e},

Jcp divC = lim [ JipdivC + JipdivC ]
|Rn £ - ° A(+e) A(-e)

= JV(p«C + lim J [ (p+(x',£)tp(x',e) - p-(x',8)ip(x',e)]dx1.
IRn e ^ ° iRn"i

But

hence

JtpdivC =
in I

J [ (p+(x',0)<p(x',0) - p-(x',0)cp(x1,0)]dxl = 0.

IR11"1

S i n c e cpcC00 ( R n ) , t h i s y i e lds t h e des ired r e s u l t p + ( x ' , 0 ) = p"(x ' ,0 ) . If

t€(L°°(Q))n, so that p±(x',e) is bounded, then its weak* limit agrees with

p±(x,0), independent of the choice of subsequence, as e—>0. Thus

D

c. SUBDIFFERENTIAL OF THE TOTAL ENERGY

Throughout this section & is an admissible crystalline motion with

^(t 0 ) the graph of a function u near Fa. We assume that Fa is



bounded, so that Q is bounded. (Cf. (G3); here and in what follows, we use

the notation of Section 8.) Since Z satisfies (Wl), there is a Lipschitz

constant K for u:

|Vu(x)l < K for all xeO. (9.7)

We let j denote a coercive, convex, continuous function on IR2 with the

property that

j(q) = g(q) for Iql < K + l (9.8)

(such a function exists). In addition, we let

(9.9)

so that, by (G3), is Lipschitz continuous. Finally, we define on
H = L2(Q) by (9.5) with this choice of j and \\>, and with U the constant

bulk free-energy of the crystal.

We now show that the subdifferential c)$(u) has a "canonical

element" that coincides with -Aa + U on Qa. Precisely, we look for an

element fcS$(u) v/ith the property that

llfll < llhll for all h€d$(u). (9.10)

Since $ is lower semicontinuous and convex with N ° ° , - d$ becomes a

maximal monotone operator and d$(u) is a convex closed set in H for

fixed u. Thus (9.10) has a unique solution f, which we write as f = 5°f (u);

we will refer to d°$(u) as the canonical subdifferential of $ at u. The

next result is the main result of this section; the proof requires only that

Z(t) satisfy (Wl) and (W2) at t = t0.

Theorem 9.1. Assume that & is an admissible crystalline surface

represented as the graph of a function u near Fa. Then the canonical

subdifferential d°$(u) is constant on Qa=P(Fa) and is related to the

energetically weighted curvature Aa and the bulk energy U through
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a°$(u)(x) = -A a + U for X€Qa. (9.11)

Proof. We first note that, by (9.7) and (9.8),

j(Vu) = g(Vu) on Q. (9.12)

Further, since Q is the union of a finite number of polygons with Vu
constant on each, functions C with C(x)cdg(Vu(x)) for a.e. xzQ belong
to [L°°(Q)]2. It is convenient to define, for 6 c Q ,

G(9) = { C€[L°°(e)]2 : C(x)€dg(Vu(x)) for a.e. x c 9 }. (9.13)

Lemma 9.3. Let fcH.
(i) f€d$(u) if and only if

f = -divC + U for some CcG(Q). (9.14)

(ii) Granted (9.14), the normal trace tr(C*|iab) from Qa agrees with

cab on each of the edges V^b °f ^a-

Proof (Lemma). Assertion (i) follows from Lemma 9.1 and (9.12).
Next, Lemma 9.2 yields tra(C-|iab) = t^b^-Uab) <as elements of L°°OQa))
on each edge P(£ab) of Qa, where trc is the trace from Qc, c = a,b. Let
n a and n b denote the orientations of Fa and Fb, and let qa = q(na),
q b = q ( n b ) . Then e(x)c3g(qa) for xeQ* and C(x)c0g(qb) for xcQ b ;
hence

(9.15)

and (8.15) yields the conclusion tra(C*|iab) " £ab. D

Our next step shows that solutions C of (9.14) with f = const, on Qa

have divC = Aa on Qa.

