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REMARKS ON LOCAL STABILITY AND THE LOCAL ORDER
PROPERTY

RAMI GROSSBERG AND OLIVIER LESSMANN

ABSTRACT. We continue the study of stability of a type in several directions:
(1) Inside a fixed model, (2) for classes of models where the compactness theo-
rem fails and (3) for the first order case. Appropriate localizations of the order
property, the independence property, and the strict order property are introduced.
We are able to generalize some of the results that were known in the case of local
stability for the first order theories, and for stability for nonelementary classes
(existence of indiscemibles, existence of averages, stability spectrum, equiva-
lence between order and instability). In the first order case, we also prove the
local version of Shelah's Trichotomy Theorem. Finally, as an application, we
give a new characterization of stable types when the ambient first order theory is
simple.

1. INTRODUCTION

Victor Harnik and Leo Harrington in [HH], while presenting an alternative
approach of forking to that of Saharon Shelah [Sh a], started a localized general-
ization of stability theory extending Saharon Shelah's Unstable Formula Theorem
(Theorem II 2.2 [Sh a]). This work was later continued and extended by Anand
Pillay in [P]. About ten years later Zoe Chatzidakis and Ehud Hrushovski in their
deep study of the model theory of fields with an automorphism [CH] as well as
Ehud Hrushovski and Anand Pillay [HP] discovered natural examples of this phe-
nomenon in algebra and obtained results in local stability for first order simple
theories.

In parallel, Rami Grossberg and Saharon Shelah continued their study
of stability and the order property in contexts where the compactness theorem
fails; inside a model and for nonelementary classes (see for example [Grl], [Gr2],
[GrShl], [GrSh2], [Shl2], and [Sh300]).

The goal of this paper is to continue the study of local stability both in the
first order case and in cases where the compactness theorem fails. When possi-
ble, we have tried to merge first order local stability with nonelementary stability
theory and obtain results improving existing theorems in two directions. Three
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frameworks, listed in decreasing order of generality, are examined: (1) Inside a
fixed structure; (2) For a nonelementary class of structures; (3) For the first order
case. Hence, the results of (1) hold for (2) and those of (2) hold in (3). We study
local versions of stability and the order property in (1) and (2). In (3), we also
study local versions of the independence property and the strict order property. By
locals we mean inside the set of realizations of a fixed type.

In (1) and (2), since the compactness theorem fails, we cannot use the
forking machinery or definability of types, as [HH], [P] and [Sh a] do. Hence, the
methods used have a combinatorial and set-theoretic flavor. Also, by (2) we mean
the study of models of an infinitary logic, or of the class P C ( T i , T , r ) (see the
beginning of Section 3 for a definition). Hence, in addition to the absence of com-
pactness, we have to do without the existence of saturated or even homogeneous
models, as such models do not exist in general. Thus, frameworks (1) and (2) are
more general than the study of finite diagrams [Sh3], also known as stability inside
a homogeneous model, which was recently the focus of some activity, for example
by Tapani Hyttinen and Saharon Shelah or Olivier Lessmann. In fact, for a treat-
ment of local stability in the context of finite diagrams including the complete local
stability spectrum and the local homogeneity spectrum, see [GrLe].

The basic structure assumption will be the impossibility of coding, via a
formula in a given logic, a linear order of a certain length inside the set of real-
izations of a fixed type p. Note that this is slightly different from the terminology
used by some authors, but essentially equivalent. (It is equivalent when the com-
plexity of the formula used to code the order is of no importance.) It is a natural
assumption to make. It is known that the existence of long orders implies the ex-
istence of many nonisomorphic models (see Theorem VIII 3.2 in [Sh a]), even in
nonelementary cases (see for example [Shi2] and [GrShl]).

The paper is organized as follows:

In Section 2, we study stability and order for the realizations of a type p
inside a fixed model M. In particular, the model M may omit many types. Denote
by p{M) the set of realizations of p in M. We prove that the impossibility of coding
a linear order of a certain length inside p(M) implies local stability (Theorem 5).
By local stability, we mean the usual definitions in terms of the number of types
extending the fixed type p. This is used to prove the existence of indiscernibles
(Theorem 9), as well as averages (Theorem 12).

In Section 3, we study these local notions for classes of models that fail
to satisfy the compactness theorem. We obtain a characterization of local stability
for such a class of models in terms of the failure of the local order property, and a
version of the stability spectrum (Theorem 16).

Finally, in Section 4, we particularize our discussion to the first order case.
We introduce local version of the independence property and the strict order prop-
erty. We prove the local version of Shelah's Trichotomy Theorem: the local order
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property is equivalent to the disjunction of the local independence property and the
local strict order property (Corollary 21). We characterize the local independence
property in terms of averages (Theorem 23) and give, as an application, a charac-
terization of stable types in terms of averages when the ambient first order theory
is simple (Corollary 26).

Credits have been given throughout the text when particular cases of these
results were known, either in the local first order case, or the nonlocal nonelemen-
tary case.

2. LOCAL NOTIONS INSIDE A FIXED MODEL

In this section, we work inside a fixed structure M. Denote by L(M)
the set of first order formulas in the language of M 1. We will say formulas for
L(M)-formulas.

Let p be a fixed set of formulas (maybe with parameters in M) such that p
is realized in M. Denote by p(M) the set of elements of M realizing p.

Recall the notion of complete type inside a model. Let A C M, A be a set
of L(M)-formulas and c € M. We let

tpA(c/A, M) = {<f>(x, 5) | 5 € J4, </>(X, y) e A or -x/>(z, y) € A, M (= <f>[c, a]}.

