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1. INTRODUCTION

A close analysis of the concepts and techniques that have played an important
role in the development Banach space theory in the last thirty years reveals that a
number of these are closely related to concepts that are studied in model theory.
Examples are:

1. Indiscernible sequences (called 1-subsymmetric sequences in Banach space
theory);

2. Ordinal ranks;
3. Ehrenfeucht-Mostowski models (called spreading models in Banach space the-

ory);
4. Spaces of types;
5. Stability;
6. Ultrapowers;

In some cases, these concepts have been introduced by adapting directly a construc-
tion from model theory to the context of Banach space theory (prominently, the case
of Banach space ultrapowers, introduced by D. Dacunha-Castelle and J.-L. Krivine
in [12]), in other cases, by analogy (e.g., the case of Banach space stability, intro-
duced by J.-L. Krivine and B. Maurey in [46]), and yet in other cases, concepts
which are studied in model theory, as well as their connections with others, have
been discovered independently by analysts (as in the case of indiscernible sequences
— and their construction using Ramsey's Theorem — which were introduced by
A. Brunei and L. Sucheston in the study of ergodic properties of Banach spaces;
see [5]).

In addition, some concepts that play a central role in Banach space theory (e.g.,
that of finite representability) can be seen naturally as model theoretical phenom-
ena (loosely speaking a Banach space X is finitely represented in a Banach space
Y if and only if Y is a model of the existential theory of X). There are even simi-
larities between classification programs in both fields. For example, the dichotomy
reflexive/unreflexive in Banach space theory is equivalent, in a categorical sense, to
the dichotomy stable/unstable in model theory. (See [37].) Also, in both fields, the
role played by partition theorems is regarded as fundamental.

These phenomena suggest that the relation between these two fields is rather
deep. Given the remarkable technical complexity that both fields have attained
in the last thirty years, it is natural to suggest that it would be desirable to have
clearly understood channels of communication between them so that techniques
from one field might become useful in the other. Some considerations are in order,
however.

1. First order logic is not the natural logic to analyze Banach spaces as models.
Banach space theory is carried out in higher order logics, as is functional
analysis in general. Furthermore, a result of S. Shelah and J. Stern shows
that the first order theory of Banach spaces is equivalent to a second order
logic. (See [64].)

2. The concepts from Banach space theory listed above are not the literal trans-
lations of their first order analogs. For instance, a Banach space ultrapower
of a Banach space X is not an ultrapower of X in the sense customarily
considered in model theory, and is not an elementary extension of X in the
sense of first order logic. However, there is a strong analogy between the role
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played by Banach space ultrapowers in Banach space theory and that played
by elementary extensions in model theory.

Let us illustrate this point with a second example. What is regarded in
Banach space theory as the "space of types" is not what is understood as the
space of types in the first order sense. Let us recall definition given in [46]:

Let X be a fixed separable Banach space. A type is a function
r{x): X —» R such that there exists a sequence (xn) in X
satisfying

r(x) = lim ||a;-f xn||.
n—•oo

The set of types is regarded as a topological space with the
topology of pointwise convergence.

This notion of space of types is motivated by the corresponding notion
from first order logic. A priori, it is not entirely clear what the analogy is.
However, as we shall see, both notions are connected by a natural translation.

A formal framework for a model theoretical analysis of Banach spaces was intro-
duced by C. W. Henson in [31]. Although this framework was originally introduced
for Banach spaces, it generalizes naturally to include rich classes of structures from
functional analysis. The unique feature of this logical approach to analysis is that,
although it is appropriate for structures from functional analysis, it preserves many
of the desirable characteristics of first order model theory, e.g., the compactness the-
orem, Lowenheim-Skolem theorems, and omitting types theorem. (In fact, it pro-
vides a natural setting for the classification theory, in the sense of [63], of structures
from infinite dimensional analysis.) Furthermore, it provides a uniform foundation
for the contributions mentioned above. For example, the role played by analytic
ultrapowers in this framework mirrors that played by algebraic ultrapowers in first
order model theory; also, types in the sense of [46] described above correspond
exactly to quantifier-free types in this context, indiscernibles in the sense of [5]
are quantifier-free indiscernibles, and the kind of Banach space stability introduced
in [46] corresponds exactly to quantifier-free stability of the structure.

