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SHELAH'S STABILITY SPECTRUM AND HOMOGENEITY SPECTRUM IN
FINITE DIAGRAMS.

RAMI GROSSBERG AND OLIVIER LESSMANN

ABSTRACT. We present Saharon Shelah's Stability Spectrum and Homogeneity Spectrum
theorems, as well as the equivalence between the order property and instability in the
framework of Finite Diagrams. Finite Diagrams is a context which generalizes the first
order case. Localized versions of these theorems are presented. Our presentation is based
on several papers; the point of view is contemporary and some of the proofs are new. The
treatment of local stability in Finite Diagrams is new.

1. INTRODUCTION

Saharon Shelah's Finite Diagrams Stable in Power [Sh3], published in 1970, is
one of the seminal articles in model theory. It contains a large number of key ideas which
have shaped the development of classification theory. The model-theoretic framework of
the paper is more general than the first order case. However, while all the particular cases
of the results in the first order case can be found in several more recent publications of
Saharon Shelah as well as countless expositions, the non first order content of [Sh3] is still
not available in a concise form.

The primary purpose of this paper is to present, in this more general framework,
most of the stability results of [Sh3], together with the order/stability dichotomy from
[Shi2], and the homogeneity spectrum appearing in The Lazy Model Theorist's Guide
To Stability [Sh54]. A secondary purpose is to present the necessary background to [Le]
and [GrLe2]. This is done in a contemporary and self-contained manner, and includes
improvements and techniques from [Shb], [Sh300], and [Grl]. Finally, with very little
additional work, we localize all the theorems and obtain local versions of the Stability
Spectrum Theorem and the Homogeneity Spectrum in Finite Diagrams. The study of local
stability in more general frameworks has been started in [GrLel].

The framework introduced by S. Shelah in [Sh3] is the study of classes of mod-
els of a finite diagram. These classes are described in more detail below. Such classes
are examples of nonelementary classes and the results presented in this paper belong to
what Shelah calls the classification theory for nonelementary classes. The word nonele-
mentary refers to the fact that the compactness theorem fails. While many of the ques-
tions of classification theory for first order theories have been solved (see [Sh b]), clas-
sification theory for nonelementary classes is still under-developed. This is not to say
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2 RAMI GROSSBERG AND OLIVIER LESSMANN

that the subject is small or not interesting. Thousands of pages have been devoted to its
questions: See for example [BaShl],[BaSh2], [BaSh3], [Grl], [Gr2], [GrHa], [GrLel],
[GrLe2], [GrShl], [GrSh2], [HaSh], [HySh], [Ke], [Ki], [KISh], [Le], [MaSh], [Sh3],
[Sh48], [Sh87a], [Sh87b], [Sh88], [Sh tape], [Sh299], [Sh300], [Sh394], [Sh472], [Sh576]
and Shelah's forthcoming book [Sh h]. The techniques used are usually set-theoretic and
combinatorial in nature, although more recently, new ideas coming from geometric stabil-
ity theory are being imported. The failure of the compactness theorem for a class of models
makes their model theory delicate and sometimes sensitive to the axioms of set theory. This
is one of the reasons why some additional assumptions are often made; a "monster model",
set-theoretic assumptions, amalgamation properties, and so on.

Let us describe briefly what is meant by the class of models of a finite diagram.
Two perspectives are given below.

Given a first order theory T and a model M of T, the finite diagram of the model
M is the set of complete types over the empty set realized in M. Fix a set D of complete
T-types and consider the class of models whose finite diagram is a subset of D. Such
models are called D-models for convenience. In another language, we study the class of
models omitting all the types over the empty set which do not belong to D. There are
several connections between the class of D-models and the class of models of some theory
T* C LX+,UJ, for a cardinal A. First, the class of D-models can be axiomatized by some
theory T C L\+ iCJ9 provided A > \D(T) \D\. On the other hand, from the point of view
of Shelah's conjecture (see below) for example, the class of models of a countable theory
T* C Lu)1 jU, is equivalent to the class of D-models of a countable first order theory T,
where D is the set of isolated types over the empty set.

Both in [Sh3] and [Sh54], S. Shelah studied these classes under an additional
assumption. Let us say a few words about exactly what this additional assumption is (it
takes two equivalent forms in [Sh3] and [Sh54], and yet another equivalent formulation
is given here). Since the compactness theorem fails for this class of models, it is crucial
to have a good understanding of what the meaningful types are, i.e. which types can be
realized by D-models. A corollary of the compactness theorem is that given a model M
and a type p over a subset A of M, it is possible to find an elementary extension N of
M in which p is realized. This fails, in general, for the class just described. There is a
natural obstacle why this cannot work in general: Suppose p is a complete type over a set
of parameters A, where A is a subset of a D-model M. Suppose there is a D-model N
containing M in whichp is realized, say by the sequence c. Then, since AUcC N and N
is a D-model, necessarily, all the subsequences of the set A U c realize (over the empty set)
types that belong to D. The assumption that Shelah made (although not in those terms)
is that this is the only restriction. This class of models, with the additional assumption on
types, is the framework that S. Shelah calls finite diagrams. Note that when D is the set
D(T) of all complete T-types over the empty set, then this is the first order case.

An alternative way of looking at this framework is as follows. Given a theory T,
fix a large homogeneous model £ of T. In general, £ is not saturated. Let D be the diagram
of <£. Then, the class of D-models can be assumed to be the class of elementary submodels
of C and above meaningful types are the ones realized in <£. Note that when £ is saturated,
then this is the first order case.
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Using the first order case as a guide, there are four important results in Stability
Theory all due to S. Shelah. See [Sh b].

• A theory T is stable if and only if it does not have the order property.
• If a theory T is stable in A, then given any set of finite sequences I of cardinality

A+ and a set A of cardinality A there exists a subset J C / o f cardinality A+

indiscernible over A.
• (The Stability Spectrum) For a theory T, either T is not stable or T is stable and

there exist cardinals «(T) and X(T) satisfying K(T) < \T\+ and K(T) < \{T) <
2lTl such that T is stable in \i if and only if/i > \(T) and /x<*(T) = fj,.

• (The Saturation Spectrum) A theory T has a A-saturated model of cardinality A if
and only if A > \D(T)\ and either A<A = A or T is stable in A.

This paper contains Shelah's generalizations of above theorems to the class of
models of finite diagrams. The first two results use the notion of splitting and can be
generalized without too much difficulty to this context. As to the last two, the optimal
versions rely on the notion of forking. However, forking only works in settings where
the compactness theorem holds. To remedy this, Shelah introduced the notion of strong
splitting, which predates forking (and dividing). Since strong splitting does not satisfy all
the properties of forking, the proofs are more intricate and combinatorial in flavor.

Classes of models of a finite diagram are important also because they provide a
natural test-case to generalize ideas from first order logic to more general nonelementary
classes. On the one hand, many of the technical difficulties arising from the failure of the
compactness theorem are present. On the other hand, the model theory is more manageable
as we have a good understanding of types. Note also that, in contrast to other nonelemen-
tary contexts, this work is completely done within ZFC. We added a discussion on the
strength of the main assumption of Finite Diagrams after Hypothesis 2.5.

The classification theory for finite diagrams has been the focus of some activity
recently. The focus of [Sh3] was stable diagrams. In [HySh], Saharon Shelah and Tapani
Hyttinen develop a context corresponding to superstability. They prove the existence of
types over the realization of which strong-splitting satisfies the axioms of a pregeometry.
In [Le], Olivier Lessmann introduced a rank for the N0-stable case. The finite diagrams
for which the rank is bounded are called totally transcendental. Totally transcendental di-
agrams behave surprisingly like totally transcendental first order theories; there is a nicely
behaved dependence relation, pregeometries and the methods of John T. Baldwin and Al-
istair Lachlan [BaLa] can be adapted to give geometric proofs of categoricity, construct
nonisomorphic models, as well as other applications. In a work in preparation [GrLe2], we
prove the Main Gap for totally transcendental diagrams. The decomposition theorem is in
fact an application of a more general decomposition theorem.

2. THE FRAMEWORK OF FINITE DIAGRAMS

The notation is standard. Abbreviations like AB stands for A U B, and Ab for
A U {ran(6)}. When M is a model, | |M|| stands for the cardinality of M. The notation
ACM means that A is a subset of the universe of M.



 



4 RAMI GROSSBERG AND OLIVIER LESSMANN

Let T be a first order complete theory in a language L. Denote by L(T) the set of
first order formulas in L. Let M be the a very saturated model of T. For A C L, A C M,
and a (not necessarily finite) sequence a € M, define the A-type of a over A in M by

tpA(a/A,M) = {(f>(x,b) | 6 G A, (/>(*,£) or^x^y) G A, and M ^ #*,&]}•

When A is L(T) it is omitted and when M is M, it is omitted also.

Definition 2.1. (1) The finite diagram of A is

£>(,4) = {tp(a/0) | a G A, a finite }.

Such sets will be denoted by D and called finite diagrams.
(2) The set A is a D-set if D(A) C £>. The model M is a D-model if D{M) C £>.
(3) WeletS£(,4) = {tpA{c/A) \ c G M,£(c) = n},for A C L(T). When A = L(T)

it is omitted. When n — 1 it is omitted. A type p G 5n(^4) is called a D-type if and
only if A U c is a .D-set, for every c realizing p.

Sp(A) will denote the set of .D-types over A in n variables.

When D = D{T)9 then SD(A) = S(A).

Definition 2.2. The model M is a (D, X)-homogeneous model if M realizes every p G
SD(A) for A C M with |A| < A.

When D — D(T), then a model is (Z), A)-homogeneous if and only if it is A-
saturated.