We omit A when A = L(M).

For ACM and A a set of formulas, we let

SA,P(A} M) = {tpA(c/A, M)\ce M and c realizes p }.

We omit A when A = L(M).

For a type q and a set A, we denote by q \ A the set of formulas in q with
parameters in A. For a set of formulas A, we denote by q \ A the set of instances
in q of formulas of A.

The next two definitions are the main concept of this paper.

Definition 1. For an infinite cardinal A > \L(M)\, the model M is said to be
(\,p)-stable if \SP(A, M)\ < X for each A C p(M) of cardinality at most A.

Note that in the above definition we make demands only on subsets of
p(M). In fact, throughout the rest of this paper, we will only deal with types
q € SP(A, M) such that A C p(M).

1This is arbitrary, we may consider for L(M) a fragment of a larger logic, or even a subset with
some weak closure properties.
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Definition 2. M has the (X,p)-order property if there exists a formula 4>{x, y) £
L{M) and a set {ca\i < X} C p(M), such that

M f= (/)[ai, CLJ] if and only if i < j < A.

The first theorem (Theorem 5) is a local version inside a model of Shelah's
Theorem that the failure of the order property implies stability for complete, first
order theories. A generalization of Shelah's theorem for nonelementary classes
and in the local case will appear in the next section (Theorem 5). Theorem 5 will
also be used in a key way to prove existence of indiscemibles (Theorem 9) and
averages (Theorem 12) in this section. The technical tool needed to prove it is
splitting. Recall the definition.

Definitions. Let q € SP(B,M), with B C p(M). Let Ai, A2_C L{M). The
type q is said to (Ai,A2)-£p/ft over A, if there exist elements b,c € B anda
formula <f>(x, y) € A2 such that tp A l (b/A, M) = t p A l (c/A> M) and both 0(x, b)
and -»0(x, c) belong to q. We simply say splits for (L(M), L(M))-splits.

The next fact is a variation on Exercise 1.2.3 from [Sh a].

Proposition 4. Let B C C C p(M) and let ACM. Suppose that B realizes all
the types in 5A2 ,P(-4) that are realized in C. Let q,r € S&liP(C) such that q, r do
not (Ai, A2)-split over A lfq \ B = r \ B, then q = r.

Suppose q ^ r. Then there exists 0(x,y) G Ai and c e C such that
<p(x,c) e q and ^ ( x , c) € r. Consider tpA2(c/^4,M). By assumption on B,
there exists b € 5 such that tpA2(b/A, M) = tpA 2 (c/A, M). Since neither g, nor
r (Ai, A2)-split over A, we have 4>{x,b) € q and ~»0(x,6) 6 r. This contradicts
the assumption that q \ B = r \ B. D

The following theorem localizes results from [Shl2] and [Grl]. The proof
appearing in [Shi 2] uses generalizations of a theorem of Paul Erdos and Michael
Makkai appearing in [EM]. The proof given here is simpler and closer to [Grl].

Theorem 5. Let (j, and X be cardinals such that /x > \L(M)\, A^ = A, and X >
22/i. IfM does not have the (/z*yp)-orderproperty, then M is (X,p)-stable.

Proof. Suppose that M is not (A,p)-stable. Then, there exists A C p(M) of car-
dinality A such that |5P(A, Af)| > A.

For each q € SP(A, M), we have (q \ <f>) e S^P{A, M). Define

/ :5 p (A,Af) — n ^ L 5 ^ ( i 4 , A f ) , by f(q) = (q \ 4>)^L{My

Then, / is a well-defined injection. Observe that

| n * W * p ( * M ) | < > |L(M)I < A" < A+ < \S,{A,M)\.

By the pigeonhole principle, we can find <f> € L(M) such that \S^P{A, M)\ > A.
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Fix <f>(x, y) as above and choose {a* | i < A+} C p{M) such that i ^ j
implies tp^(fij/A, M) ^ tp^aj/A, M).

Write x(y>x) := <t>(x,y). Define ( ^ | z < A) an increasing continuous
sequence of subsets of p(M) containing A, each of cardinality at most A, such that

(*) J4J+I realizes every type in SP(B, M), for each B C Ai with |JB| < /x.

This is possible: Having constructed A{ of cardinality at most A, there are at most
\» = A subsets B of Ai of cardinality //. Further, for each such J9, we have
\SP(B, M)\ < 2^ < A, so we can add the needed realizations in Ai+i from p(M)
while keeping |-Ai+i| < A.

We now claim that (*) allows us to choose, for every i < A+, an index j ,
with i < j < A+, such that for each / < /x+ the type tp^(fij/j4/+i, M) (x, <t>)~
splits over each B C Ai of cardinality at most //.

Otherwise, there is i < A"1" such that for every index j , with i < j < A+,
there exists / < /i+ and JB-7 C AI of cardinality /i such that tp^cij/Ai+i, M) does
not (x, 0)-split over BK By the pigeonhole principle (since A+ > fi) we can find
S C A+ of cardinality A+, an ordinal / < / i+ , and B C Ai+\ of cardinality fi such
that tp^aj/Ai+i, M) does not (x, 0)-splits over J5, for every j e S. By (*) we
can choose C C Ai+\ of cardinality at most 2^ such that C realizes every type in
5XiP(J5,M). Then, since \S^P(C,M)\ < 22M < A+, by the pigeonhole principle,
we may assume that tp^cij/C, M) is constant for j G 5. By Proposition 4, we
must have tp^(a;7^4;+i,M) = tp^(5i/i4/+i,M), for i, j 6 5. This contradicts
the choice of a*s and the fact that A C Ai+\.