Lemma 9.4. Suppose that C€[L°°(Q)]2 and
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divC s const. on Qa,
(9 16)

C on each edge 1P{ab of Qa.

Then
divf = Aa on Qa. (9.17)

Proof (Lemma). We simply apply the divergence theorem to the

integral of divC over Qa, and then use (9.16) and (8.25). D

We now investigate the canonical subdifferential c)o$(u), which, by

Lemma 9.3(i) has the form

3°$(u) = -divT) + U, TicG(Q). (9.18)

By Lemma 9.4, to complete the proof we have only to show tha t d°$(u) is
constant on Qa. The next result shows tha t d°$(u) has this proper ty
provided condition (*) below is satisfied. In stating (*) note tha t Vu = qa on
Qa with q a= q(na).

(*) given any 0 whose closure is compact in Qa, T)(x) is uniformly away
from the boundary of c)g(qa) for x€0 .

Lemma 9.5. Let r\ in (9.18) satisfy («). Then

d°3Hu) = const, on Q a . (9.19)

Proof (Lemma). By Lemma 9.3(i) and the definition of c)o$(u), TI
minimizes HdivC-UII overal l CcG(Q). Choose (p€[C0°°(Qa)]

2. Then, by (*),

T\ + 8(p € G(Q)

for all sufficiently small e. Thus, since J] is a minimizer,

0 = (d/de) | e .o J[div(n + 6cp) - U]2 = -2Jcp-V[divn - U],
0 a Qa

and the desired conclusion (9.19) follows, since cp is arbi t rary. D
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The final step in the proof is to show that (9.18) has a solution Ti
satisfying (*). To accomplish this we first show that T} in (9.18) can be
chosen to be piecewise linear on Qa.

Lemma 9.6.
(a) There is a piecewise linear minimizer f\ (satisfing (*)) of

J[divC-U]2

over all C€G(Qa) that satisfy the boundary condition

= cab on each edge V^h of Qa. (9.20)

(b) Let T\ satisfy (9.18), let f\ be as in (a), and define fcG(Q)
through

C(x) = f)(x), xcQ a ,

C(x) = TI(X), xcQ - Qa.

Then

d°$(u) = -divC + U on Q, (9.21)

so that (9.18) has a solution T\ satisfing (*).

Proof (Lemma).

(a) Let q i ,qi, ...,qk denote the corners of Qa, listed in counter-
clockwise order, and let |JLj ( l < j < k ) denote the outward unit normal of
the segment q jq j + 1 with the agreement q k + i s q i - Then each segment
qjqj+i is an edge P£ab °f ^a with jJLj = Hab» f o r convenience, we wri te
Cj = c a b . Let Q be a polygon with corners <Ii,<Ii,.-.,<Ik such t h a t the
outward unit normal to qjqj+i is |JLj and such tha t qj q j+1 is contained
in the line C*Hj= Cj. Then, since /8 is admissible, we m a y conclude from
Theorem 8.1 tha t 5g(Vu(Qa)) = Q, so that Q is convex.
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Next, by Lemma 9.4 and the proof of Lemma 9.5, minimizers of

J[divC-U]2

Q

subject to (9.20) satisfy (9.17).

It now suffices to prove that there is a piecewise-linear function

f)€[L°°(Q)]2 satisfying (9.16) and (9.17) (with C - f\) such that the image of

fi on Qa is contained in the interior of Q. Note that the constants cab

and the weighted curvatures Aa are related through the sense of the rela-

tion (8.25), at least for Qa bounded.