The next lemma shows that if M is (D, A)-homogeneous, then it is A-universal
for the class of D-models.

Lemma 2.3. Let M be (D,\)-homogeneous and A be a D-set ojcardinality A. LetB C A
such that \B\ < A. Then for every elementary mapping f: B ->> M, there is an elementary
mapping g: A -» M extending f.

Proof Write A = Bu{di : i < a < A}. Construct an increasing sequence of elementary
mappings (fi \ i < A) by induction on i < a, such that /o = / ,

B U {aj : j < i} C dom(/j) and ran(/i) C M.

In case z = 0 or i a limit, it is obvious. Assume fi is constructed. Define qi = /i(tp(ai/B\J
{aj : j < i})). By induction hypothesis qi G Sr>(fi(B U {a^ : j < z'})). Hence, since
M is (£>, A)-homogeneous, qi is realized by some 6t- G M. Let / i + 1 = fi U (a*, 6j). The
elementary mapping # = \Ji<a fi is as required. •

Recall from the first order case that a model is X-homogeneous, if for any partial
elementary mapping / from M into M with | dom(/) | < A and c G M, there is an
elementary extension g of f from M into M such that dom(#) D dom(/) U c. The next
lemma is an extension of the familiar first order result that a model M is A-saturated if and
only if M is A-homogeneous and < N0-universal if and only if M is A-homogeneous and
A-universal.

Lemma 2.4. M is a (D, X)-homogeneous model if and only if D(M) = D and M is
X-homogeneous.
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Proof. The only if part follows from the previous lemma. To see the converse, we show
that M is (D, /z)-homogeneous for every JJL < A by induction on //.

For the base case, assume that /x < No. Let p G SD(C), where c G M is finite.
Let a be any element realizing p. By assumption tp(a~c/0) G D. Since D(M) = D, there
exist a' and c' G M realizing tp(a~c/0). Let / be a partial elementary mapping such that
f(c) — cf and f(a) = af. Then, by A-homogeneity of M, there is a partial elementary
mapping g from M t o M , extending f~l \ c', with dom(</) D c' U a'. Then we have that
a! realizes / (p) , and so g(a') realizes g(f(p)) = p. Hence, p is realized in M.

By induction, let C C M of cardinality /i < A and assume that we have already
shown that M is (Z), /x)-homogeneous. Let p G SD(C) and a be any element realizing
p. Then C U a is a P-set of cardinality /i, so by (D, /z)-homogeneity of M, using the
previous lemma, there exists an elementary mapping / sending C U a into M. Hence,
by A-homogeneity of M, there is g, an elementary mapping from M into M, extending
/ - 1 T C with dom(p) D f(C) U / (a ) . To conclude, notice that since a realizes p, / (a )
realizes /(p) and g(f(a)) realizes g(f(p)) = p. This shows that M realizes p, since
g(f(a)) G M, and completes the proof. •

The following hypothesis is made throughout the paper. It is equivalent to She-
lah's original assumption in [Sh3] and [Sh54]. Also, the same assumption was made by H.
Jerome Keisler in his categoricity theorem [Ke].

Hypothesis 2.5. There exists a (D, K)-homogeneous model £, with R much larger than
any cardinality mentioned in this paper.

In view of the preceding lemma, we may assume that any D-set lies in C Also,
satisfaction is with respect to C Notice also that for any D-set A

The study of a. finite diagram D is thus the study of the class of D-models under
the additional assumption that there exists a (D, K)-homogeneous model £, with R very
large.

Hypothesis 2.5 is a natural assumption to make. Let us say a few words about
why we feel this is so. The most outstanding test question in the classification theory for
nonelementary classes is a conjecture of S. Shelah, made in the mid-1970s:

Conjecture 2.6 (Shelah). Let T be a countable LUJl^ theory. If there exists a cardinal
A > 13^ such that T is categorical in A, then T is categorical in every fi > 13^.

As we mentioned in the introduction, it is equivalent to solve this conjecture for
the class of £>-models of a countable first order theory, where D is the set of isolated types
over the empty set (whence the relevance of this discussion here). Most experts agree
that the full conjecture seems currently out of reach. However, several attempts to solve
the conjecture since the late 1970s have indicated that categoricity (sometimes in several
cardinals and sometimes under additional set-theoretic axioms ) implies the existence of
various kinds of amalgamation properties and the existence of monster models (see for
example [Sh48], [Sh87a], [Sh87b], [Sh88], or [BaSh3]). By monster model, we mean a
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large model with universal or homogeneous properties. By amalgamation properties we
mean that the class of models of T satisfies the /i-amalgamation property for a class of
cardinals //. Recall that a class of models K has the //-amalgamation property if for every
triple of models Mo, Mi, M2 £ /C of cardinality /i such that Mo -< Mi, Mo -< M2, and
Mo C Mi fl M2, there exist a model N G K and embeddings fa: Mi -> N for i = 1,2
such that /1 f Mo = $2 \ Mo. For example, by Robinson's Consistency Lemma, the class
of model of a first order theory T has the //-amalgamation property, for every cardinal

p > \n
While Shelah observed from the work of Leo Marcus [Mr], that the existence of

a monster model quite as in Hypothesis 2.5 does not follow from the assumption of She-
lah's conjecture, it is certainly reasonable to conjecture that it implies the existence of a
monster model with a similar flavor. Thus, experience gained in this framework can shed
light on the potentially more general framework. These results are additional motivations
to develop classification theory either inside a homogeneous model [Sh3], [Sh54], [Grl],
[Gr2], [HySh], [GrLe2], [Le], or for nonelementary classes with amalgamation properties
[Sh48], [Sh87a], [Sh87b], [GrHa], [Sh394]. In fact, under monster model or amalgama-
tion properties several approximations of Shelah conjecture are known: for example [Ke],
[Sh48], [Sh87a], [Sh87b] or [Le].

In this vein, the two following conjectures were made by Rami Grossberg in 1989,
in an email communication with John T. Baldwin:

Conjecture 2.7. Let T be a countable LWl)W theory. If T is categorical is some large
enough A, then there exists a /io such that the class of models of T has the /i-amalgamation
property for every /x greater than /io.

Amalgamation properties are closely related to monster model hypotheses: When
T is a Scott sentence, the conclusion of the previous conjecture implies the existence of
arbitrarily large model-homogeneous models

Conjecture 2.8. Let T be a countable Lu;i^ theory such that there exists a /i0 such that
the class of models of T has the /i-amalgamation property for every /i greater than /i0. If
T is categorical in some A > U ^ , then T is categorical in every cardinal /i > 3UJl.

Before finishing this discussion, we can ask the following related question:

Question 2.9. Let T be a countable theory in LUliUJ. Is there a cardinal fi(T) with the
property that if the class of models ofT has the n(T)-amalgamation property then it has
the X-amalgamation property for arbitrarily large X?

3. STABILITY AND ORDER IN FINITE DIAGRAMS

In this section, we present the equivalence between stability and the failure of the
order property in the context of finite diagrams (Corollary 3.12).

Definition 3.1. Let D be a finite diagram.

(1) The diagram D is said to be stable in A if for every A C £ of cardinality at most A
and for every n < u we have |S£(A)| < A.
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(2) We say that D is stable if there is a A such that D is stable in A.

By the pigeonhole principle, it is enough to consider n = 1, i.e. D is stable in A
if and only if for all A C C of cardinality at most A, we have |S/>(A)| < A.

Definition 3.2. Let D be a finite diagram.

(1) D has the \-order property if there exist a D-set {a* | i < A}, and a formula
<p(x,y) € L(T) such that

\= 4>[ai, a,j] if and only if i < j < A.

(2) D has the order property if D has the A-order property for every cardinal A.

Notice that the order property is formulated differently from the order property
used by Shelah in [Sh b]. The formulation given here is equivalent to the usual order
property in the first order case, and is more natural in nonelementary cases; when it holds
there are many nonisomorphic models (see [Shi2], [GrShl], and [GrSh2]).

Recall some standard definitions. A set of finite sequences {a* | i < a} is
said to be an n-indiscernible sequence over A, for n < u if tp(ao,... ,an-\/A) —
tp(af0,... ,ain_1/A). for every i0 < ••• < zn_i < a. Then {a* \ i < a} is an in-
discernible sequence over A, if it is an n-indiscernible sequence over A for every n < to.
It is said to be an indiscernible set, if in addition, the ordering does not matter. We will
not have to distinguish between the two, as in the presence of stability, every indiscernible
sequence is, in fact, an indiscernible set (Remark 3.4 and Corollary 3.12). Hence, we will
often say indiscernible for indiscernible sequence, or set when they coincide or when it
does not matter.

Remark 3.3. If there exists a .D-set {a* | i < u}, which is an indiscernible sequence, and
a formula </>(#, y) such that

|= <j>[ai,(ij] if and only if i < j < LJ,

then D has the order property.

Proof. Let A be an infinite cardinal. Let {c* | i < A} be new constants. Consider the union
of the following sentences:

i,Cj), if« <j < A;
• - .0 (c j ,c , ) , i fz > j,i,j < A;
• il>(c~i0,..., C{n), for each ^ (a ro , . . . xn) G t p ( a o , . . •, a n / 0 ) , and each n < LJ, and

e a c h i o <•—< in < A.

The above set of sentences is consistent (use {a* | i < LJ}). Let 6, be the interpretation of
Ci in M, the monster model for T. The last clause implies that {&* | i < A} is a £>-set. By
the first two clauses, we have

\= 0[6i, bj] if and only if i < j < A.