The problem of how the classical sequence spaces £p (1 < p < oo) and CQ occur
inside every Banach space has played a central role in Banach space geometry for
more than half a century. The first example of a Banach space not containing £p

or Co was constructed by B. S. TsirePson [67]. Shortly after Tsirel'son's example
appeared in print, J.-L. Krivine [45] published a celebrated result (now known as
Krivine's Theorem) which states that for every Banach space X there exists p
with 1 < p < oo such that £p is block finitely represented in X. The spectacular
breakthroughs that have taken place in Banach space theory in the 1990's (see the
historical notes at the end of the paper) confirm the long held belief that Krivine's
Theorem in fact states the ultimate way in which the classical spaces £p and CQ
occur as subspaces of every Banach space.

A question that still remains open is what conditions on the norm of a Banach
space guarantee that the space contains £p or c$ almost isometrically. The most
elegant partial answer to this question known so far is the theorem proved by J.-
L. Krivine and B. Maurey in [46] which states that every stable Banach space
contains some £p almost isometrically.

In this paper we use the model theoretical framework introduced by Henson to
prove these two famous results. In the original proofs, various concepts motivated
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by analogies with model theory played a fundamental role (prominently, that of
Banach space ultrapowers). However, these connections are in the background
of the proofs and not easily visible. Here, we bring the model theoretical ideas
to the foreground. We prove a general principle about block representability of
£p in arbitrary indiscernible sequences (Theorem 11.1) from which both Krivine's
Theorem and the Krivine-Maurey theorem about £p subspaces of stable spaces
follow easily.

The exposition is entirely self contained. A basic course in model theory (for
example, the first three chapters of [10]) will more than suffice for the prerequisites
in logic. The prerequisites in Banach space theory are minimal. We assume that
the reader is familiar with the definition of the £p sequence spaces and with the
definition of Banach space operator.

The historical notes at the end of the paper should be regarded as an integral
part of the exposition. We suggest that the reader consult the notes corresponding
to each section before and after studying the section. By no means have we tried to
be exhaustive. We have mentioned only the writings that have shaped the author's
view of the subject.

A word about notation. Model theorists use the letters p, q, etc. to denote
types. However, in Banach space theory, these letters are reserved to denote certain
parameters, specifically, the parameter p in the Lp(fi) spaces. For this reason, we
have denoted types by the letters £,£', etc. We have also avoided using the letter
T to denote theories, as in Banach space theory it is customarily used to denote
operators.

2. PRELIMINARIES: BANACH SPACE MODELS

2.1. Banach Space Ultrapowers. A Banach space is finite dimensional if and
only if the unit ball is compact, i.e., if and only if for every bounded family (x{)iej
and every ultrafilter IX on the set / , the IX-limit

limx;

exists. If X is an infinite dimensional Banach space and IX is an ultrafilter on a set
/, there is a canonical way of expanding X to a larger Banach space X by adding for
every bounded family (xi)iEj in X an element x £ X such that ||x|| = lim^u \\%i\\-
This is the construction of Banach space ultrapower introduced by D. Dacunha-
Castelle and J.-L. Krivine in [12].

Let (Xi)i£i be a family of Banach spaces. Define

iei »€/ ieI

i) is naturally a vector space. An ultrafilter U on I induces a seminormiTiiei Xi) is naturally a v
too(YlieIXi) by definingon too(YlieI

lim

The set Nu of families (xi) in £oo{Y\ieI X{) such that ||(xt)|| = 0 is obviously a
closed subspace of £oo(Tliei -*"*)• W e define
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The space ]JieI Xi/U is called the U-ultraproduct of (Xi)ieI. If Xf = X for every
i £ / , the space Yliei Xi/U is called the U-ultrapower of X and is denoted X1 /U.1

If X1/U is an ultrapower of a Banach space X, the map x i-> fa), where xi = x
for every i £ / , is an isometric embedding of X into X1/U. Hence, we may regard
X as a subspace of X1 /IL This embedding is not surjective, except in the trivial
cases when U is a principal ultrafilter or the space X is finite dimensional.