Define {c/,d/,6/ | I < /i+} C ^2/+2 and Bi = [j{ck,dk,bk \ k < 1} such
that:

(1) BiQA2l and \Bi\<fi;
(2) tp x (q/B/ ,M) = tpx(dt/BhM)i
(3) Both 0(x, c/) and -»^(x, rf/) belong to tp(t>{aj/A2u M)\
(4) 6/ e A2i+\ realizes both </>(x, Q) and -i0(x, d/).

This is possible: Let BQ = 0 and B/ = (Jfc</ B*. when / is a limit ordi-
nal. Having constructed Bi C A2\ of cardinality at most //, the type tpJaj/A2i)
(X><£)-splits over B\ and hence there are cu&i e A2\ with tpx(c//J3/,M) =
Xpx{d\jBu M) and 0(x, Q) and -><£(£, d/) G tp</,(dJ7/>l2/, M). Then, by Construc-
tion we can find 6/ G u42/+i realizing tp^aj/ciduM) so (4) is automatically
satisfied.

Now, the set {bfcfdi \ I < //+} C p(M) and the formula

il){xQ,x\,x2,yo,yi,y2) := 0(xo,yi) ^ (f>(xo,y2)

demonstrate that M has the (/x+, p)-order property. D
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The following definition generalizes the notion of relative saturation.

Definition 6. We say that a set C C M is relatively (\p)-saturated if C realizes
every q € SP(B, M) for every BCC such that |J5| < A.

The following lemma is a version of K(T) < |T | + for the notion of split-
ting.

Lemma 7. Let \ibea cardinal such that /x > |L(M)|. Suppose that M does not
have the (/z+\p)-orderproperty. Suppose that B C p(M) is relatively (/i+,p)-
saturated. Then for each q € 5P(J5, M) there is A C B of cardinality at most \i
such that q does not split over A.

Proof Suppose, for a contradiction, that there exist a relatively (/L*+,p)-saturated
set B and a type q £ SP(B,M)> such that q splits over every A C B of cardinality
at most /i.

We will show that M has the (/z+,p)-order property. Construct a sequence
of sets (Ai | i < /x+) such that:

(1) Ao = 0;
(2) Ai = Ujf<i A?> when £ is a limit ordinal;
(3) Ai C B, for each i < /x+;
(4) |i4f | < /x, for each z < /x+;
(5) There are fc € L(M) and a*, 6* € -Aj+i, such that tp(a,i/Ai,M) =

tp(6i/-Ai, M) and <p(x, di) and ->0(x, 6f) are in q;
(6) Ai+i contains c\ realizing q \ (Ai

This is possible: For i = 0 or a limit ordinal, it is obvious. Suppose that
J4J has been constructed. Since \Ai\ < \x and A\ C B9 q splits over 4̂*. Hence,
there exist a formula <fo € £ (M) , and a ,̂ bi € B demonstrating this. Since B is
relatively (/i+,p)-saturated, and q \ (Ai U a ^ ) € Sp(Aj U a;6i, M), there exists
at € B realizing q \ (Ai U aibj). Let Ai+\ = A» U {ai, 6i, c^}. All the conditions
are satisfied.

This is enough: By the pigeonhole principle, since \i > \L(M)\9 we may
assume that there exists <f> € L(M) such that fa = </>, for each i < /z+. Now
consider {cfdfbi \ i < /x+} and the formula

It is easy to see that they demonstrate that M has the (/x+, p) -order property. D

The following fact is Lemma 1.2.5 of [Sh a].

Fact 8. Let B C p(M) and let {di \ i < a} C p(M) be given. Consider the type
qi = tp(di/B U {aj | j < £}> ̂ ) € 5P(B U {dj \ j < i}, M) and suppose that
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(1) Ifi < j < a then qi C qy,
(2) For each i < a the type qi does not split over B.

Then {cli \i < a) is indiscernible over B.

The next theorem is a generalization of two theorems. (1) When p is stable
for every model of a first order theory, a version of this theorem appears in [P]. (2)
When p := {x = x} , it appears in [Grl].

Theorem 9. Let y and A be cardinals such that /x > \L(M)|, AM = A, and A >
22*\ IfM does not have the (//+,p)-order property, then for every I C p(M) and
every A C p(M) such that | / | > A > \A\, there exists J C I of cardinality A+

indiscernible over A.

Proof Let / = {a* | i < A4"}. By the pigeonhole principle, we may assume that
^(ai) = ^(a j),for2\j<A+.

Define (Ai \ i < A+) C p(M) such that:

(1) Ao = A;
(2) Ai = Uj<i Aj9 when j is a limit ordinal;
(3) ^ C p(M);
(4) |i4j| < A, for every i < A+;
(5) Ai+i contains a*;
(6) Ai+i realizes every type in 5P(J5, M), for each B C Ai of cardinality at

most /i.

This is possible: For t = 0 it is clear. If i is a limit ordinal it is easy.
Let us concentrate on the successor stage. Assume that Ai of cardinality A has
been constructed. By cardinal assumption, there are A = Â  subsets B of Ai of
cardinality /i, and for each such B we have \SP(B, M)\ < 2M < A. Hence, Ai+\
satisfying (3)-(6) can be found.