Hence, D has the A-order property. We are done since A was arbitrary. •

Remark 3.4. Suppose D does not have the order property. Let {a» | i < a} be an infinite
indiscernible sequence over A. Then {a* | i < a} is an indiscernible set over A.
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Proof. Suppose that the conclusion fails. Then, there exist an integer n < u>, a permutation
a G 5 n , and indices IQ < • • • < in < a such that

tp(ao, • • •,an /A) ^ tp(ai<y(0), •. •, ai<r{n)/A).

Since {ai \ i < a) is an indiscernible sequence over A, we have tp(ao, . . . ,an/A) ^
tp(a<T(0),..., da^/A). Since any permutation is a product of transpositions, we may
assume that there exist ko < k\ < n such that cr(A;o) = k\, cr(ki) — ko and a(i) — i,
otherwise. Hence, there exists </>(#, y1 b), where b G A U {a* | i < n, i ^ A:o, fci} such that
|= (j>[akQ, ajbi, &] and |= - ^ [ a ^ , a^0,6]. Then, the D-set {afb \ n < i < a} is an infinite
indiscernible sequence (over 0). Hence \= <j)[ai, aj,b] if and only if n < i < j < a. This
implies that D has the order property by the previous remark. •

The main tool to prove that the failure of the order property implies stability (The-
orem 3.9) is splitting. Recall the definition.

Definition 3.5. Let Ai and A2 be sets of formulas. Let A be a set and B C A. For
p E Sn(A), we say that p (Ai, A2)-splits over B if there are 6, c G A and (j>(x, y) G A2

such that t p A l (b/B) = t p A i (c/B) with </>(x, b) G p and ~><f>(x, c) G p.

When Ai = A2 = L(T), we just say that p splits over B. When Ax = {(j>(x,y)}
and A2 = {ip(x, y)}y we write (<f>(x, y), tp(x, y))-splits9 omitting the parentheses.

For a statement t and a formula 0, the following convention is made: 0* = -*</> if
the statement t is false and 01 = 0, if the statement t is true. The same notation is used
when t G {0,1}, where 0 stands for falsehood and 1 stands for truth.

The next two lemmas give sufficient conditions guaranteeing the existence and
uniqueness of nonsplitting extensions.

Lemma 3.6. Let A C B C C be sets such that B realizes all the Ai-types over A that
are realized in C. Assume pi,p2 G 5 A 2 ( C ) and p\ \ B = p2 \ B. Ifpi, P2 do not
(Ai, A2)-5/7//7 over A, then p\ — p^.

Proof. By symmetry, it is enough to show thatpi C p2 . Let (/>(x, b) G p\. By assumption
t p A l (b/A) is realized by some c G B. Hence (f>(x, c) G p\ since p\ does not (Ai, A2)-
split over A, and <f>(x, y)1 G A2 for t = 0 or 1. Thus </>(x, c) G p 2 and so (j)(x, b) G P2 also
since ̂  does not (Ai, A2)-split over A. •

Lemma 3.7. Le/ i C 5 C C k D-sets, such that B realizes every D-type over A, which
is realized in C. Suppose p G SD{B) does not split over A. Then, there is a unique type
q G SD{C) extending p that does not split over A.

Proof Uniqueness was proved in the previous lemma. Hence, it is enough to show exis-
tence. Define q explicitly by setting:

q := {(j){x, c) I There exists b E B realizing tp(c/A) and </>(x, b) G p}.

This is well-defined. By_assumptionp does not split over A and so the definition does not
depend on the choice of b G B.

First notice that q is complete. Suppose c G C and <t>(x,y) G L(T). Suppose
(j>(x,c) g q. LetbeB realize tp(c/A). By definition, we have 0(x,6) £ p. Hence,
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-i0(x,6) G p, since p \ B is complete. Thus, -></>(x,c) G q, by definition of q. Also, q
is consistent. Let <£i(x,ci),... ,<j>n{x,cn) G g. Then0i(x,&i) G p, for 6 f . . . % n G 5
realizing tp(ci~. . . ~cn/A). Since p is consistent, we have

Then, by an elementary mapping sending each hi to ĉ  fixing A we conclude that

(= 3x[0i(x, ci) A . . . A <f>n(x, Cn)].

Hence, the set {0i (x, c i ) , . . . , 0n(x, cn)} is consistent.

Now let us see thatg does not split over A Otherwise, there are c\9 c2 G C,
and (j){x,y) such that tp(ci/A) = tp(c2/A) and </>(x,ci), -x/>(x,C2) G g. Choose 61,
b2 G B, such that tp(Bi/A) = tp(b2/A) = tp(ci/A). We have 0(x,5i), -K£(X,62) G p,
by definition of q. Hence p splits over A, contradiction.

Finally, let us show that q is a D-type. Suppose not. Then, there is a realizing q
and c € C such that tp(a~c/0) 0 D. Let b € B realize tp(c/A). Since a realizes p, we
have tp(a5/0) G IX Hence, in particular

tp(a6/0) ^ tp(ac/0).

Hence there is 0(x,^), with \= (f>[a,b\, and |= -x/>[a,c]. This implies that (f>(x,b), and

-»</>(x, c) G ̂ . This shows that qr splits over A,a. contradiction. D

We will use the following notational convention: For A a set of formulas, we
write

When A = {0(x, y)}, we write SD^{B) instead of SD^

Corollary 3.8. Let AC B be D-sets. Then

\{peSDA2(B):p does not {AuA2)-split over A}\ < 2 | D | I A I .

Proof. Since |Sr>(A)| < |D | | A | , we can find C, with |C| < |D | | A | such that C realizes all
the types in Sg A i (^4). Then, by Lemma 3.6, we have

\{p G SJT>,A2 (B) : p does not (Ai, A2)-split over A}\ <

D

The proof of the next theorem follows [Grl].

Theorem 3.9. LetX > \L(T)\. IfD is not stable in 22*, then D has the \+-order property.

Proof We first claim that there exist a D-set A of cardinality 22* and a formula 0(x, y)
such that

\A\.
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Since D is not stable in 2 2 \ there is a .D-set A of cardinality 22* such that \SD{A)\ > \A\.
Define

/ : SD{A) -> I I 0 ( ^ ) € L S D , 0 O4) , by f(p) = (p \

Then, / is injective and since A > \L(T)\, by the pigeonhole principle, there must be
</>(#, y) G L such that \SD,<P(A)\ > \A\. This proves the claim.

Let A and <f> be as in the claim, we will show that

ip(xo,xi,x2iyo,yi,y2) -= <t>(xo,yi) <-• 0(^0,2/2)

demonstrates the order property. For convenience, let/i = 22 . Let {ai : i < (*+} C
<£ be such that i ^ j < //+ implies tp^ai/A) ^ tp^(aj/A). This is possible since
|*5£),0(i4)| > |i4|. Letx{y,x) = (f>(x,y) andn = £(y). Define an increasing continuous
chain of sets {Ai : i < /x) such that:

(1) Ao - 0 and |;4i| <v,i< fi.
(2) For every J? C ^ of cardinality at most A and every type p € So^iA^US^ iX(Ai),

p \ B is realized in Ai+i.

This is possible since there are at most /zA = A subsets of Ai of cardinality A and at most
\SD(B)\ < \D\X < (2lL(T)l)l^l < (2A)A < //possible types for each setB.

Claim. For every j < //+, there is i with j < i < / i + such that for all / < A+ the type
q{ =z tp(aiy Ai) (x, <̂ >)-splits over each B C Ai of cardinality at most A.

Proof. Otherwise, there is j < ii*~ such that for every i with j < i < / i + , there is / < A
and Bl C Ai of cardinality at most A such that qi does not (x, <t>)-split over B\ Since
/ i + > A, by the pigeonhole principle, we can find / < A such that n+ many ^ ' s do not
(x, <t>) -split over a subset of At. By a second application of the pigeonhole principle, since
/i+ > fi > \At\

x = \{B C A/ : |J5| < A}|, we can find //+ > (22>) many types that do
not (x, (/>)-split over a set of cardinality at most A. This contradicts Corollary 3.8. Hence,
the claim is true. •

Among the Vs satisfying the claim, pick one such that ai £ U/<A ^I- This is pos-
sible since | U/<A ^M — A*- Then, by construction, for every / < A+, the type tp^ai/Ai)
(x, 0)-splits over every B C Ai of cardinality at most A. Define a/, bi and Q in A21+2, as
well as Bi — U{ajfe, bk, c& : k < 1} by induction on / < A+ such that

(1) Bi C A2i and \Bi\ < A;
(2) tpx(ai/Bi) =tpx(k/Bi);
(3) Both (j){x, at) and -^0(x, bt) belong to tp(aj/^42/);
(4) Q G ̂ 2/+i realizes 0(x, a*) A ~^(j){x, bi).

This is possible: Set Bo = 0. If Bt is constructed, since Bt C ^42/ of cardinality
at most A, tp<p(ai/A2t) (x> 0)-splits over J9/, hence we can find a* and bt in A2/ such that
tpx(at/Bi) — tpx(bi/Bt) and both <t>(x,at) and -><f>(x,bj) belong to tp(ai/A2j). Then,
by construction of A2t+i, we can find Q G A2/+1, realizing tp0(ai/^42) F {^hh} and
hence realizing 0(ar, a/) A -»(̂ (a:, 6/). When / is a limit ordinal, we define Bt by continuity.
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Now, let d\ = cfafbi. It is easy to see from (2), (3) and (4) that {di : I < X+} and
ip{xo,xi,x2,yo,yi,y2) = (j>{xo,yi) <-> 0(xo ,y2) together demonstrate the (D,\+) -order
property. •

The next theorem is a converse of Theorem 3.9. The proof uses Hanf number
techniques. For a first order theory T and F a set of T-types over the empty set, the class
EC(T, T) is the class of models of T omitting every type in F. For cardinals A and K, the
Hanf-Morley number /x(A, K) is defined to be the smallest cardinal [i with the property that
for every EC(T, F) with \T\ < A and | r | < «, if EC(T, F) contains a model of cardinality
\x then EC(T, F) contains models of arbitrarily large cardinality. Clearly, when K — 0,
//(A, K) — No; this is the first order case. When K > 1, the notion of wellordering number
8{X, AC) needs to be introduced. For cardinals A, K, the number S(X, K) is the smallest
ordinal 5 with the property that for every EC(T, F) with \T\ < A and |T| < AC, if EC(T, F)
contains a model with a predicate of order type 5, then EC(T, F) contains a model where
this predicate is not wellordered. If K > 1, it is a standard result that fi(X, K) = *2S(\,K)>

(Note that the methods of the proof below show ^(A, K) < ^S{\,K)-) A standard result
on wellordering numbers states that 5(\, K) < (2A)+ . This will be used in the proof and
explains the cardinal 3(2m)+ appearing in the statement.