We will argue by induction on k. If k = 3 we may—modulo a linear

coordinate change with translation—assume that Qa is a triangle with

vertices at (0,0), (0,1), and (1,0). Then an appropriate choice of a and

b renders the function

f)(x) = ax + b

consistent with (9.16) and (9.17); such a choice of oc and b are unique

even if a is regarded as a matrix. (That is, there is a unique affine

function satisfying (9.16) and (9.17) if Aa in (9.17) and cab are given.) As

a consequence, T)(Qa) is contained in the interior of Q.

It remains to establish the existence of f\ for a polygon that has k + 1

corners assuming the existence of such a field f\ for any polygon with p

corners, where 3<p<k. To accomplish this we divide Qa into two polygons

Q and Q by connecting two nonadjacent corners by a segment L Let |JL

be a unit normal to {. If divC = Aa on Qa, then the normal component

c{ = C*li of C on { is uniquely determined by the divergence theorem

provided C#H is assumed to be constant. Let Q and Q be the polygons

constructed from Q and Q as in the first paragraph of the proof with

9ab replaced by c{ on {. We may then construct the functions f) and T)

for Q and Q using the induction assumption. Since the images of fj and

TJ, respectively, are contained in the interiors of Q and Q the function fi

on Qa = QuQ whose restrictions to Q and Q, respectively, are f\ and

TJ, has its image in the interior of the union of Q and Q, which is the

interior of Q. Further, since fi and r\ each satisfy (9.16) and (9.17) with
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C equal to Ti and TJ in fi and Q, respectively, (9.16) is automatically
satisfied for 7), while (9.17) holds for lj on Q and Q. Also, since
tr(TVii) = tr(TJ«n), d iv f i -A a is a function supported on {; hence divT}-
Aa = 0. Thus (9.17) is satisfied for f\ on all of Qa, which completes the
proof of (a).

(b) Since tr(?i-nab) = tr(C-|iab) on c>Qa, the distributional divergence
of C is a function across dQa . Thus (9.21) is satisfied. D

A consequence of the proof of (a) is

Lemma 9.7. Let Q be a polygon in K2 with lh, b=l,2, . . . ,M,
the edges of dQ, assumed connected. Let cb, b = l,2,...,M, and A be
constants.

(i) Assume that Q is bounded. Then there is a (bounded) piecewise
linear function T) (not necessarily continuous) such that

divT) = A in Q,
(9 22)

r\*\ih = cb on each edge £b of Q

if and-only if the following compatibility condition is satisfied:

Z c b t b = IQIA. (9.23)
b

(ii) Assume that Q is regularly unbounded and that A = 0. Then

there is a bounded, piecewise linear function T\ satisfying (9.22).

Proof. Regarding (i), the existence of T\ is established in the proof of
Lemma 9.6(a). If T} satisfying (9.22) exists, then integrating divT} by parts
yields the compatibility condition.

To establish (ii), we note first tha t if Q is all of R2, then any con-
stant T) provides a solution of (9.22), and if Q is a half space, say x1 < 0,
then T\ = (c1,0) provides a solution of (9.22), where c1 is the boundary data
on the single edge x1 = 0. To complete the proof we have only to consider Q
unbounded with exactly two unbounded edges ix and 12>

 a n c* with t1

and {2
 n o t Parallel. By an affine coordinate change we m a y restr ict

attention to the following two cases:
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(LI) «i * { (xlf0) : x± > o } for some o > 0,
l2 = { (0,x2) : x2 > p } for some p > 0,
Q contains Q1 = { (x1,x2) : Xi,x2 > 0, xx > h or x2 > h } for some

sufficiently large h > 0;
(L2) the closure of the complement of a region of (Ll)-type.
We will consider only case (LI); (L2) is analogous. We begin by dividing Q
into four polygonal regions:

Q l =

Q2 =

{ (x1(x2)€Q : x
{ (x1,x2)€Q1 : ?
{ (x1(x2)€Q' : 3

l ^ h,
q £ h,

X 2 <

X2 ^

X 2 >

h
h
h

Q12 = { (x1,x2)cQ1 : Xi > h, x2 > h };

then Qo is bounded, while Qlt Q2, and Q12 are unbounded. Next we
define a constant c* such that the compatibility condition (9.23) v/ith A = 0
is valid for Qo with cb = c* on the portion of dQ0 that lies on the line
x2 = h and on the portion of dQ0 that lies on the line x± = h. By part (i)
there is a piecewise linear function T] on Qo satisfying (9.22) v/ith A = 0.
We extend Ti to all of Q by defining TI = (C*,-C1) on Qlt Ti = (-c2,c*) on
Q2, and TI = (-c2l-c1) on Q12; the resulting function TI on Q is then
bounded, piecewise linear, and consistent with (9.22) (in the sense of
distributions). D

The existence of C in (9.17) leads to the existence of the Cahn-

Hoffman vector 5; that is, a function 5 on & such that
(CD divPs = -Aa on each facet Fa (cf. (2.4);
(C2) given any edge i of Zt the projection of 5 onto the plane

perpendicular to i is continuous across {;
(C3) S€dtf(n) on each facet of &.

Theorem 9.8. Let 2> be a crystalline surface consistent with (Wl).
Then there is a piecewise linear function ^ on Z that satisfies (C1)-(C3)
if and only if (W2) holds.

Proof. We first assume that % is bounded and construct £ on each
facet Fa. Thus choose Fa and, without loss in generality, assume that



n a = (0,0,1). It suffices to solve (9.16) and (9.17) subject to the restriction (*)
given after (9.18); indeed, this system has a piecewise linear solution 5 as
in Lemmas 9.6 and 9.7. Further , we m a y use the homogeniety of tf to
conclude t ha t £ = (-C, -y(0,0, l))cSir(n a) . Rotating coordinates yields a
solution £ of (CD and (C3).

If (W2) holds, then by Lemma 9.3,

$a-Ha = - t 'Hab s ~Cab = - c a b , n a = (0,0,1),

on the (a,b)-edge, where Fb is a facet adjacent to Fa. By (3.15) or (3.19),
this yields (C2). Finally, if (W2) does not hold, then ~C#|iab * ~c a b for some
choice of b. Thus (C2) does not hold.

Finally, if % contains an unbounded facet then the construction in
Lemma 9.7 is satisfied for C, and the remainder of the proof is as above. D



55

10. COMPARISON PRINCIPLE FOR ADMISSIBLE CRYSTALLINE MOTIONS

We continue to assume, as prescribed:

(i) a set 3"l of admissible orientations;

(ii) for each ncTL, an interfacial free energy tf(n)>0 and a kinetic

modulus p(n)>0;

We now establish the main result of the paper: a comparison principle

for admissible crystalline motions Z whose facets Fa evolve according to

the facet evolution equation

PaVa(t) = Aa(t) - U (10.1)

with pa-p(na) and Aa(t) the energetically-weighted curvature defined in

(6.5). Our proof of the comparison principle is based on Theorem 9.1, which

characterizes the right side of the evolution equation (9.1) in terms of the

canonical subdifferential d°$(u).

Before stating the comparison principle, we note that if the set TL is

acute, then given any admissible crystalline surface & and any facet Fa

of /8, Z is essentially the graph of a function ua near Fa (cf. Remark (3)

of Section 8a). Moreover, modulo a translation and rotation of coordinates,

ua may be chosen so that Fa is contained in the set {ua=0}. Let Z1 and

&2 ke crystalline surfaces. We say that Z2 encloses Z1 if the

corresponding closed polyhedra T1 and F2 (Z1 = dT1, Z2 = dT2) satisfy

Theorem 10.1. Assume that the set TL of admissible orientations

is acute. Let J&1 and Z2 be bounded, strongly admissible crystalline

motions with common duration T, and assume that the facets of J&x

and &2 evolve according to the facet evolution equation (10.1) with

possibly different bulk free-energies \JX and U2, respectively. Let

U

and assume that Z2(0) encloses Z^O). Then ^2(t) encloses Z±(t) for

0<t<T provided each corner of one of the J&i is a triple Junction if
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The proof depends on a natural extension of a maximum principle for

crystals in the plane established in [16]. Let J&1 = dT± and Z>2 = c>r2 be

crystalline surfaces. We say that Z1 touches &2
 a t xo from inside if

xo€^1ny82, and if there is an open neighborhood W of x0 such that:

(a) W contains all facets of Zx that contain x0 or all facets of Z2 that .

contain x0; and

(b) r ^ w c r2nw.
There are exactly six possibilities for the touching of Z1 and Z2 at x0:

(1) facet-facet: there are facets Fj of ^ such that F1nF2 is a

nontrivial polygon containing x0;

(2) edge-edge: (a touching that is not facet-facet) for which there are

edges ii of ^ such that $in{2 is a nontrivial line segment containing

Xo;

(3) facet-edge: (a touching that is neither facet-facet nor edge-edge) for

which there are an edge { of one of the crystals and a facet F of

.the other such that {nF is a nontrivial line segment containing x0;

(4) facet-corner: (a touching that is not facet-facet, not edge-edge, and

not facet-edge) for which there are a corner c of one of the crystals

and a facet F of the other such that {c}nF consists of x0 lying in the

interior of F;

(5) edge-corner: (a touching that is not facet-facet, not edge-edge, not

facet-edge, and not facet-corner) for which there are a corner c of one

of the crystals and an edge i of the other such that {c}n{ consists of

x0 with x0 not an endpoint of {;

(6) corner-corner: (a touching that is not facet-facet, not edge-edge, not

facet-edge, not facet-corner, and not edge-corner) for which x0 is a

corner of both crystals.

(The terminology here is somewhat different from that of [16]; in particular,

the improper edge-edge touching in [16] is included in (1) above.)

Lemma 10.1. Let J&1 and J&2 be admissible crystalline surfaces

such that Z1 touches &2 at x0 from inside.

(i) Then the touching cannot be facet-edge. It can be edge-edge only if the

set of orientations of facets of Zx meeting at x0 equals the

corresponding set for Z2.
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(ii) Let Z1 and &2 &e strongly admissible. Then the touching cannot

be facet-corner nor can it be edge-corner. It can be corner-corner only

if the set of orientations of facets of Zx meeting at x0 equals the

corresponding set for Z2.

Proof (Lemma). The proof of (i) is identical to the proof of (i) of the

Maximum Principle of [16]. To verify (ii), let x0 be a corner of, say, &lt

and let JL0 be the set of orientations of facets meeting at x0. Suppose that

J&1 touches J&2 a t xo from inside. By Proposition 5.1, Tl0 is complete.

Let F be a facet of &2 "that contains x0. Since Tl0 is complete, the

orientation n of F is contained in TL0, and therefore facet-corner and

edge-corner touchings are not possible for F. In addition, the set of

orientations of facets of Z2 meeting at x0 equals TL0. D

The next result is an analog of the classical maximum principle.

Theorem 10.2. Let %x and Z2 be bounded, strongly admissible

crystalline surfaces such that J&x touches J&2
 a t xo from inside.

Then:

(i) There are facets Fĵ  and F2 of Z1 and Z2 such that xo€F1nF2

and such that the orientation of F̂  equals that of F2. Further, the

touching is either facet-facet, edge-edge, or corner-corner; and there is

a point y0 sufficiently close to (possibly equal to) x0 such that J&1

touches /82 at y0 from inside and such that the set of orientations

of facets of J&1 meeting at y0 equals the corresponding set for >82.

(ii) For Ti acute, if F1 and F2 are facets of Z1 and Z2 "with

x0cF1nF2 and with the orientation of F1 equal to that of F2, then

the energetically weighted curvatures A1 and A2 of Fx and F2

sa tisfy

Ax < A2.