Consider the following stationary subset of A+

Let n := tpfa/AuM). Then clearly n € SP(AUM). Now, for each i e S,
since cf (i) > ^ + , the set Ai is relatively (/i+,p)-saturated. Hence, by Lemma 7,
there exists B\ C Ai of cardinality at most /z such that r* does not split jover Bi.
Furthermore, since cf (i) = /x+, there exists j < i such that Bi C Ay

This shows that the function / : 5 —• A+ defined by

f(i) = min{j | Bi C A,},

is regressive. Hence, by Fodor's lemma (see Theorem 22 of [Je]), there is S' C 5
of cardinality A+ and io < A+ such that for each i € S' we have Bi C A^. Since
there are only AM = A subsets of 4̂i0 of size //, we may assume, by the pigeonhole
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principle, that there exists a set B C Aio such that Bi = B for each i € S'. Now,
M does not have the (/i+,p)-order property, and \** = A, so Theorem 5 implies
that M is (A,p)-stable. Hence, \Sp(Ai0,M)\ < A, and thus by the pigeonhole
principle, we may further assume that tp(ai/Aio, M) = tp(aj/Aio, M), for every

S'

By re-enumerating if necessary, we may assume that S' \ (io + 1) = A4".
Now let

« := tp(ai/AiQ U {8, | j < t}) € 5p(^z0 U {CLJ \ j < i}).

By Proposition 4 we have that qi C ^ if i < j . Thus, all the assumptions of Fact 8
are satisfied, so J = {a* | z < A+} is indiscernible over A, since A C ^4io. This
finishes the proof. •

In the previous theorem, we demanded that A be a subset of p(M). The
next remark summarizes what we can do when i C M i s not necessarily contained
in p{M). It follows from the previous theorem by considering an expansion of
L(M) with constants for elements in A,

Remark 10. Let /x > |L(T)| be a cardinal. Let i C M b e given and suppose that
M does not have the (/i+, p)-order property even allowing parameters from A. Let
A^ = A and A > 22/i. Then, for every / C p(M) of cardinality A+, there exists
J C I of cardinality A+ indiscernible over A,

Definition 11. Let / be an infinite set of finite sequences. Let A C M. We define
the average of I over A in M as follows

Av(J, A, M) := {0(2,8) | a € J4, 0(2, y) € L(M),

and M |= 0[c, a] for | / | elements eel}.

We will be interested in conditions guaranteeing that averages are well-
defined. It is a known fact (see Lemma III 1.7 (1) of [Sh a]) that if M is a model of
a complete, first order, stable theory T, then for every infinite set of indiscernibles
/ and A C M, the average Av(J, A, M) is a complete type over A. Also, if
| / | > \A\ + /c(T), then the average is realized by an element of/ (this is essentially
Lemma III 3.9 of [Sh a]). A corresponding local result (Theorem 23) in the the
presence of compactness will be given in Section 4. Inside a fixed model, the
situation is more delicate. The next theorem is a localization of Conclusion 1.11 in
[Sh300]. Notice the similarity with the assumptions of Theorem 9.

Theorem 12. Let \i and A be cardinals such that \i > |L(M)|, AM = A, and A >
22*\ IfM does not have the (/x+ ,p)-order property, then for every I C p(M) of
cardinality A+, there exists J C I of cardinality A+ such that for each A C p(M)
the average Av(J, A, M) is a complete type over A. Moreover, if\J\ > \A\, then
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Proof. Let I = {aa \ a < A+}. We may assume by the pigeonhole principle that
there exists n < u such that £(aa) = n, for each a < A+.

We first essentially repeat the proof of Theorem 9 and construct a sequence
(AQ | a < A+) such that:

(1) Ao = 0, As = Ua«5 <̂* when <5 is limit, and -AQ C AQ+\.
(2) AaCp(M).
(3) |>1Q| < A, for every a < A+.
(4) Aa+\ contains aQ.
(5) >la+i realizes all types in Sp(Aa, M).

This is possible: Since M does not have the (/z+,p)-order property, then M is
(A,p)-stable by Theorem 5. Hence, \Sp{Aa,M)\ < A inductively, for each a <
A+.

Now (5) implies that

(6) If cf((5) > /i+ then As is relatively (/i+,p)-saturated.

As in the proof of Theorem 9, we can find a set 5 C {6 < A+ | cf(6) > /x+} of
cardinality A+ and an ordinal a(*) = min 5 such that

(7) For each a € 5, the type tp(aQ/MQ, M) does not split over Aa^y
(8) If a, /? € S and a < 0 then tp(5Q/i4o, M) C tp{a0/Ap, M).

We claim that the set J = {aQ | a G 5} is as desired. To show this, we
will show that

(*) For every c € p{M) and <p(x, y) e L{M), either

\{a£S : M\=<t>[aQ,c)}\<v or |{a e S : M f= -</>[aQ,c]}| < /i.

This implies the conclusion of the theorem: For A C p(M), condition (•) implies
that Av( J, Ay M) is a consistent set of formulas over A, as each finite subset is
realized by all but \i many elements of J. Since Av( J, A, M) is always complete,
we have that Av( J, A, M) is a complete type over A. For the last sentence, notice
that all but \A\ + \L(M)\ + fi elements of J realize Av( J, A, M). Hence, if A+ >
\A\9 then there exists aQ e J C p(M) realizing Av( J, A, M) (as A > /i+\L(M)\).
This shows that Av( J, A, M) € SP(A, M).