Theorem 3.10. IfD has the X-order property for every X < 3(2m)+, then D is not stable
and D has the u-orderproperty witnessed by an indiscernible sequence.

Proof We will show first that D has the w-order property witnessed by an indiscernible

sequence. By assumption, for each a < (2 ' T ' ) + , we can find a D-set

Pa = {aaj I j < P a ) + }
and a formula <f>a witnessing the order property. Hence, by the pigeonhole principle, we
may assume that cf>a = 4> is fixed for all a.

Notice that M is a L>-model of T if and only if M G EC(T,F), with F =
D(T) \ D. But \D(T) \D\ < 2'TI, and so the well-ordering number for this class is at

For a < (2lT ' )+ , define Ma -< € containing {aaj • j < Q a ) + } of cardinality
( ) . This is possible by the downward Lowenhweim-Skolem Theorem. Each Ma

belongs to EC(T,F). Define F: (2lTl)+ -> Ua<(2i^i)+ M a ,by F(a) = MQ.

Consider the following model

where x is a regular cardinal big enough so H(x) contains everything that has been men-
tioned so far in this proof. The predicates (2lTl)+ and T are unary predicates whose inter-
pretations are the corresponding sets. The meaning of the binary predicates |= and £ and
of the constants V% for each ip G L is their true meaning in i/(x)« Also F is a unary func-
tion and the interpretation of F is the one we just defined. P is a unary predicate, whose
interpretation in each Ma is the D-set Pa witnessing the order property. More precisely,
we have that

M f=Va G (2lTl)+(aa>i G M a ) A

aa,j G M Q A PaQyi A Paaj] -* (Ma \= <t>[aajijaaJ] <+ i G j).
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Let N -< M such that (2 | T ' )+ C N of cardinality (2 | T ' ) + . Therefore, we can fix a
bijectionG: \N\ -> (2lrl)+. Define a < 6 if and only if G(a) G G(b).

Form N' = (N,<,G) an expansion of N. Let V = Th(N') and for each
^(x) G £ define i/>'(z,i/) by 3a € (2lT')+(i/ = M a A x G M a A Ma \= tp[x]). Let
T = {{*/>'(x,y) : %l>{x) G p} : p G F}. Then, we have that |T' | = \T\ and |F' | = | r | , so

We first claim that N' omits every type in F' .

Suppose not. There is p1 G F' such that for some (fa G AT' we have that |=
^'[c, a], for all xj)' £ p'. But then, by definition c is in some Ma and c realizes every ip(x)
in p. But p G F so this contradicts the fact that Ma G EC(T, F). Hence, we have a model
Nf G EC(T ; , r ) well-ordered by < and of order-type (2'TI)+ . Thus, we can find a model
N" G EC(T", F'), whose universe is not wellordered by <. Therefore, by taking away
elements if necessary, there exists elements bn G N" such that N" (= 6n+i + n + 1 < bn

and A "̂ (= 6n G (2lTl)+ forn < u.

Define a sequence of sets (Xn \ n < UJ) such that

(1) jV" |= "X n is an n-indiscernible sequence in M&0 of cardinality H&n".
(2) N" f= "X n has the D-order property"

This is possible. Construct the Xn by induction on n < u. For n — 0, let
^ o = {<360,j •' J < 3&0}> ^e- t n e interpretation in AT" of the interpretation of the predicate
P in Ma. Then the first requirement is satisfied since Xo has the right cardinality and there
is nothing to check for O-indiscernibility. The second requirement is also satisfied since M
and so iV" knows that they witness the order property.

Assume Xn has already been constructed. Define

(0), by ( c 1 , . . . , c n + 1 ) H > t p ( c 1 , . . . , c n + 1 / 0 ) .

We know by Erdos-Rado that

and we have 3&n > 3 6 n + n + i > 3 + p 6 n + 1 ) , so we can find a subset Xn+i of Xn of
cardinality 36n + 1 such that every increasing (n + 1)-tuple from it has the same type. This
implies that Xn+i is an (n + 1)-indiscernible sequence with the right cardinality. Since
the second requirement is preserved by renumbering if needed, we are done.

This is enough. Let {c* : i < UJ} be a new set of constants. Define T\ to be the
union of the following set of sentences:

T;
di ^ Cj9 whenever i ^ j ;
(fife, %)*<*, for every ij < u;
X(ch,..., cin), for every \ G t p ( a i , . . . , a n / 0 ) , ix < • • • < in and n< v;
\l)(cil,...cij) ** ^ ( c ^ , . . . , ^ ) , whenever i i < ••• < in and j x < ••• < j n ,
n < vandip G L(T).
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By the Compactness Theorem and the definition of Xn, T\ has a model N\. Call
en — c?1 Notice also that the construction ensures that {a* : i < UJ} is a D-set Hence we
have the u;-order property witnessed by indiscernibles.

We will use these to show that D is not stable. Let // be a given cardinality.
Define K = min{« : 2K > /x}. By compactness, using the indiscernibility of {a* : i < a;},
we can get a D-set {a^ : 77 G K-2} such that |= </>[a ,̂av] if and only if 7? -< v. Let
A — |J K > 2 ^ . Then \A\ < //, by choice of K, and for 77 ^ v G *2, we have that
tp(ar?/A) ^ tp(a I //A). Indeed, there is a first z < K such that 77(2] ^ u[i]9 say ry[i] = 0.
But then ^(a^o ,^) G tp(av/A) a n d - . ^ ( a ^ 0 ^ ) G t p ^ / A ) . Thus |SJD(J4)| > 2K > \x
and so D is not stable in fi. D

The next corollary tells us that if D is stable, we can find A < 3(2m)+ demon-
strating this. Notice that if D = ^ ( T ) we are in the first order case and the bound on the
first stability cardinal is actually 2'T ' .

Corollary 3.11. IfD is stable, then there exists A < H(2m)+ such that D is stable in A.

Proof Suppose that D is not stable in any A < 3(2m)+. Then, since 23(2|T|)+ is a strong
limit, for each A < 3 ( 2 IT | )+ , we have 22 < 3(2m)+ and so D is not stable in 22 . Hence
by Theorem 3.9, D has the A+ -order property for all A < 3 ( 2 IT | )+ and so by Theorem 3.10
D is not stable. •

The next corollary is the order/stability dichotomy.

Corollary 3.12. D is stable if and only ifD does not have the order property.

Proof If D is not stable, then it is not stable in 22 for any A > |I/(T)| so by Theorem
3.9, D has the A-order property for every cardinal A. For the converse, we use Theorem
3.10. •

4. THE STABILITY SPECTRUM FOR FINITE DIAGRAMS

In the first part of this section, combinatorial properties related to splitting are
introduced for finite diagrams. They can be used to give another characterization of sta-
bility (see Corollary 4.7). In the second part, the focus is on a more delicate tool; strong
splitting. It is a substitute for the notion of forking. The appropriate cardinal invariant and
combinatorial property related to strong splitting are introduced. They are used to derive
the Stability Spectrum Theorem (Theorem 4.17).

Definition 4.1. (1) D satisfies (*A) if there exists an increasing continuous chain of
£>-sets {Ai.i < A} andp G S%(AX) such that

p \ Aj+i splits over A%, for all i < A.

(2) D satisfies {B * A) if there exists a tree of types {pv G SD(BT)) | V € A>2}> a n d

formulas ^ ( x , a,,) such thatp^ C pv if 77 -< v and

^(x.arj) G Prfo and - . ^ ( x , ^ ) G p ^ i .
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The next two remarks are routine induction using the definition. As an illustration
we prove the first one.

Remark 4.2. If there exists a type p G SD(A) that splits over every subset of A of cardi-
nality less than A, then D satisfies (*A).

Proof. Let p G SD{A) be such that p splits over every subset B of A of cardinality less
than A. Construct an increasing continuous chain of sets {Ai : i < A} of cardinality less
than A demonstrating (*A) as follows. Let Ao = 0 and As = Ui<<5 Ai, if S is a limit
ordinal. If Ai is constructed of cardinality less than A, then by assumption p splits over Ai.
Hence, we can find b,c e A and <j>(x,y) such that t\>(b/Ai) = tp(c/Ai) and (f>(x,b) G p
and -i0(x, c) G p. Let Aw = Ai U b U c. D

Remark 4.3. In the definitions of (*A) and (B * A) we may assume that |;4t| < | i | + + No
and similarly that |B^| < K(r?)|+ + No.

Lemma 4.4. 7/*Z) satisfies (*A), //*e« £> satisfies (B * A).

Proof. We first show that if p G 5£(-4) splits over 5 C i , then there is a partial elemen-
tary mapping / such that f \ B = ids and p and /(p) are contradictory types:

If p splits over B, then there are b,c e A and (f>(x,y) such that tp(b/B) =
tp(c/B) and </>(x, 6) G p and ->0(x, c) G p. Hence there is an elementary mapping / such
that / t B = zda and /(6) = c. Then clearly p and /(p) are contradictory types.