Strong admissibility is needed only for the cases in which Fx and F2

meet at edges or at corners. Further, (W3) is not needed if the touching is

facet-facet.

Assertion (i) of Theorem 10.2 is a direct consequence of Lemma 10.2. A
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key element of the proof of assertion (ii) is a maximum (comparison)

principle for subdifferentials. Let $+ denote the functional on H = L2(Q)

defined by (9.5).

Lemma 10.2. Let u1 and u2 be Lipschitz continuous functions

on Q with Ui<u2 in Q. Let $i be the trace of u> on dQ (i = 1,2).

Let ux = u2 in an open set Q'cQ. Assume that c)o$i(ui)(x) is

continuous for x in Q\ where $j=i+.. Then

- d ^ t u ^ x ) < -d°$2(u2)(x) for all X€Q\

Proof (Lemma).

1° We consider the initial-value problem for an abstract differential

equation in H:

dUj/dt € - d^dJi) for a. e. t > 0,

Since $i is lower semicontinuous and convex (Lemma 9.1), the abstract

theory yields the unique existence of a solution Uj€C([0,«»),H) with Uj

absolutely continuous in [0, ») (cf., e.g., [5, IV, Theorem 2.1]).

2° Since ux < u2 , it follows that U1(t,x) < U2(t,x) fora.e. x for all

t > 0. This may be verified by approximating j in (9.5) by smooth, convex,

coercive j e as in the proof of [13, Theorem 3.3]. Here we shall only sketch

the proof. Since the comparison principle holds for approximate solutions

Uei» Uel < Ue2 in [0,<»)xQ. It is possible to take approximate j e so that the

stability theorem [30, Remark 2.7] applies; hence Uei -> Uj in C([0,T],H) for

each T>0. This yields U1(t,0 < U2(t,0 a.e. in Q for all t>0.

3° The generator of the evolution equation in 1° is given by -3°$ i (cf.

[5]). Thus
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-S^Ui ) = lim t-^tU^V) - u j

= lim t-i[U2(t,0 -Ui]
t-o*

= lim t-i[U2(V) -u2] = -3°$2(u2) a - e - i n n'>
t-o+

where "lim11 denotes the L2 strong limit on Q\ Since Q°$i(ui) is contin-

uous in Q\ this completes the proof. D

Proof (Theorem 10.2). Without loss in generality we may assume that

&i is the graph of a function Uj near Uj such that Uj = 0 on PCFj) = Qj

and that the outward unit normal to the crystalline surfaces on the facets

Fj point upward.

Case A. The intersection of F1 and F2 is a nontrivial polygon F.

1° Suppose that, for each i, Zx is a graph of Uj in a common open

set Q containing

&0 = Qi U Q 2 ,

with Q consistent v/ith (G1)-(G3). Since Z1 touches Z2 from inside and

since the intersection of Z^ and %2 contains F, u1 < u2 in Q v/ith

u ^ u 2 on F. Thus, by Lemma 10.2, - S°51(u1)(x) < - S°$2(u2)(x) for all

xcP(F) C Ko, where $ $ = $ is the functional defined in (9.5) v/ith ^ = trUj

on dQ and U=0.. Thus, since Aj is given by -3°$i(ui)(x) (cf. Theorem

9.1), this yields Ax < A2.