Let c € p(M) and <£(x, y) 6 L(M) be given. Since c € p(Af) then
tp(c/i4o, Af) € 5p(j4a, Af). Hence, by (5), we can find {ca \ a e S} C p(M)
satisfying

(9) cQ €
(10) ca realizestp(c/^4Q+i,M).
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We will prove (*) by finding a set of ordinals E of cardinality /i such that
either {a 6 5 : M (= 0[aQ> c]} C £ or {a € S : M [= ->0[aQ, £]} C £ .

We construct the set £ , as well as a set C C Ax+ with the following
properties:

(11) \E\ < / iand |C | </ i .
(12) A+ € E.
(13) If a + 1 € E then a € E and if 6 e E and cf (6) < \i then sup(£ n 6) = 5.
(14) If S e E and cf(<5) > /z+, then tp(c/-A$,M) does not split over C n -A*.

Moreover, C n A6 C j4SuP(£n<5)-

This is possible: Construct l?n and Cn of cardinality at most /i by induction on
n < u. Let £b = {^+} and Co = 0. Then, by (6) and Lemma 7 we can find Cn+i
of cardinality /i such that tp(c/j4$, M) does not split over Cn+i n As for each (5 €
£ n with cf (5) > /x+. Furthermore, we can add at most /x many ordinals to jEn+i
to ensure that C n + 1 C i4sup(£n+1n(5). Thus, E = Un<u; £ n and C = Un<u; C'n are
as desired.

This is enough to prove (*). In fact, to show that {a € 5 : M f=
0[aa, c ] } C £ o r { a G 5 : M [ = ~»0[aQ, c]} C J5, it clearly suffices to show

(**) M \= 4>[aQ, c] <-> <j>[ap, c], for every a,(3 e S\E.

Notice that by construction (11)—(14) the set 5 \ E is partitioned into at
most /x intervals of the form {a G 5 | sup(£l Pi 5) < a < 5}, where 6 e E with
cf (<5) > /i+ . If such an interval is nonempty, then it must have size at least /i+ .
We will make use of this and prove (**) in two stages. In the first part, we will
show that (**) holds, provided a and 0 belong to the same interval, and then in the
second part, that (**) holds also when a and /? belong to different intervals.

Let S e E be such that d{6) > /i+. Denote by SQ = sup(J5 n S). Now let
a,(3 € S such that So < cc < 0 < S. Without loss of generality, assume that M (=
<f>[aQ, c]. Then <j>(aa, y) € tp{c/A6, M). By (14) the type tp(c/A$, M) does not
split over CHASQASQ. But, by (8), we have tp(aQ/As0, M) = tv(ap/A&0, M).
Hence, by nonsplitting 0(a#, y) € tp(c/As, M) and so M \= <f>\ap, c].

To prove the second part, we first claim that

(t) M (= 0[5Ol, £ft] «-> ̂ [aQ2, Cfo], for every QI > Pi and a2 > fa in 5.

To see this, let 7 = max(ai, a2). Then by (8) and (9) (recall that ordinals in S are
limit), we have M f= (/>[aai,Cft] ^ 4>\Ph,cpi] and also M (= <j>\aQ2,cp2) ++
(fta-iiCfo). Now by (10) we have that tp(c0l/Aa^),M) = t p ^ / ^ l ^ ) ^ ) ,
and by (9), both cp^Cfc £ A1. But by (7) the type tp(a1/A1,M) does not
split over Aa^y Hence, ^ ( x , ^ ) € tp(a 7 /^ 7 ,M) if and only if <f)(x,cp2) 6
tp(a7/i47, M), and therefore, M f= 0 ^ , c/jj ^ < [̂a7, £&]. This proves (f).
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Now for the second part, let 6, £ € E with cf (5) > //+ and cf ( 0 > /i+ .
Denote by So = sup(E 0 S) and fo = sup(£ n f). Assume that So < £o and let
i e S with SQ < i < S and j e S with £o < j < £• To show: M (= 0[6i, c] <->
(/>[aj, c]. Suppose M |= ^((^[ai, c] <-> 0[5j, c]). We will derive a contradiction by
showing that M has the (jx+ ,p)-order property.

Assume, without loss of generality, that M f= <t>\a^ c] and M f= -^[a?, c].
We distinguish two cases.

Case 1: Suppose M (= 4>[aj,Ci) (recall j > i). Then, by (f), we have
that M (= 0[aa, c^], for every a/(3 € S with a > /?. On the other hand since
M (= -*<f>[a,j, c], the first part of this argument shows that M |= -u£[aa, c], for each
ae S with f0 < a < £. Hence, by (10), for each /? G 5 with a < p we have that
M =̂ ̂ [ a Q , c^]. Thus, for a, 0 e 5 n [̂ o, 0 » w e h a v e

M |= ~»0[aQ, c ]̂ if and only if a < (3.

This implies easily that M has the (/i+,p)-order property.

Case 2: Suppose M \= -i<p[aj,Ci}. Similarly to Case 1, we obtain the
(/x+,p)-order property by using the interval 5 fl [6Q,S) and the fact that M f=
<f>[auc}.