Now assume that D satisfies (*A). By definition, there exists an increasing con-
tinuous chain of sets {Ai \ i < A} and p G Sp(A\) such that p f Ai+i splits over 4̂̂  for
i < A. By Remark 4.3, we may assume that \Ai\ < | i | + + Ho. By the first paragraph, for
each i < X there exists an elementary mapping fc such that Ai C dom(/i) C i4^+i and
fi(p T Aj+i) andp \ Ai+i are contradictory types.

Define G^, pv, Bn and F^ by induction on rj G A -2 such that:

(1) Pr/ G SD(BV).
(2) G,, is an elementary mapping with dom(Gv) — A^ and ran(G^) = B^.
(3) If i/ -< iy then d , C G^ pv C p^, ̂  C B^ and F,, C F^, and if ̂ (77) is a limit

ordinal, we set <?„ = U i < / ( | | ) G^i , p^ = U i < / ( | ? ) Pr?N> and ̂  = \Ji<iiv) B^.
(4) PT? = GTJ(P r ^^(T;)), and the typesp^o andp^i are explicitly contradictory.
(5) Fv is an elementary mapping extending G^o ° //(»;) ° G^\ with dom(F^) = B^o,

such that F^ f B^ = idBr} and F77(pr7-o) = P^i-

This is enough. The tree of types {p^ 17/ G A-2} shows that £> satisfies (JB * A).

The construction is by induction on l(rj): For 77 = (), let BQ — A§, GQ = idA0

andpo = p f AQ. If ̂ (77) is a limit ordinal use (3). Now assume that Gv, PTJ, B^ are
constructed for £(T]) = i. Let G^Q be an extension of G^ with domain Ai+i. Define
B^o - ran(G^o) andp^o = G^o{p \ Ai+i). Now GV-Q O fe^ o G^i is an elementary
mapping with domain C B^o which is the identity on B^. Let Fv be an elementary
mapping extending it with domain B^Q. Set Bv~i = ran Fv andp^o = F^p^i). D
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The following theorem shows that the combinatorial properties (*A) and (B * A)
contradict stability in A.

Theorem 4.5. IfD satisfies (* A) or (B * A) then for every fj, < 2A, D is not stable in //.

Proof By the previous lemma, it is enough to show that if D satisfies (B * A) then for
every /i < 2 \ D is not stable in \i.

Let \i < 2A. Let K = minJK | 2* > fx}. Then A > K SO D satisfies (B * K).

By definition, there exists p^ G SoiB^) and ̂ ( x , a,,) for rj G K > 2 , such that
Pri QPvtfr) •< v and ̂ ( x , a^) G p^o and - ^ ( x , a,,) G p^i - By Remark 4.3, we may
assume that \Bn\ < K(/?)|+ + Ko.

LetB = UT?G«>2B'7- Then|.B| < E r ? € «>2 lBnl < «*2< K < M, by choice of K
and assumption on | A*|. Now for each 77 G ^2, let av realize pv. Define qn = tp(aT7/B).
Then for 1/ ^ 77 G K2, there is a first i < K such that r/[i] 7̂  i/[i], say 7/[i] = 0 and
i/[i] = 1. Hence p^o C ^ andp^i C qv, so ĝ  and 9^ are contradictory types. Therefore
\SD{B)\ > \{qr, I 7]e K2}\ = 2K > /i, so D is not stable in /x. •

The next theorem is a sort of converse.

Theorem 4.6. If there is a D-set A such that

/i<A

then D satisfies (*A).

Proof Let /i0 = \A\<X -f S / i < A 2lD'M. By Remark 4.2 it is enough to find a type p G
which splits over every subset B C A of cardinality less than A.

Such a type p always exists: Otherwise for every p G SD{A), there exists Bp C A
of cardinality less than A such that p does not split over Bv. Since | S D ( J 4 ) | > fi0 > \A\<X,
by the pigeonhole principle, we can find 5 C SD{A) of cardinality /xj and B such that p
does not split over B, for each p G 5. But, by Corollary 3.8,

\{pe SD(A) : p does not split overal l < 2'Dl'BI < ^ 2'D|M < /*>,

a contradiction. D

This gives another characterization of instability. This characterization will be
used in the Homogeneity Spectrum Theorem (Theorem 5.9). Notice that (B * A) can be
used in lieu of (* A) in the following corollary.

Corollary 4.7. D is not stable if and only ifD satisfies (* A), for every cardinal A.

Proof IfD satisfies (*A) for every A, then Theorem 4.5 implies that D is not stable in A
for every A. Hence D is not stable.
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For the converse, suppose that D is not stable and let A be given. Then D is not
stable in 22 . Hence, there exists a D-set A of cardinality 22 such that |S£>(A)| > 22 =
\A\<X + J2n<\ 2 | Z > r • Therefore D satisfies (*A) by the previous theorem. •

For the second part, we will focus on strong splitting.

Definition 4.8. A type p G Sn(A) splits strongly over B C A if there exists {a* : i < u)
an indiscernible sequence over B and (j)(x, y) such that 0(x, do) and ->0(x, d\) G p.

A combinatorial property similar to (*A) is now defined in terms of strong split-
ting.

Definition 4.9. D satisfies (C * A) if there exists an increasing continuous chain of sets
{Ai \i<\} andp G S%{AX) such that

p \ Ai+\ splits strongly over A^ for each i < A.

Clearly if D satisfies (C * A), then it satisfies (*A) and similarly to Remark 4.3,
we may assume that \Ai\ < |z|+ + No in the definition of (C * A).

The next cardinal invariant plays the role of K(T) for the notion of strong splitting.
It appears in the Stability Spectrum theorem.

Definition 4.10. Let

K(D) = min{K : For all p G SD(A) there is B C A, \B\ < K such that

p does not split strongly over B }.

If it is undefined, we let K(D) = oo.

Theorem 4.11. Let D be stable in A. Then K(D) is well-defined and K(D) < A.

Proof. Suppose that K(D) > A. Then, by definition of «(£)), there exists a D-set A and a
type p G SD(A) such that p splits strongly over every subset B of A of cardinality at most
A. Similarly to Remark 4.2 this implies that D satisfies (C * A). Hence, D satisfies (*A).
By Theorem 4.5 D is not stable in A, a contradiction. •

To deal with strong splitting, some understanding of indiscernibles is needed.
Theorem 4.13 is one of the main results to produce indiscernible sequences in the presence
of stability. Recall Lemma 1.2.5 of [Sh b].

Fact 4.12. Let B and let {ai \ i < a} be given. Consider q{ = tp(ai/BU{aj \ j < i}) G
SD(B U {aj | j < i}) and suppose that

(1) Ifi < j < a then qi C qy,
(2) For each i < a the type qi does not split over B.

Then {di \ i < a} is an indiscernible sequence over B.

Theorem 4.13. Let D be stable in A. Let I be a set of finite sequences and let Abe a set
such that IUAis a D-set. If\A\ < A < | / | then there exists a subset of I of cardinality
A+ which is an indiscernible set over A.
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Proof. By the pigeonhole principle, there exists a subset J of / of cardinality A+ and
n < to such that a G J implies £(a) = n. Write J — {a* : i < A+}.

Claim. There are D-sets B and C, A C B C C, such that every type in SD{B) is realized
in C, and there exists a type p G S^(C) such that for every D-set C\ containing C of
cardinality A, there exists an extension p\ G Sp(Ci) ofp such that pi does not split over
B and is realized in J \ C.

Proof of the Claim. Assume that B, C and p as in the claim cannot be found. For each
i < X construct D-sets At of cardinality at most A such that every p G So(Ai+i) which is
realized in J \ Ai+i splits over A{.

This is possible: Let Ao = 0 and As = \Ji<5 M for S a limit. Now assume
Ai of cardinality at most A is already constructed. Then | S D ( A J ) | < A by stability in A.
Hence, there exists a D-set A1 of cardinality A, containing Ai, realizing all the types over
A(. Now for any p G S£(A1), Ai, A1 and p do not satisfy the assumptions of the claim.
Therefore, there exists Cp, a D-set, Cp D A1 of cardinality A such that every extension of
p in Sp(Cp) that is realized in J \ Cp splits over Ai. Let Af+i = \JpeSn (Ai^ Cp. Then
Ai+i is a D-set of cardinality at most A with the desired property.

Let A\ = \Ji<xAi. Since J has cardinality A+, there is a £ J \ A™. Let
p = tp(a/A\). By construction p \ .Ai+i splits over Ai so D satisfies (*A). Hence, D is
not stable in A by Theorem 4.5, a contradiction. •

Let B, C and p e Sp(C) be as in the claim. Construct {6* : i < A+} C J by
induction on i < A+ as follows. If bj is defined for j < i let C* = C U {bj, \ j < i} and
Pi € S D ( ^ ) b e a n extension ofp which does not split over B and is realized in J \ Cf.
Let bi be in J \ Cf realizing p*. Then {bi \ i < A+} is an indiscernible sequence by Fact
4.12. Since D is stable, then it does not have the order property by Corollary 3.12 and
hence {bi \ i < A"1"} is an indiscernible set, by Remark 3.4. •

The next two theorems prepare for the Stability Spectrum Theorem.

Theorem 4.14. Let D be stable in A. Let \i > A be such that fi<K^ = /j,. Then D is
stable in fi.