An operator T of X can be extended naturally to an operator T1 /U on by
defining, for fa) + Nu in X7/U,

Clearly, ||T'|| = ||r||.
If { Ti }i£i is a family of operators on X and C is a subset of X, we will refer to

the structure

as a Banach space structure, and to the structure

( X'/U, T//U, c | i € J , c G C )

as the U-ultrapower of X.
Let { X }iej be a family of Banach space structures such that
1. There exist sets J, K such that for each i £ I

Xi = ( x, Titj, atk | jeJ, keK);

2. sup i€ / ||r»j|| < oo for every j £ J;
3. sup i e / HĉfcH < oo for every k G K.

Then it is natural to define for each j 6 J a n operator YlieI Tij/VL on Yliei Xi/IL
by letting

YlTij/U {fa) + Nu).eI = (Tute)) + JVU.

For every j £ J and k £ K, we have

|| nHj/UH =1)11111̂ 11, 11(^)^7 +ATull = Um ||̂ ,fc||.
iei

What is the relation between a Banach space structure and its ultrapowers?
In order to answer this question we need to discuss the logic of positive bounded
formulas and approximate satisfaction introduced by C. W. Henson in [30] and [31].

2.2. Positive Bounded Formulas. The fundamental distinction between the
concept of language in Banach space model theory and the usual concept first-
order language is that a Banach space language is required to come equipped with
norm bounds for the constants and operators.

Suppose that X is a Banach space, C is a subset of X, and { T{ }iei is a family
of operators on X. Let

X - ( X, Tj, c | j e J, c € C )

1From a model theorist's point of view, a Banach space ultraproduct is the result of eliminating
the elements of infinite norm from an ordinary ultraproduct and dividing by infinitesimals. Instead
of algebraic ultrapowers, one can deal with arbitrary models of a certain theory (as in [32]).
However, we have chosen to use Banach space ultrapowers as, for our purposes, they provide the
most straightforward approach.
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A language L for X consists of the following items.

• A binary function symbol 4- for the vector space addition of X;
• For each rational number r, a monadic function symbol (which we denote also

by r) for scalar multiplication by r;
• For each rational number M > 0, monadic predicates for the sets

{xeX\ \\x\\ <M} and {x e X \ \\x\\ > M } ;

• A monadic function symbol (an operator symbol) for each operator Ti;
• A constant symbol for each element of C;
• Upper norm bounds for each element of C and each operator Tf.

We say that X is a Banach space L-structure, or simply, an L-structure. We have
discussed the fact that class of L-structures is naturally closed under ultrapowers.

The terms and formulas of L are defined as usual. The class of positive bounded
formulas of L (or positive bounded L-formulas) is the class of formulas built up
from the atomic formulas

11*11 < M, ||t|| > M
(where t is a term of L and M > 0) by using the positive connectives A, V and the
bounded quantifiers

3z(||a;||<Af A . . . ) and Vx(||x|| < M -> .. . )

(where M > 0).
If ip is a positive bounded formula, an approximation of <p is a positive bounded

formula that results from "relaxing" all the norm estimates in (p, as indicated by
the following table.

In ip

11*11 < M
11*11 > M
3x(\\x\\ <

Vx(||x|| <

2.1. Notation.

:MA .. . )

\M -* . . . )

In approximations of <p

11*11 < N
11*11 > N
3x(\\x\\ ;

Vx(||x|| :

(AT;

• (N <

<N A

< A T -

>M)

;M)

. . . )

. . . )

(N>

(AT.