2° We now complete the proof of Case A by showing that Ax <A2

without assuming that Zi is a graph of ui in a common open set Q

containing tR0- Since /8X is the graph of a function u{ near Fj (i = l,2), there

is a polygon Q\ containing Qj such that (Gl) holds for Q\ i.e.,

A jnQVR = { (x, U i(x)) i x cQ ' i }

and such that Q\ satisfies (G2)-(G3) in section 8(a) for Q. Let ft be any facet

adjacent to Fx such that ux < 0 on P(F1)nQ l
1 and such that P(F1)nQ l

1

intersects the interior of Q2.
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For 6 > 0 we set

v ^ x ) = max (u^x ) , -6} for
and

= -6 for xcQ^XQ'i-

Similarly, let F2 be any facet adjacent to F2 such tha t u 2 > 0 on P(F 2 )nQ' 2

and such tha t P(F 2)nQ' 2 intersects the interior of Qv

For 8 > 0 we set

v2(x) = min (u2(x), 6} for x€tP(F2)nQ'2
and

v2(x) = 6 for xcQ '^QV

For sufficiently small 6 and for some & the graph of v> on K is a
surface, which we denote by S: (i = 1,2). Since /82 encloses J&lf S2 lies
above S± near ft0;

 a n c* &2 ( r e s P^ ^ l ) *s located above {resp., below}
both S2 and S1 near Q2 {resp., Q^ for sufficiently small 6. Further,
we m a y assume tha t Si and S2 satisfy (Wl) and (W2) over . R if Zx

and &2 satisfy (Wl) and (W2). (Of course, if Zx and J62 satisfy (W3),
then so do Si and S2 for sufficiently small 6, but (W3) is not needed for
this step.) We m a y also assume that & satisfies (G1)-(G3) for Si and S2.
In a neighborhood of Qx {resp., Q2}: J&1 {resp., Z2) is the graph of u1

{resp., u 2 } ; S1 {resp., S2} is the graph of \r1 {resp., v 2 } ; u1 < \rx

{resp., v 2 < u 2 } . Thus Lemma 10.2 yields

< -3 e i 2 (u 2 ) (x) , xcQ 2 ,

where $iw (i = 1,2) is defined by (9.5) with Q = Qit U = 0, and ^ = trVi on
dQif while i i is defined similarly with ^ = trUj on dQ^ Next, comparing
vx and v 2 on K using Lemma 10.2,

where $imit is defined by (9.5) with Q = ft, U = 0, and ^ = trVi on
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Fortunately, Theorem 9.1 implies that

and since the facet Vj = 0 is Fit independently of &,

thus Theorem 9.1 yields Ax < A2.

(Note that Step 2° actually includes Step 1°; we give Step 1° explicitly as it

contains the central idea of the proof.)

Case B. The intersection of F± and F2 is along an edge of each or at

a corner of each.

Since Zx touches >82 at x0 from inside, there is a neighborhood W

of x0 such that F ^ W C F2nW and W contains all facets of Zx that

contain x0 or all facets of Z2 that contain x0. Assume, without loss in

generality, that W contains all facets of %± that contain x0. We use a

sliding argument. Choose a facet J of %± that is different from T± and

that contains x0. Let Jb , b = l,2,...,M, denote the facets adjacent to J

and let lc, c = l,2,...,m, denote those edges of the facets Jb whose

intersections with J are corners. Let {c denote the line containing £c,

c = l,2,. . . ,m. We move J a small amount 6 in the direction of its

orientation letting J grow so that its corners remain on £c. We denote the

new facet by J6. For 6 sufficiently small this procedure defines a new

crystalline surface S6 that satisfies (W1)-(W3) if %± does. (We now invoke

(W3), because without it S6 may not satisfy (W2) even when J&x satisfies

(Wl) and (W2).) At the points of J that intersect J&2
 W € have the

orientational relations asserted in Lemma 10.1; hence, for 6 sufficiently

small, S6 touches J&2
 a t xo from inside. On the other hand, by the con-

struction, %i touches S6 at XQ from inside, and both touchings are

facet-facet; that is, there is a facet F$ of S6 such that FgnF^ and F6nF2

are nontrivial polygons. Let A$ denote the energetically weighted curva-

ture of of F6. By Case A, t\±< A6 and A6<A2; so that Ax < A2. D

Remark. In the sliding argument the new crystal S6 has only triple

junctions at corners in W for all sufficiently small 6. In some sense this
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indicates the pathological nature of nontriple junctions, as they are unstable
under small perturbations.