Proof Suppose that D is not stable in /z. Let A be a D-set of cardinality // such that
\SD{A)\ > \A\. By assumption, \SD(A)\ > \A\<K<<D\ Hence \SD(A)\ > A++. Since D
is stable in A, then that K(D) < A by Theorem 4.11. Hence, for each p e SD(A) there
exists a subset Bp C A of cardinality less than K(D) such that p does not split strongly
over Bp. Since there are |A|<K(D) = \A\ such Bp% by the pigeonhole principle, there
exists a set 5 C SD(A) of cardinality A++ and a D-set B C A of cardinality less than
K(D) such that p does not split strongly over B, for each p e S.

Construct {<t>i{x, &i) \ i < A+} andpi G 5, for i < A+ such that

(*) {0i(«,fii) : j < *} U {->&(*, a*)} C Pi.

To do this, define Si C S and Ai C A for i < A+ such that

(1) Ao = 0, As — \Ji<6 Ai for S limit, and Ai C Ai+ i ;
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(2) \Ai\ < A, for each i < A;
(3) Si = {p G S | p is the unique extension of p \ Ai};
(4) Ai+i is a subset of A such that if q G SD(AI) has at least two contradictory exten-

sions in S, then it has at least two extensions q,r G 5 such that q \ Ai+i ^ r f

For i — 0 or i a limit ordinal, do (1). For the successor stage: If Ai is constructed
and q G S D ^ ) n a s two extensions <?i, #2 € 5, then there is <j>q{x,y) and aq e A such
that 0g(x, dq) G qi and ->0g(x, a9) G 92. Since |5z?(^4i)| < A, Ai+\ of cardinality A as in
(4) can be found.

Notice that since | 5 | = A++ and| U i<A+ SA < £i<A+ \sD(Ai)\ < A+A = A+,
there exists p G S\ |J i < A+ Si. For each i < A+ consider p \ Ai. Sincep & Si, by definition
of Si the type p \ Ai has at least two contradictory q,r G 5 . By (4), we may assume that
q \ Ai+x ^ r \ Ai+i. Hence, eitherp \ Ai+X ^ q \ Ai+i, orp \ Ai+i ^ r \ Ai+X.
Thus, in either case, there is pi G S such that p \ Ai+i ^ pi f Ai+\. Hence, there
exist a,i G Ai+i and (t>i(x,y) G L(T) such that (j>i{x,di) G p and -^4>i(x,di) G p*. This
establishes (*)

Now for each i < A+, let 6j realize pi. The set {6i"aj : i < A+} has cardinality
A+ and B has cardinality less than K(D) < A, so by Theorem 4.13 there is a subset
of {bfdi I i < A+} of cardinality A+ which is indiscernible over B. Without loss of
generality, we may assume that {bfai \ i < A+} is indiscernible over B. By stability
in A we have \So{[Jk<\^)\ — ^- Hence, by the pigeonhole principle, there exist i
and j with A < j < i < A+ such that pi \ U A ; < A ^ ~ Pj t U A ; < A ^ - ^y choice
of j , we have (j)j{x,aj) G Pi and -*<j>j(x,aj) G Pj. Now if <j)j(x,do) G pi then since
->(f>j(x, dj) G Pj , Pj splits strongly over B, since {a0, dj, a J + i , . . .} is indiscernible over
£?. And if (f)j(x,do) & Pi then -»(/>J(x,ao) G Pi, and since (j)j(x,dj) G Pi thenp^ splits
strongly over B, since {a,, ao, ai,. . .} is indiscernible over B. This contradicts the choice
of S and B. •

Theorem 4.15. Z,e/ D fo? ^a^ /^ 1/1 A. Let fi > A fc^ swc/i //zar / i< / c(D) > /i. 7fte« D w «o^
stable in JJL.

To prove this theorem, a proposition is needed.

Proposition 4.16. Let D be stable in A. Let \ < A be a cardinal such that A* > A. Let I
be an indiscernible sequence. Then, for every c G £ and 0(x, y) G L(T) either

\{ael :\=4>[a,c]}\<x or \{a e I :\= ^4>[a,c]}\ <X.

Proof. Let / and 4>(x, c) contradict the conclusion of the proposition. Then, without loss
of generality | / | = \- Write I = {di \ i < x}- Since / is indiscernible, there exists
J = {di I i < A} containing/, indiscernible of cardinality A. By the pigeonhole principle,
either {i < A : f= 0[ai,c]} or {% < A : |= -i(/>[ai,c]} has cardinality A. Without loss
of generality, assume that it is the second. Hence, by a re-enumeration (recall that J is
necessarily an indiscernible set), define J\ = {di : i < x + A} such that |= (^[ai, c] if and
only if i < x- Let q = tp(c/Ji). Then for any E C Jx of cardinality x with complement
of cardinality A we can find a function / # : Ji -¥ Jx with /(af) G E if and only if z < x-
Then, for two such sets Ex ^ E2, we have fEl (q) ^ /E72(^)- Hence \SD(Ji)\ > Ax > A,
contradicting the stability in A. •
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Proof of the Theorem. By assumption, there exists K < K(D) such that K = min{K |
/iK > /i}. Let x < A such that x = min{x | A* > A}. Observe that /xK > xK- Otherwise,
A < ^ < [iK < xK < AK, and so x < * by minimality of x« Hence A < /z* < x* = 2*.
But (C * K) holds and A < 2K, so Z> is not stable in A by Theorem 4.5, a contradiction.

Now, by definition of (C * K), there exists an increasing, continuous chain of
D-sets {Ai | i < K} and a type p G SD(AK) such that | A;| < \i\ -f Ko and

p f i4j+i splits strongly over Ai, for each i < K.

By definition of strong splitting, for each i < AC, there exist {a^ \ a < u} indiscernible
over Ai and <f>i (x, £) G L(T) such that both <fo (x, ag)»anc^ "'^i (x?^i) belong to p \ Ai+i.

For each rj G K > / i , construct a type p^, a D-set ^^ and an elementary mapping
Gv, by induction on £(rj) such that:

(1) p^ G SoiBrj) and if 7/ -< i/ thenp,, C p^ and Bv C 5,,;
(2) Grj is an elementary mapping from A^^ onto B^;
(3) | ^ | < AC;

(4) For each c G C the set {a < \x \ c realizes p^a} has cardinality less than x-

Let BQ = Ao, G() = id^0 and p^ — p \ A§. For 77 such that (̂77) is a limit ordinal,
define everything by continuity. For the successor case, suppose that p^, Bv and G^ have
been constructed for 7/, with £(77) = i. Let F be an elementary mapping extending Gv with
domain AK. Let 6^ = F(al

a), for a < u. Then {6^ | a < u} is indiscernible over Bv.
Hence, we can extend this set to {bl

a \ a < /1} such that {bl
a \ a < /i} is also indiscernible

over Bn. For a < /i, let G ^ Q be an elementary mapping extending Gv, with domain
Ai+i such that GT?a(aj)) = 6^ and G^ a(af) = 6^+1. This is possible by indiscernibility.
L e t p ^ a = Gtfalp \ Ai+\) and B^a = r a n G ^ a . Hence (l)-{3) are satisfied. To see
(4), observe that for each a < fi, both <j>i{x, bl

a) and -»</>i(x, bl
a+1) belong to p^-a. Since

{b^l a < fi} is indiscernible and x < A < Ax, (4) follows from the previous proposition.

The construction implies the conclusion. Let B — II K> Bn. Then \B\ <

H<K . n — /i, by choice of K. For each 77 G K\x> letp^ = U»<«P»7t*- By continuity, each p,,
is a D-type and let a^ realize p^. Then tp(a r?/B) G SD(B). By (4), for each c G C , the
set {77 G */J I av = c] has cardinality at most xK and we observed that xK < MK- Hence,
|S£>(i?)| > //, so D is not stable in [i. •

We finish this section with the Stability Spectrum Theorem.

Theorem 4.17 (The Stability Spectrum). Let D be a finite diagram. Either D is not stable,
or D is stable and there exist cardinals K < A < 3(2m)+ such that for every cardinal fi,
D is stable in \i if and only iffi > A and fi<K — [i.

Proof If D is not stable, there is nothing to prove. If D is stable, let X(D) be the first
cardinal A for which D is stable A. Then X(D) < 3(2m)+ by Corollary 3.11. Moreover,
K(D) is defined and K(D) < \{D) by Theorem 4.11.

Let fi be given. If /x < A(D), then D is not stable in \x by choice of X(D).
Suppose that /i > \{D). I f /X < K ( D ) = /i, then D is stable in /1 by Theorem 4.14. If
^<K(Z>) > ^ t h e n D i s n o t s t a b l e i n ^ b y Theorem 4.15. •
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5. THE HOMOGENEITY SPECTRUM

The section is devoted to the proof of the Homogeneity Spectrum Theorem (The-
orem 5.9). The proof will proceed by cases, and is broken into several theorems. There
are two types of results. On the one hand there are theorems showing the existence of a
(D, A)-homogeneous model of cardinality A from assumptions like stability in A and A<A.
On the other hand, there are results showing that such models do not exist from the failure
of these conditions. The combinatorial properties defined in the previous section and parts
of the Stability Spectrum Theorem will play a crucial role.

Theorem 5.1. Let A > \D\ be such that A<A = A. Then there is a (D, \)-homogeneous
model of cardinality A.

Proof. First, by Zermelo-Konig, A is regular. By the downward Lowenheim-Skolem the-
orem, define an increasing continuous chain {Mi \ i < A) of jD-models of cardinality A,
such that Mi+i realizes every D-type over every ACM of cardinality less than A. This
is possible since we have only A<A = A subsets of A of cardinality less than A and only
\D\\A\ < A<A = A D-types over A. Let M = [Ji<x Mi. Then M has cardinality A, and
since A is regular, M is (D, A)-homogeneous. •

Theorem 5.2. Let A > \D\ be such that A<A > A. IfD satisfies (B * A) then there is no
(D, A) -homogeneous model of cardinality A.