3. LOCAL ORDER AND STABILITY FOR NONELEMENTARY CLASSES

In this short section, we will examine the stability of p with respect to all
the models of a given class of models /C. Let us fix the concepts. We will work
inside the class K = PC(7i, T, T). Recall that for T C Ti and V a set of Ti-types
over the empty set, we let

PC(7i, T, r) = { M f L(T) : M (= Ti and M omits every type in T)

We will denote by fi(fC) = p(\Ti\, \T\), the Hanf-Morley number for /C. Recall
that /z(A, K) is the least cardinal \i with the property that for every PC(2i, T, T)
with |7i| < A and |r| < K, ifPC(TuT,T) contains a model of cardinality //,
then it contains models of arbitrarily large cardinality. It is known for example that
when « = |r| = 0, then //(/C) = No. For |r| > 1, then ^(K) = ^ ( | T l M r | ) . Recall
that 5(A, K) is the least ordinal S with the property that for every PC(7i ,7 \r)
with |Ti| < A and |r| < /c, ifPC(TuT,T) contains a model with a predicate
whose order type is S, then it contains a model where this predicate is not well-
ordered. Much is known about such numbers. Here are some of the known facts.
First S(A, 0) = LJ and rf(A, K) is always a limit ordinal. We have monotonicity
properties: if Ai < A2 and K\ < K2, then S{\\, K\) < S(\2, K2). Also, if 1 < K <
A then <5(A,K) = <J(A, 1). In general S{\K) < (2A)+. Finally, suppose K < A
and A is a strong limit cardinal of cofinality Ho, then S(\, K) = A+. See Lemma
VII.5.1 and Theorem VII.5.5 of [Sh a] or [Gr b]



12 RAM1 GROSSBERG AND OLIVIER LESSMANN

Choosing to carry out the theorems of this section in a PC-class is ar-
bitrary. We could have chosen to study any sufficiently general class of models
extending the first order case in which the compactness theorem fails. For exam-
ple, the class of models of an infinitary sentence ifr € L^^ or L\+u. All the results
of this section hold for such classes and the proofs can usually be used verbatim.

As in the previous section, we will fix p a set of L(T)-formulas (with
parameters).

We expand the definitions we made in the first section for the class /C.

Definition 13. (1) Let A be a cardinal. We say that p is stable in A, if for every
M G /C, M is (A,p)-stable.

(2) We say that p is stable if there exists a cardinal A such that p is stable in A.

Definition 14. (1) We say that p has the \-order property if there exists M € K
such that M has the (A,p)-order property.

(2) We say that p has the order property if p has the A-order property for every
A.

Using the tools of [Shi2] (finer results are in [GrShl] and [GrSh2]) we
observe:

Fact 15. The following conditions are equivalent.

(1) p has the order property;
(2) p has the X-order property for every A < /i(/C);
(3) p has the ii{K)-order property;
(4) There exists a model M € /C, a formula <f)(x, y), and an indiscernible se-

quence {cii | i < /x(/C)} C p(M), such that

M (= <p[ai, aj] if and only if i < j < M(/C).

We now prove a version of the stability spectrum and the equivalence be-
tween local instability and local order. Nonlocal theorems of this vein appear in
[Shl2].

Theorem 16. The following conditions are equivalent.

(1) p is stable;
(2) There exists a cardinal K(/C) < fi{IC) + \L(T)\+ such that p is stable in

every A > fi{K) satisfying XK^ = A.
(3) p does not have the order property.

Proof (2) =>(1) trivially.

(3) => (2): Since p does not have the order property, by Fact 15 there exists
a cardinal K < fi(K) such that no model of K has the («+,p)-order property. Let
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A > fi(fC). Then, automatically, since n < ii(K) and /x(/C) is either No or a strong
limit, we have A > 22*. Let K(JC) = K + \L(T)\. Hence, if A > /x(/C) satisfies
X*^) = A, and M € /C, then Theorem 5 implies that M is (A,p)-stable. Thus, p
is stable in A.

(1) => (3): This is again a standard application of Hanf number techniques.
We give just a sketch. Suppose p is stable in A. Let T* be an expansion of T\ with
Skolem functions, such that \T* | = |Ti |. Let K be smallest such that 2* > A. Using
the order property and the methods of Morley, we can find M* f= T* such that
M = M* \ L(T) e /C, with <£(z, y), and {a* | i < a;} C p(M) demonstrating the
p-order property. Furthermore {a* \ i < u} C p(M) is T*-indiscernible. Hence,
by compactness, we can find a model N* \= T* and a set {a^ \ rj € *~2} C
p(N*) demonstrating the p-order property with respect to the lexicographic order.
Furthermore, for every n < u

t p ( a ^ , . . . , fi^/0, JV*) = t p ( 5 0 , . . . , 5 n / 0 , M*), for every i/0 < • • • < vn.

We may assume that N* is the Ehrenfeucht-Mostowski closure of {av \rj e *~2} ,
since T* has Skolem functions. Let N = N* \ L(T). Then N € K. Consider
A = U ^ « > 2 ^ C p(N). Then |^ | < 2 < / c < A and \SP(A, N)\ = 2K > A. Thus,
iV is not (A, p)-stable, a contradiction. •

Remark 17, In the first order case, ii(K) = Ho and so p is stable if and only if p is
stable in every A such that X^T^ = A. In the first order case, most authors define
stable types using (3) with /x(/C) = No-

4. LOCAL ORDER, INDEPENDENCE, AND STRICT ORDER IN THE FIRST ORDER

CASE

In this section, we will fix a complete, first order theory T and obtain
results for the class of models of T. As usual, we work inside the monster model C,
a model which is fc-saturated, for a cardinal R larger than any cardinality mentioned
in this paper. Hence, all sets will be assumed to be inside C and satisfaction is
defined with respect to C. We will write SP{A) for SP(A,€) and Av(I,A) for
Av(J, A, £) as is customary. As before, we fix a (nonalgebraic) T-type p. Denote
by dom(p) the set of parameters of p.