•M)

1. If </?, ip are positive bounded formulas, we write ip < ip' to denote the fact that
ip* is an approximation of tp.

2. If F is a set of positive bounded formulas, we denote by F+ the set of approx-
imations of formulas in F.

The negation connective is not allowed in positive bounded formulas, nor is the
implication connective, except when it occurs as part of the bounded universal
quantifiers. However, for every positive bounded formula <p there is a positive
bounded formula neg(ip) which in Banach space model theory plays a role analogous
to that of the negation of (p. We define the formula neg(^) by means of the following
table.
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2.2.

1.

In <p

11*11 < M
11*11 > M
A

V

3x(| |x| |<MA .. .

3x(||a;||<M A .. .

Remarks.
If (p, ip' are positive bounded

)

)

formulas,

In neg(</?)

11*11 > M
11*11 < M
V

A

Vx(||x|| < M

\fx{\\x\\ < M

t h e n u> < <//

- > . . . )

- • • • )

if and only if

2. If X is a Banach space //-structure and <p is a positive bounded L-sentence,
then X ^ </? if and only if there exists (pr > ip such that X |= neg(<//).

2.3. Proposition (Perturbation Lemma). For every positive bounded L-formula
ip(xi,... ,#n) , even/ y/ > ip, and every M > 0 i/iere exzste <5 > 0 5uc/i that for
every Banach space L-structure X,

X\= / \ | | a , | | < M A / \ Ha*-6 i | | <<J A ¥>(<*!,...,On)

Proof. By induction on the complexity of y?, using the fact that both the norm and
the operator symbols of X are uniformly continuous on every bounded subset of
X (and the moduli of uniform continuity are given by the language L, so do not
depend on the structure X). H

2.3. Approximate Satisfaction. In order to simplify the notation, from this
point on we will identify a Banach space structure with its universe.

If X is a Banach space L-structure and (p is a positive bounded L-sentence, we
say that X approximately satisfies <p, and write

if X \= <p' for every approximation ip1 of ip.
If F is a set of positive bounded sentences, we say that X approximately satisfies

F or that X is a model o/F, and write X \=A F, if X approximately satisfies every
sentence in F. In the notation introduced in 2.1, X \=A F if and only if X \= F+.

The notion of approximate satisfaction, rather than the usual notion of satisfac-
tion, provides the appropriate semantics for a model theoretical analysis of Banach
space structures.

2.4. Proposition. If X is a Banach space L-structure and ip is a positive bounded
L-sentence, then X Y^A V if and only there exists ipf > ip such that X \=A neg(y/).

Proof If X Y^A V, there exists (p' > ip such that X \£ <p'. Then X [= neg(<//)
and hence X \=A neg(<//). Assume, conversely, that there exists <// > (p such
that X \=A neg(<//) and take sentences ip,^1 such that <p < i/; < ip' < <pf. Then
X \= neg(ip') (by Remark 2.2) and hence X ^ ip, so X ty=A <p. H
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2.5. Theorem (Compactness). Let T be a set of positive bounded L-sentences such
that every finite subset of F is approximately satisfied by some Banach space L-
structure. Then there exists a Banach space L-structure which approximately sat-
isfies every sentence in F.

Proof. Let / be the set of finite subsets of F+, and for each i G I let Xi be a Banach
space L-structure satisfying every sentence in i. For every finite subset A of F+ let
F A be the set of alH G / such that Xi \= A. The family 7 of sets of the form FA
is closed under finite intersections. If U is an ultrafilter on / extending 7, then

iei
H

A positive bounded theory is a set of positive bounded sentences. If X is a Banach
space structure, we denote by Th^(X) the set of sentences which are approximately
satisfied by X.

2.6. Corollary. The following conditions are equivalent for a positive bounded the-
ory F in a language L.

1. There exists a Banach space L-structure X such that F = T\iA(X);
2. (a) Every finite subset of F is approximately satisfied in some Banach space

L-structure;
(b) For every positive bounded L-sentence <p, either cp G F or there exists

<pf > <p such that neg(ip') G F.