Proof Suppose A<A > A > \D\. Assume, by way of contradiction, that there is a {D, A)-
homogeneous model M of cardinality A. Since D satisfies (B* A) there exist D -types pv G
SoiBrj) and <^(z, a^) for 77 G A >2 such that ^(x, a^) G p^0 and - ^ ( x , a^) G p^i. In
additionp^ C pu when rj -< v. By Remark 4.3, we may assume that \B^\ < \£(r])\+ -f No.
Hence, by (D, A)-homogeneity of M, we may assume that B^ C M for each 7] G A > 2 .

For each /J, < A and 77 G ^2, there are 2M types in 5£>(J5r?). Each such type is
realized in M, since M is (D, A)-homogeneous and so 2^ < A, since M has cardinality A.
Hence, A is singular, since otherwise A<A = A. Furthermore, A is a strong limit (if there is
/i < A such that 2^ = A, then Acf(A> = 2" cf(A> < A, contradicting Zermelo-Konig).

Let K = cf (A) and let A; < A for i < K be increasing and continuous such that
A = Y*i<n ^i- L e t MQM of cardinality Az for i < K such that M = | J i < K Ai.

For each i < K, define a sequence 77* G A >2 and a finite set Ci+i such that

(1) If i < j thenrji -< 77̂ ;
(2) Ci+i is a finite subset of J9^i+1;
(3) The type Pm+x \ Ci is not realized in A\.

This is enough: Let p — \]i<K p^. Then p \ \Ji<K Ci is a D-type (by continu-
ity) over a set of cardinality K, which is not realized in M. This contradicts the (£>, A)-
homogeneity of M since K < A.

This construction is possible. Define 770 = (), and for S < K a limit ordinal let
77a = \Ji<6 rji. For the successor case, assume that 77̂  G A >2 is constructed. Define ra =
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7]fOa, where 0 a is a sequence of zeroes of order type a, fora < 2Xi. Then ra G A > 2,
since Aj < A and A is a strong limit.

We claim that there are a < 0 < (2A*)+ such that |= <j>T<x [c, aTo] <H> </>T0[c, aT/3],
for every c G A{.

Suppose that this is not the case. Let A{ = {c7 | 7 < Aj}. Then, for every
a < P < (2Ai)+ there exists 7 < Aj such that |= -«(0Ta[c7,aro] ** 0T/3[c,ar/3]). By the
Erdos-Rado theorem, there is 7 < A* and an infinite set S C (2A l)+ such that for every
a < (3 in S we have |= -*(0ra [c7, a r j «->• ̂  [c, a^])- This is an immediate contradiction.

Hence, let a < f3 be as in (*). Let Ci+\ = aTa U aT/3 and let 7)i+i = TQ"1. Since
0T a(x,a r Q) and -^<j>Tp{x,aT0) are in p ^ ^ , f C*, the type p,,.+1 is omitted in A{. This
finishes the construction and proves the theorem. •

The next theorem is, in particular, an improvement of Proposition 4.16. It allows
us to define averages (Definition 5.4). Averages are used in Theorem 5.6.

Theorem 5.3. Let D be stable. Let I be an infinite indiscernible set over A of cardinality
at least K(D). Let b e €. Then there is J C I with \J\ < K(D) such that I \ J is
indiscernible over A U J U b.

Proof. Let I = {ci\ i < a}. Since D is stable, K,(D) is defined by Theorem 4.11. Hence,
there exists B C A\J I of cardinality less than K{D) such that the type tp(b/A U / ) does
not split strongly over B. Let J = B\A. Then J C I has cardinality less than K(D). We
will show that / \ J is indiscernible over A U J U 5. Clearly, / \ J is indiscernible over
A U J . If / \ J is not indiscernible over A U J U b, then, there exist an integer n < u>
and indices i0 • • • < in such that tp(co, . . . , cn/A U J U 6) / tp(ci0 , . . . , c i n / A u J U 6 ) .
Then [= </>[co,..., cn ,a , 6, c] and f= -></>[ci0,..., cin, a, 6,c],_for some formula <£ G L(T),
parameters a G A and c G J. Let Jo = Co • • • Cn and d\ = Cio~... ~c;n. By taking
sequences from / \ J , it is easy to find {di \ i < u} indiscernible over A U J . Thus
{dfcTc I i < u} is indiscernible over A U J. Hence, the type tp(6/A U J) splits strongly
over A U J , a contradiction to the choice of JB. •

Definition 5.4. Let / be an indiscernible sequence of cardinality at least K{D). Let A be
such that A U / is a D-set. Define the average of I over A, by

Av(J, A) = {0(x,o) I 0(5,y) G L(T),fi G A, and |= # , a ] ,

for at least K(D) elements b G / } .

Theorem 5.5. Lef D 6e stable. Let I be an indiscernible sequence of cardinality at least
K(D) and A be such that A U I is a D-set. Then Av(J, A) G S%(A), where n = £(a)for
a e I. In addition, if\I\ > \A\, then Av(7, A) is realized in I.

Proof Averages are complete: Assume <£(#, c) # Av(/, A), with c G A. Then by defini-
tion, the set J C I of elements realizing <j)(x, c) has cardinality less than K(D). Thus, since
I\J has cardinality at least AC(D), and all elements in / \ J realize - ^ (x , c), necessarily
-i0(x,c) G Av(/, A). Averages are consistent: Let</>i(x,ci),... , 0 n (x ,c n ) G Av(7, A).
Then, if c = c ^ . . . ~cn, by Theorem 5.3, there is Jg, J? C I of cardinality less than K(D)
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such that I \ Jd is indiscernible over c. Hence, since each (j>i(x,Ci) was realized by at
least K(D) elements of / , we can find one in / \ J5. But then, all elements in / \ Jd

realize <f>i(x,Ci) by indiscernibility (1 < i < n), so {<j)\{x,ci),... ,(f>n(x,Cn)} is consis-
tent. The last sentence follows similarly: For any c G A, every element of / \ J? realizes
Av(/, A) \ c, since they realize every formula in it, and so if | / | > \A\, we can find
b e I\ Uc€A ^ realizing Av(/, A). It remains to show that Av( J, A) is a £>-type: Notice
that if we stretch I to J, I C J indiscernibles of cardinality greater than \A\, we have
Av(J, A) = Av( J, A). Then Av(J, A) is realized in J , thus in £, since J is a D-set, and
so Av(J, ̂ 4) is a D-type. D

Theorem 5.6. Let A > |D|. IfD is stable in A, then there is a (D, \)-homogeneous model
of cardinality A.

Proof Suppose first that A is regular. Define an increasing continuous chain {Mi | i < A)
of models of cardinality A, such that Mo realizes all the types in D, and Mj+i realizes all
the types over Mi. Such a construction is possible since D is stable in A and A > \D\. Let
M = Ui<A Mi. Then, M has cardinality A and M is (D, A)-homogeneous by regularity
of A.

Now suppose that A is singular. Construct an increasing continuous chain of
models {Mi \ i < A • A) as above of length A • A. Let M — U»<A-A ^i- Notice that M has
cardinality A. We now show that it is (D, A)-homogeneous. Let ACM of cardinality less
than A andpo £ SD(A). We will find / indiscernibles of cardinality greater than \A\ with
p0 = Av(J, A). Letp e SD(M) extending p0 andchooseC C M of cardinality less than
K{D) such that p does not split strongly over C. Since D is stable in A, then \<K(D>> = A
by Theorem 4.15. Hence, cf(A) > K(D). Thus, considering the sequence {M\.i \ i < A)
we can find i < A such that C C M\i.

We claim that p does not split over MA-I+A- Otherwise, there are b and c in M
and 4>{x, y) such that cf>(xy b) G p, ->< (̂x, c) G p and

tp(b/Mx.i+\) = tp
Let q := tp(b/M\.i+\). Now, since A is singular, we have u; < A. Consider the following
set

{j < A : q \ MA . i + w .( i + 1 ) splits over MA.<+ U , .J}.

Since D is stable in A, in particular (*A) fails so we can find 7 with

A - i < 7 < 7 + u ;<A-A

such that q \ M1+UJ does not split over M7 . For each n < u>, we can choose bn G M 7 + n + i
realizing tp(6/M x + n ) . Now, tp (6 n /M 7 + n ) does not split over M7 (Vn < u) by mono-
tonicity. Hence {bn J n_ < w} are indiscernible over M7 , by Fact 4.12. Similarly, both
{bo,bi,...,b} and {60, b\,..., c} are indiscernible over M 7 . In fact, since D is stable, D
does not have the order property by Corollary 3.12, and thus they are indiscernible sets by
Remark 3.4. Now suppose that for some n < u, the formula (f>(x, bn) G p. Then p splits
strongly over C since

{6n, c, bn+\,... } is indiscernible over C.

Otherwise ->0(x, b0) G p. Then p splits strongly over C because

{6,60, b\,... } is indiscernible over C.



SHELAH'S STABILITY SPECTRUM AND HOMOGENEITY SPECTRUM IN FINITE DIAGRAMS. 23

We have a contradiction in both cases, which proves the claim.

We now use the claim to prove the conclusion of the theorem. First, we may
assume that A • i = 0, so p does not split over Mo. Now for each a < A • A, choose aa G
MQ + i realizing/? \ Ma. Since p does not split over Mo the sequence/ := {aa \ a < AA}
is indiscernible. Let 0(x,a) G po- There is ao < A2 such that <t>{x,a) G po f M a o , so
we have that |= </>[aa, a] for every a > ao. Hence there are A > K{D) many elements of
/ realizing </>(#, a), showing that (/>(#, a) G Av(7, A). So Av(7, ̂ 4) D p0 and since both
types are complete, we have p0 = Av(7, A). Thus since | / | > \A\9 there are elements of 7
realizing po- This shows that p0 is realized in M. Hence M is (D, A)-homogeneous. •

The next lemma is an improvement of Corollary 3.8. It is needed in the proof of
Theorem 5.8.