All the results we have obtained so far hold with /x(/C) = No-

We first give local versions of Saharon Shelah's first order notion of inde-
pendence and strict order property (see [Sh a]).

For a statement t and a formula <p, we use the following notation: 0* = -»<£
if the statement t is false and <f>% = <f>9 if the statement t is true. We will use the
same notation when t € {0 ,1 } , where 0 stands for false and 1 stands for truth.
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Definition 18. (1) We say that <p(x, y) has the p-independence property if for
every n < u there exists {a* | i < n) C p(£) such that

p(x) U {0(x, ai)tew \i <n} is consistent, for every w C n.

We say that p has the independence property if there exists a formula </>(x, y)
with the p-independence property;

(2) A formula <f>(x, y) is said to have the p-strict order property if for every
n< u there exists {a* | z < n} C p(<£) such that

f= 3x(-i^(x, a*) A <£(x, a^)) if and only if i < j <n.

We say that p has the strict order property if there exists a formula <£(x, y)
with the p-strict order property.

Proposition 19. Ifp has the independence property or the strict order property,
then p has the order property.

Proof Suppose first that p has the independence property. Then, some 4>(x, y) has
the p-independence property. Hence, by compactness there exist I = {a* | i <
u} C p(M) such that for every n < u and w C n there exists c G p(<£) realizing
the formula f\i<n </>(x, ai)tew. We show that <j> has the p-order property. For each
k < n, let c* G p(C) realize {0(x,ai) | i < k} U {-»0(x, ai) | i > k,i < n}.
Then, we use {cfai \ i < n} and the compactness theorem to show that the formula
tK^o, x\; y0, yi) := ^(^o, j/i) has the p-order property.

Suppose that p has the strict order property. Let </>(x, y) have the p-strict
order property. Then, the formula tp(yi, j/2) : = 3x(-»0(x, yi) A 0(x, y2)) has the
p-order property. D

The next two results depend explicitly on the parameters of p.

Theorem 20. Let </>(x, y) be a formula with the p-order property. Then, either
4>{x,y) has the p-independence property, or there exist x(%)> the conjunction of
finitely many formulas ofp, an integer n < u and a sequence 77 G n2 such that
the formula \{x) A Ai<n #(*> w)17^ has the p-strict order property (maybe with
parameters from dom(p)j.

Proof By Fact 15 (4) there exists an indiscernible sequence {a* | i < UJ) C p(C)
such that

j] ifandonlyif i<j<u.

Further, by a standard compactness argument using Ramsey's Theorem, we may
assume that {a» 11 < u} is indiscernible over dom(p), the set of parameters ofp.

If <£(x, y) does not have the p-independence property, then there exists
n < u> and w Qn such that

(*) p(x) U {0(x, ai)lew 11 < n} is not consistent.
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Letiu* = {n —|ty|,n-|iy| + l ,n- | tt; | + 2,. , . , n - l } . Since <j> has the p-
order property, we have that |= <l>[an_\w\-i,ai] if and only if n-\w\ < I. Therefore,
by definition of it;*, the tuple an-\w\-\ realizes p(x) U {(j)(x, ai)lew* \ I < n}, and
so

(*•) p(x) U {<t>{x, at)
lew* | / < n} is consistent.

Now, construct a sequence (wt \ i < i*) of subsets of n of cardinality \w\ such
that wo = w9 Wi* = u;*, and for each i < i*9 there exists k € W{ such that
Wi+i = Wi U {k + 1} \ {k}. Notice that because of (*) and (**) and the definition
of (wi | i < i*), we can find i < i* such that p(x) U {<t>{x, a{)leWi+l \ I < n) is
consistent, while p{x) U {</>(x, ai)leWi \ I < n} is not.

Let k £ Wi such that K;J+I = it;* \ {fc} U {k + 1} (note that k + 1 ^ raj).
We then have,

(t)
p(x)U{0(x,a/)'€ti;S-i0(x,afc),0(5,ajt+i) | Z < n,Z ^ fc,fc+1} is consistent

and

p(x) U {</>(x, a/)/€u;i, -»0(x, a^+1), 0(x, a*) | Z < n, Z ^ fc, fc + 1} is inconsistent.

Hence, by the finite character of consistency, we can find x(%)> the conjunction of
finitely many formulas of p, such that

(t) |= ^3x[x(x) A ( / \ 0(5, a;)^^) A -^(x, ajk+1) A 0(5, afc)].

Define the formula ^(5, y, f), where z = zo,..., 2k-u Zk+2> • • •, ^n-i by

X(5)A( / \ ^ z

To conclude the proof we show that ip(x, y, z) has the p-strict order property:

Let m < u be given. For every j < m w e let

where a^+j is to be substituted for the y-variable, and ao~.. /a m +n-i is to be
substituted for the variable £(f... ^ -

It is enough to check that

|= 3£(-i^(*, ^ ) A V7^, e72)) if and only if jx < j 2 .

For convenience, denote by c the following sequence a$... a^_iafc+2 • • • 5n-i- By
indiscernibility of {a^ | z < a;}, we have the following equalities

(***) tpte71, e7'2/dom(p)) = tp(o*c, afc+ic/dom(p)), if jj < j 2 ,

c/ dom(p)), if ji = j 2 ,

c, akc/dom(p)), if jx > j 2 .
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We distinguish three cases.