Proof The implication (1) => (2) follows immediately from Proposition 2.4. To
prove (2) => (1), use Theorem 2.5 to fix a Banach space L-structure X such that
X \=A F. Then Th^(X) C F, for if cp were in Th^(X) \ F, there would exist y>' > (p
such that neg(<p') G F C Th^(X), which is impossible. Hence F = Th^(X). H

If X and Y are Banach space //-structures, we say that X and Y are approxi-
mately elementarily equivalent, and write

X=AY,

if X and Y approximately satisfy the same positive bounded L-sentences. If X is
a substructure of Y, we say that X is an approximately elementary substructure
ofY, and write

X ^A Yy

if(X,a\aeX)=A{Y,a\aeX).

2.7. Proposition. Let X and Y be L-structures.

1. If A is a common subset of X and Y and A$ is a dense subset of A, then

(X, a | a e AQ ) =A (y, a | a G Ao ) implies (X, a \ a G A) =A (Y, a | a G A).

2. (Tarski-Vaught Test.) If X is an L-sub structure ofY, then X <A Y if and
only if for every positive bounded sentence (p in a language for (Y, a\ a€ X)
of the form 3x(tp(x)) such that Y \=A ip and every approximation tf of ip
there exists a G X such that Y \=A if)1 {a);

Proof. Part (1) follows from the Perturbation Lemma (Proposition 2.3). Part (2)
is a straightforward induction. -\
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2.8. Proposition. Let X be a Banach space structure.

1. If X is an ultrapower of X, then X <A X;
2. If Y is a Banach space structure, then Y =A X, if and only if there exists

a Banach space structure X >~A X and an embedding f : Y —> X such that
f(Y) <A X.

Proof. Exercise. H

Recall that the density character of a topological space is the smallest cardinality
of a dense subset of the space. For example, a space is separable if and only if its
density character is KQ.

2.9. Proposition. Let X be a Banach space structure in a countable language.

1. (Downward Lowenheim-Skolem Theorem.) For every set A C X there exists
a substructure Y of X such that ACY -<A X and

density(y) < density(A).

2. (Upward Lowenheim-Skolem Theorem.) If X is infinite-dimensional, then for
every cardinal K with K > density(X) there exists an approximately elemen-
tary extension of X of density character K.

Proof. To prove (1), let A$ be a dense subset of A and expand the language with
constant symbols and norm bounds for the elements of AQ. NOW apply Proposi-
tion 2.7 to the structure (X, a\ a e Ao).

To prove (2), let XQ be a dense subset of X and expand the language with
constants symbols and norm bounds for the elements of Xo. Expand the language
further with new constants symbols {c{ }i<K and norm bounds \\ci\\ = 1 for i < K.
Every finite subset of the theory

T l u ( X , a | a G X o ) U { \\ct - Cj\\ = 1 | i < j < K } .

is approximately satisfied in X, so the conclusion now follows from (1). H

2.4. (H-e)-Isomorphism and (l-he)-Equivalence of Structures. When do two
Banach spaces have isometric approximately elementary extensions? By Proposi-
tion 2.8, this happens if and only if the two Banach spaces are approximately
elementary equivalent. Furthermore, two structures

( X, a | ie I)

and

(Y,di\iel)

are approximately elementary equivalent if and only if there are approximately
elementary extensions X ^A X and Y >-A Y and an isometry from f:X—>Y such
that f(ci) = di for every i G / .

We now address the question of when two Banach spaces have isomorphic (as
opposed to isometric) approximately elementary extensions.

In the following discussion, L will denote a language that contains no operator
symbols.

For every formula <p of L and every rational e > 0 we define an approximation
as follows.
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In (p In

> M 11*11 > &
| < M A . . . ) 3x(| |i | | < M ( l + e)A

| < M - + . . . ) M

If F is a set of formulas of L, we denote by T\+e the set of (1 + e)-approximations
of formulas in T.