Lemma 5.7. Let D be stable. Let A C B be D-sets such that every D-type over A is
realized in B. Fix n < LJ and define

r := {p G Sp(B) | p does not split over A}.

Then, for each p G F, there is a sequence (a? \ i < to) indiscernibles over A such that

(*) P ^ e T implies tp«a? : i < LJ)/A) # tp((af : i < u>)/A).

Moreover,

m<u)

Proof. It is enough to establish (*), since the last statement follows from (*) by a compu-
tation.

For each p G F, define

J p : = (a? : !<«(£>) ) ,

by induction on i < K(D) such that tp(a%/B U {a^ : j < i}) extends p and does not split
over A. This is possible by Lemma 3.7. By Fact 4.12 the sequence Ip is indiscernible over
A. Hence, it is enough to show that

tp«a? : i < K(D))/A) # tp«o? : i < K(D))/A), forp # q G F.

We will use the following claim.

Claim. If 6 G B and 6i G C such that tp(6/A) = tp(6i/A), then

|{t < K(D) : tp(^ag/A) ^ tp(5fa?/

Proof of the Claim. To show this, define {af : K ( D ) < i_< K(D)+}, by induction on i
(K(D) < i < K(£>) + )

 s u c n t h a t t p ( o ? / B u {aJ : i < *} u bi) extendsp and does not split
over A. Hence, by Fact 4.12, / ' = {a? : i < «(£>)+} is indiscernible. By construction

tp{b^apJA) = tp(^af/A) = tp(^a?/A), for i > K(D),

since 6 G B and 7P is indiscernible over B. Thus

\{i G 7; : tp(6^ag/i4) = tp(5fa?
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but then, all a\ G V but a subset of cardinality less than K(D) are indiscernibles over b U 61
and so

\{i G V : tp(Va*/A) # tp(SrafM)} | < «(£>).

The claim follows since Ip C / ' . •

Suppose by way of contradiction that there are p ^ q G F with

tp«of : t < K{D))/A) = tp«a? : t < «(I>)>/A).

Since p ^ q, there is 6 G £ and (j>{x,y) such that (f>(x,b) G p and -»0(#, 6) G g. By
construction, |= 0[af,fe] and |= ->0[a?,6], for all i < K{D). Let / be an elementary
mapping such that f \ A — idj\ and /(af)_ = a? for z < K(D). Clearly, / exists
by assumption on p and q. Call 61 = /~1(6). By applying the claim, we know that
|{t < K(D) : tp(b~a%/_A) # tp(5faf/i4)}| < K(D), hence let of, (i < «(£>)) such
that tp(6"ag/A) = tp(6faf/A). But, by definition of / , we know that tp(6faf/A) =
tp(^a?/A). Hence tp(6"ag/i4) = tp(&a|/i4). Since 0(x, 6) G tp(^ag/A), we then must
have f= (f>[aj, b], the desired contradiction. •

We now prove the last significant ingredient of the Homogeneity Spectrum The-
orem.

Theorem 5.8. Let A > \D\ be such that \<x > A. Suppose that D is stable but not in A If
D does not satisfy (*A) then there is no (D, X)-homogeneous model of cardinality A.

Proof By way of contradiction, assume that M is a (D, A)-homogeneous model of car-
dinality A. Let {AQ I a < cf(A)} be an increasing continuous chain of sets such that
|i4a | < A and M - Ua<cf(A) A«-

Since D is not stable in A, there is a D-set B of cardinality A such that |5/>(i4)| >
A. Then, by Lemma 2.3 we may assume that B C M since M is (D, A)-homogeneous.
Hence|5D(M)| > A.

We first claim that for each p G SD(M), there is a < cf (A) such that p does not
split over Aa.

Suppose not. Let p G SD{M) such that p splits over every Aa. If A is regular,
then A = cf (A) and this implies that D satisfies (*A), a contradiction. Suppose that A is
singular. For each a < cf(A), choose ba, ca in M and <j)a(z,y) such that tp(6a /yla) =
tp(cQ/Aa) and </)a(x,ba) G p and -^<t>a(x,cQ) G p. Thenp \ {ba,ca} is not realized in
Aa. Set A := Ua<cf(A)$<*, Ca}> Then p \ A is not realized in Ua<cf(A) ^ a - M. This
contradicts the (D, A)-homogeneity of M since \A\ < cf (A) < A. This proves the claim.

Now since |£x>(M)| > A, by the pigeonhole principle, there exists F C SD(M)
of cardinality A+ and a < cf (A), such that if p G F, then p does not split over Aa. Since
Aa C M of cardinality less than A and M is (D, A)-homogeneous, we are in the situation
of the previous lemma. Thus for each p G F there is {af : i < u} an indiscernible set over
Aa such that

p?q ifandonlyif tp«fif : i < u)/Aa) ? tp((5? : i < «>)/Aa).
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Using the (D, A)-homogeneity of M and the fact that |AQ| • < A, construct {&£ :
i < UJ} C. M for each p £ T with the following two properties:

(1) tp«6£ : j < i)/Aa) = tp«fi> : j < i)
(2) If tp«fij : j < i)/Aa) = tp((a? : j < i)/Aa), then fo? = 6? for every j < i.

We now show that

(*) 6£#5J, i fp^^er .
Let p, q € F such that p ^ q.By construction, we have that

tp«a* : j < u,)/Aa) ? tp((oj : j < u)/Aa).

Hence, there is a minimal i < u> such that

tp(5g,.. .tfsZ+JAa) * tp(ag,... ,a«S«+1A4o).

By minimality of i and (1), we have

(**) tP(5g,..., %/Ac) = tP(Eg,..., 6?/ia).

Now, we have the following equations

tp(5g, . . . , ttfrjA*) = tp(og, . . . , 5?oSM a) (by definition (2))

= tp(a£ , . . . , a^a^+1 /Aa) (by indiscernibility)

# tp(ag , . . . , a?a?+ 1 /Aa) (by choice of z)

= t p ( a j , . . . , a^a^/Aa) (by indiscernibility)

= tp(5g, . . . , 5?5SMft) (by definition (2))

Hence (*) follows from the previous equations and (**).

Therefore (*) implies that we have |F| many different elements 6£ £ Af. This is
a contradiction, since

in = A+ > A = ||M||.

This finishes the proof. •

We can now present the Homogeneity Spectrum Theorem.

Theorem 5.9 (The Homogeneity Spectrum). There exists a (D,\)-homogeneous model
of cardinality A if and only ifX > \D\ and either D is stable in A or A<A = A.

Proof The proof is divided into 5 cases.

Case 1: A < \D\. Then, there can be no (D, A)-homogeneous model M of cardinality
A, since we require that D(M) = D, and there are not enough elements in M to
realize all the types in D.

Case 2: A > \D\ and A<A = A. Then, there exists a (D, A)-homogeneous model M
of cardinality A by Theorem 5.1.

Case 3: A > \D\ and D is stable in A. Then, there is a (£>, A)-homogeneous model
M of cardinality A by Theorem 5.6.
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Case 4: A > \D\, A<A > A and D is not stable. Then, by Corollary 4.7, D satisfies
(*A). Hence D satisfies (B * A) by Lemma 4.4. Therefore, there is no (D, A)-
homogeneous model M of cardinality A by Theorem 5.2.

Case 5: A > \D\, \<x > A and D is stable but not in A. This case is divided into two
sub-cases according to whether D satisfies (*A). If D does satisfy (*A), then D also
satisfies (B * A) by Lemma 4.4. Therefore the result follows from Theorem 5.2.
If D does not satisfy (*A), then by Theorem 5.8 we have no (D, A)-homogeneous
model of cardinality A.

The proof is complete. •

6. LOCAL STABILITY AND LOCAL HOMOGENEITY IN FINITE DIAGRAMS

In this section, we set the necessary definitions to localize the results of this paper.
We fix a type and show that all the results of this paper hold inside the set of realizations
of this fixed type, with the appropriate local definitions.

Fix E(x) a set of L(T) -formulas, maybe over a D-set of parameters. We localize
the notion of types with respect to E. For a model M, denote by E(M) the set of realiza-
tions of E(£) in M. In the following definition, E is used as a superscript to avoid clashes
with the notation set so far.

Definition 6.1. For A a £>-set, let

S%(A) = {tp(c/A) | A U c is a £>-set and c realizes E}.

Although the definition makes sense for any A C M, it will only be used when
A C S(M).

Definition 6.2. A model M is (J9, A, S)-homogeneous, if M realizes every type in Sp(A),
for each A C E(M) of cardinality less that A.

We can relax the monster model assumption to:

Hypothesis 6.3. There exists a £>-model C such that € is (D,K,E)-homogeneous, for
some R larger than any cardinal needed in this paper.

We will work inside S((£). The results of Section 2 hold relativized to realizations
of E. Thus, £ can be assumed to contain every JD-set A C E(M), for any Z^-model M.
And also £ is homogeneous with respect to subsets of E(£). Write S%(A) for S^(A, C),
(note ACE(€) is always assumed).

Here are the local version of stability and order:

Definition 6.4. (1) D is (A, Testable if \S%(A)\ < A for every A C E(C) of cardi-
nality A.

(2) D is Testable ifD is (A, E)-stable for some cardinal A.

Definition 6.5. (1) D has the (A, S)-order property if there exist a formula </>(x, y) £
L(T) and a set {a2 | i < A} C £(£), such that

f= (f>[di,aj] if and only if i < j < A.
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