If j i < J2- By the first equality of (***), it is enough to check that
=̂ 3x(-»t/>(#,ak,c) A T/>(x,<2fc+i,c))). By definition of ipy it is enough to show

that p(x) U {^(«1S|)'€^>-^(x lajfe),*(x,afc+i)) \ I < n,l ? k,l * k + 1} is
consistent, which is true by (f).

If ji = J2> then by the second equality of (***) f= 3x(-»i/;(x,c-71) A
ip(x, c72)) if and only if f= 3x(-*ip(x, a*, c) A ^(x, a*, c)). Therefore, we have

If ji > J2, then use the third equality of (***), and (J) to conclude that
A *p(x,&>))]. D

The next corollary is the local version of Shelah's Trichotomy Theorem
(see Theorem II 4.7 of [Sh a]).

Corollary 21. Assume that p has no parameters. The type p has the order property
if and only ifp has the independence property or p has the strict order property.

Proof. Suppose p has the order property. Then some formula <j> has the p-order
property. Thus, by Theorem 20 p has the independence property or the strict order
property (without parameters, since dom(p) = 0).

The converse is Proposition 19. •

The following is an improvement of Theorem H.2.20 of [Sh a].

Lemma 22. The following conditions are equivalent

(1) p does not have the independence property;
(2) For every infinite indiscernible sequence I C p(<£) and for every formula

<p(x, y) E L(T) there exists an integer n^ < w such that for every c G p{M)
either

\{a e I : h= 4>[a,c]}\ < n^ or \{a € / : \= -^[fi,c]}l ^ **•

Proof (1) => (2) Let </>(x, y) and / be given. Suppose (2) fails. Then, by compact-
ness, we can find c 6 p(C) and a sequence {d* | i < u} C p(<£) indiscernible over
dom(p) such that

(*) |{t < u : |= <t>[ai,c]}\ = No and \{i < u> : |= -*/>[&*c]}\ = «0-

We are going to show that <f>(xy y) has the p-independence property. Let n < u> and
it; C n. It is enough to show that

(**) p(y) U {0(di, y) i €u ; | i < n} is consistent.

To see this, construct a strictly increasing sequence of integers (im \m <n) such
that € f= <f>[a>im,c] if and only if rn € w. This is easily done by induction using
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(*). By indiscernibility of {a* | i < u;}, (•*) holds if and only the set of formulas
P(y) U {<P(aimi y)m€w | m < n) is consistent, which is the case, since it is realized
bye.

(2) =$• (1) Suppose that <f>(x, y) has the p-independence property and / =
{ai | i < u} C p(C) demonstrate this. Then, for each n < u9 and for each w C n
we have

p(x) U {<p(x, a,i)iew | i < n} is consistent.

Hence, by compactness, we can find an indiscernible sequence J = (bi \ i < u} C
p(C) and c 6 p(C) such that both {i < u> : f= (/>[c, bi]} and {i < u; : |= ->0[c, bi]}
are infinite. Hence both 0(c, y) and -»< (̂c, y) belong to Av( J, c). Thus Av( J, c) is
not consistent, which contradicts (2). D

We can now answer the question of when averages are well-defined and
characterize types without the independence property.

Theorem 23. The following conditions are equivalent:

(1) p does not have the independence property;
(2) For every infinite indiscernible sequence I C p(<£) and every subset A C

p(C) the average Av(7, A) is a complete type. Furthermore, Av(7, ̂ 4) £
SP(A).

Proof. (1) => (2): Let I,AC p(£) and / be an infinite indiscernible sequence.
By Lemma 22 (1) => (2), we have that Av(I,A) € S(A). Furthermore, since
/ £ p(C), we have Av(J, A) G SP(A).

(2) => (1): We prove the contrapositive. Suppose that p has the indepen-
dence property. Then, by Lemma 22 (2) => (1), there exists an infinite indiscernible
sequence / C p(C) and a 6 p(C) such that both <t>(x, a) and -»^(5,5) belong to
Av(7, a). This contradicts (2). D

We now give an easy characterization of stable types in simple theories.
The following fact is due to Shelah and appears in [Sh93].

Fact 24. IfT is simple then T does not have the strict order property.

We make use of the following observation.

Proposition 25. If the formula <p(x, y, b) with parameter b € £ has the p-strict
order property, then T has the strict order property.

Proof We show that T has the strict order property, by showing that <t>(x, y, z) has
the strict order property. But, for each n < u;, there exists {cii | i < n} C p(C)
such that

, ai, b) A 0(x, (ij, b)) if and only if i < j < n.
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Thus, for each n < u9 the set {afb \ i < n} shows that <j>(x, y, z) has the strict
order property. •

Corollary 26. Let T be simple. The following conditions are equivalent:

(1) pis stable;
(2) For every infinite indiscernible sequence I C p(<£) and for every A C p(C),

we have Av(7, A) € SP(A).

Proof (1) => (2): Let p be stable, then p does not have the order property by
Theorem 16. Hence p does not have the independence property by Proposition 19.
Hence, (2) follows from Theorem 23.

(2) => (1): Suppose p is not stable. Then p has the order property by The-
orem 16. Thus, p has either the independence property or the strict order property
(maybe with parameters) by Theorem 20. Since T is simple, by Fact 24, we have
that T does not have the strict order property. But, if p has the strict order property
with parameters, then T has the strict order property by Proposition 25. Therefore,
p has the independence property, and so (2) fails by Lemma 23. •
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