We say that two Banach space L-structures X and Y are (1 -I- e)-equivalent, and
write

x =i+e y,

if

X \=A (p implies Y \=A <pi+e-

Let us prove that =i+ e is a symmetric relation. Suppose

(ThA(X))^eCThA(Y)

and let ̂  be a positive bounded sentence such that Y ^=A <P- Fix (pf > <p. If
X \fc (p'1+€, then X (= neg(y?i+e). By assumption, Y \=A (neg(^ i + € ) ) i + € . But
(neg(y/1 + e))i+ € is equivalent to neg(<//), so Y \=A neg((p'). This contradicts the
choice of y>, by Proposition 2.4.

If 6 > 0, two structures

(X,Ci | i e / )

and

( V , * I * € / )

a r e s a i d t o b e ( 1 - f e)-isomorphic if t h e r e e x i s t s a l i n e a r i s o m o r p h i s m f : X — * Y
s u c h t h a t / ( c i ) = di f o r e v e r y i € / a n d | | / | | , \\f~l\\ < 1 + e, i . e . ,

(l + O-MNI^Iir^llsa + OW
for every x e l . The function / is called a (1 + e)-isomorphism.

It is easy to see that two (1 + e)-isomorphic structures are (1 -f e)-equivalent.
The following is a converse of this observation.

2.10. Theorem. Two Banach space L-structures are (1 -he)-equivalent if and only
if they have (1 -f- e)-isomorphic approximately elementary extensions.

Proof. We prove the nontrivial implication. Assume X = i+ c Y. By compactness
(Theorem 2.5), we construct chains of extensions extensions

X = Xo <A Xi -<A X2 -<A - • -

Y = Y0 <AYX <AY2 ^ - . .

and embeddings
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such that

fn Qgn1 Q/n+1, for 71= 1,2,...

and for every quantifier-free formula ip(x),

Xn t= <p(a) implies Y^+1 f= y>i+c(/n+1(a))

and

Yn (= <p(a) implies Xn \= (pi+€(gn(a)).

Let X be the completion of \JXn and Y the completion of \JYn. Then X yA X,
Y >-A Y, and Un>o fn extends to a (1 -f e)-isomorphism between X and Y. H

2.5. Finite Representability. The notion of finite representability is the central
notion in local Banach space geometry.

A Banach space X is finitely represented in a Banach space Y if for every finite
dimensional subspace E of X and for every e > 0 there exists a finite dimensional
subspace F of Y such that E and F are (1 -f e)-isomorphic.

If X is a Banach space structure, the existential theory of X, denoted BTh/ipQ
is the set of existential positive bounded sentences which are approximately satisfied
by X.

2.11. Proposition. Let X and Y be Banach spaces. The following conditions are
equivalent.

1. X is finitely represented in Y;

3. There exists an ultrapower ofY which contains an isometric copy of X.

Proof. The implication (3) =» (1) is immediate, since an ultrapower of Y is always
finitely represented in Y. The implication (1) => (2) follows from the fact that the
unit ball of a finite dimensional space is compact. To prove (2) =>> (3), assume that
X is finitely represented in Y and let F be set of quantifier-free diagram of X. By
compactness (Theorem 2.5), there is an ultrapower Y of Y such that Y \=A F. Since
\=A and |= coincide for quantifier-free formulas, we have Y f= F, so Y contains an
isometric copy of X. H

2.6. Types. Suppose that X is a Banach a space structure and A is a subset of
X. If c € X, the type of c over A is the set

tp(c/ ;4) = { (p(x, a) \aeA, ( X , a \ a G A) \=A tp(c, a) }.

2.12. Proposition. Let X be a Banach space structure, let A be a subset of X,
and let L be a language for the structure (X, a \ a G A). The following conditions
are equivalent for a set of positive bounded L-formulas t(x) = £(a?i,... ,xn) .

1. There exists a Banach space structure Y >-A X and c G Y such that t(x) =
tp{c/A).

2. (a) There exists M > 0 such that the formula

/ \ II i l l _
\<i<n

is in t;
(b) Every L-formula of t+ is satisfied in (X, a\ a G A);
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(c) For every L-formula <p(x), either tp e t, or there exists </?' > (p such that
neg(<//) e t.