Proof (Theorem 10.1). Conceptually, the proof is similar to that of the
First Comparison Theorem of [16].

1° The case U1>U2. Assume that £2(t) does not enclose Z^t) at
some t€(0,T). Then

0 < t0 = sup{t : &2(t) encloses J&1(t)}

satisfies to<T. By continuity and Lemma 10.1, Z2(t0) encloses &i(t0) and
^iCto) touches >82(t0) at some point x0 from inside with the touching of
one of the following three types:

(a) facet-facet. There are facets Fi of >8j(t0) such that F1nF2 is a
nontrivial polygon containing x0. At t = t0 the normal velocities Vi of F̂
in the direction of their common orientation satisfy V1>V2 .

(p) edge-edge. There are edges {$ of >8i(t0) such that $ i n { 2 *s a

nontrivial line segment containing x0. Moreover, ii is an edge of adjacent
facets F^ and Fi2 of /8i(t0) (i= 1,2) and, by Lemma 10.2, F1j and F2j
have the same orientation rij (j = l,2) (by renumbering if necessary).
Further, at t = t0 the normal velocities Vjj and V2j of F^ and F2j in
the direction of rij satisfy V1 1>V2 i or V12^V22-

(X) corner-corner: By Lemma 10.1 the sets {F^, j = l ,2, . . . ,M} (i=l,2)
of facets of Z^Q) (i=l,2) meeting at the corner x0 have the following
properties for j = 1,2,... ,M:
(i) Fij and F2j have the same orientation ny,

(ii) F1jfiF2j = (x0).
Further, at t = t0 the velocities VJJ and V2j of Fjj and F2j in the
direction rij satisfy V l j>V 2 j , j = l,2,...,M.

By Theorem 10.2 we have, for the cases (oc)-U), respectively:
(a) A 1 <A 2 with Aj the (energetically weighted) curvature of Fj.
(p) A l j <A 2 j (j-1,2) with Aij the curvature of F .̂
(y) A1j<A2j (j = l,2,...,M) with A^ the curvature of Fij.
Using the facet equation (10.1) in each of the cases (oc)-U) we see that the
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signs of the velocities and curvatures yield in each case the inequality

U1<U2, a contradiction.

2° The case V1 = U2. Assume that each corner of &2
 i s a triple

junction. By a standard theorem on continuous dependence on data, applied

to the ODE system (6.10), one can show that for each e>0 there is a

strongly admissible crystalline evolution &t that satisfies Zt(0)-Z2(0)t

that evolves according to the facet equations (10.1) with U2 replaced by

U2-e, and is such that

(i) its duration Te satisfies Te —>T as e-»0;

(ii) dist(,8e(t),/82(t))->0 as e->0 uniformly for t in any closed interval of

[0,T).

Here dist (*e(t), Z2(t)) = inf { I x - x I : xtZt(t), xs^2(t) }. By Step 1°, *e(t)

encloses ^ ( t ) for 0<t<Te. Letting e—>0 we conclude that /82(t) encloses

&x(t) for 0<t<T.

If each corner of /8X (rather than >82) is a triple junction we

approximate J&1 instead of J&2 by • &t with U1 replaced by Ui + 8. D

Remarks.

(1) The triple junction property is used only to obtain the approxima-

tion J&t.

(2) As in the first comparison theorem in [16], one can prove that

dist(/8e(t),^2(t)) is nonincreasing in t.

(3) As remarked in [16, Section 4], if U1>U2, then >82(t) does not

touch Z±(t) for 0<t<T.

(4) The second comparison theorem and the comparison theorem for

weakly admissible evolving crystals in [16, Section 4] extend to the three-

dimensional theory discussed here with essentially the same proofs.

The proofs of Remarks (1) and (2) parallel those of the analogous

assertions in [16].
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