Proof. The implication (1) => (2) is immediate from Proposition 2.4. The impli-
cation (2) =>• (1) follows from compactness (Theorem 2.5) and, again, Proposi-
tion 2.4. H

If X is a Banach space structure, A is a subset of X, and t(x) is a set of positive
formulas satisfying the equivalent conditions of Proposition 2.12, we say that t is a
type over A and c realizes t in Y. If x = x i , . . . , xn, we call £ an n-type.

Fix a Banach space structure X, a subset A of X, and a language L for (X, a \
a e A). For a positive bounded L-formula <p, let [</?] denote the set of types over
A which contain (p. The logical topology is the topology on the set of types over A
where the basic open neighborhoods of a type t are the sets of the form [y?], with
pet+.

If t(xiy..., xn) is a type and (ci , . . . , cn) is a realization of t, the norm of £ is
maxi<t<n||cij|.

2.13. Proposition. For any M > 0, the set of types of norm less than or equal
to M is compact with respect to the logical topology.

Proof. Fix a Banach space structure X and a subset A of X. Let {ti }i^i be a family
of types over A and let IX be an ultrafilter on I. By compactness (Theorem 2.5),
we may take Y >A X such that every U is realized in Y. For each i £ I let c~i be a
realization of U in Y. It is now easy to see that the type over A of the element of
Y\ieI Yi/U represented by (c~i)i£i is lim^u**- H

2.14. Remark. It is not true that the set of types over A is compact with respect
to the logical topology. Indeed, for each n > 0, the set [ ||x|| > n] is closed in the
logical topology. However,

f|[INI >«] = «•
n>0

2.7. Saturated and Homogeneous Structures. Let n be an infinite cardinal.
A Banach space structure X is called K-saturated if every type over every subset of
X of cardinality less than K is realized in X.

The proof that every Banach space structure X has a K-saturated approximately
elementary extensions is completely analogous to the proof of the corresponding fact
in first order model theory; specifically, one constructs a chain of approximately
elementary extensions

(1) X = X0*AXl*A...*AXi*A... (t < K+)

such that whenever i < j < AC+, every type over every subset of Xi of cardinality
less than n is realized in Xj. Then, the completion of \Ji<K+ X{ is a ^-saturated
approximately elementary extension of X.

Now suppose that we have a chain of structures as in (1) above such that when-
ever i < j < AC+, the structure Xj is |Xi|+-saturated, and let X = \Ji < K+XI.

We say that the structure X is K-special. Arguing as in Theorem 2.10, one proves
that a ^-special structure X has the following property: if A is a subset of X of
cardinality less than K and / : A —» X is such that

(XJa\aeA)=A(X,f(a)\aeA),
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there exists a bijection F: X —> X extending / such that

(X,a\a£X)=A(X,F(a)\a€X).

We express this fact by saying that X is strongly K-homogeneous. The argument of
Theorem 2.10 also shows that if the language contains no operator symbols, then
every (1 + e)-isomorphism between two approximately elementary substructures of
X of density character less than n can be extended to a (1 + e)-automorphism of
X.

2.8. The Monster Model. In what follows, X will denote a Banach space struc-
ture and we will regard X as being embedded as an approximately elementary sub-
structure in a single /^-saturated, /^-special structure, where K is a cardinal larger
than any cardinal mentioned in the proofs.2 Following the tradition (started by
Shelah), we will refer to this structure as the "monster model", and denote it €.
Our assumption on the monster model allows us to regard all the structures approx-
imately elementary equivalent to X as substructures of £, and all the realizations
of types over subsets of them as living inside <£.

If ip(x\,..., xn) is a positive bounded formula, we denote by (f(£) the subset of
£n defined by (p.

Notice that, by the Hi-saturation of the monster model implies that satisfaction
and approximate satisfaction are equivalent on it.

The terms "structure", formula, "type", and "consistent" stand, respectively, for
"Banach space structure", " positive bounded formula", "positive bounded type",
and "satisfied in the monster model".

3. SEMIDEFINABILITY OF TYPES

3.1. Definition. Suppose A C B and let t(x) be a type over B. We say that t
splits over A if there exist tuples 6, c with tp(b/A) = tp(c/A), a formula </?(#, y),
and an approximation </?' of ip such that tp(x, b) e t(x) and neg( <pf(x, c)) £ t(x).

3.2. Proposition. Suppose that (ai \ i < 7) is a sequence such that
(i) tp(aa/Au{ai I i < /?}) C tp(ap/Au{ai \ i < a}) for a < f3 < 7;

(ii) tp(aQ/^4 U { cii \ i < a }) does not split over A for a < 7.

Then the sequence (a* | i < 7) is indiscernible.

Proof. We prove by induction on n that

tp(a»(o)>--->a»(n-i)M) = tp(ao,...,an_i/;4), for z(0) < • • • < i(n - 1) < 7.
For n = l , this is given by (i). Assume that the result is true for n and take
i(0) < - • < i(n) < 7. By the induction hypothesis (ii) and the fact that

tp(ai{n)/AU{ai I i < i(n) })

does not split over A,
tP(fli(n)/{ a»(o)> • • •, Gi(n-i) } U A) = tp(aj(n)/{ a0 , . . . , an_i } U A),

and by (i)

tp(a»(n)/{ ao> • • • 1 an-\ }UA) = tp(an/{ a0,..., an-i } U A).

2Given that we are mostly interested in separable spaces, n = (2N°)+ will typically suffice.
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Putting together these two equalities, we get

tp( ai(n) I { at(o)> • • •, ̂ i(n-i) } U A) = tp( an / { a0 , . . . , an_i } U A).

H

3.3. Definition. Suppose ACB.A type £ over B is called semidefinable over A
if every approximation of every finite subset of t is realized in A.

3.4. Proposition. Suppose that A C B. A type t over B which is semidefinable
over A does not split over A.

Proof. Suppose that t(x) splits over A. Take b,c e B with tp(6/A) = tp(c/A),
a formula <^(x,i/), and an approximation ip' of (p such that <p(x,b) G t(x) and
neg(<£/(x, c)) G £(x). Take formulas VsV7' such that <p < xj; < ip' < ip'. Since £ is
semidefinable over A, there exists a G A such that J= ip(a,b) A neg(/0/(^,c)). But
this contradicts the fact that tp(b/A) = tp(c/A). H

3.5. Proposition. Suppose that A C B C C and let t(x) be a type over B which
is semidefinable over A.

1. t has an extension t'{x) over C which semidefinable over A;
2. If for every n > UJ every n-type over A is realized in B, then t has a unique

extension tf(x) over C which semidefinable over A;

Proof. (1): Let

r(x) = {neg(y>(x,c)) | ceC, An<p{€yc) = <b }.

Let us show that t U F is consistent. If t U F were inconsistent, there would exist
formulas ip(x) G t and (p(x,c) with c G C such that A C\ ip(£,c) = 0 and ip{<£) Pi
neg( </?(£, c)) = 0. But then

which is a contradiction.
It is easy to see that any type type t'{x) over C which extends t U F must be

semidefinable over A.
(2): Suppose that t\(x) and ^(x) are distinct extensions of t over C which

are semidefinable over A. Then there exist a formula </?(x, c) with c £ C and an
approximation <p; of ip such that <^(x,c) G £i and neg(<//(x,c)) G £2. Take b £ B
such that i(6, A) = tp(c, A). Take also formulas ^^V7' s u c n s u c n t n a t <p < ip <
ipf < ipr. By Proposition 3.4 t\ does not split over A, so ^(x,6) G £1 f B = t;
similarly, t2 does not split over A, so neg( tp'(x, c)) et2 \ B = t. This is, of course,
a contradiction. H

4. RAMSEY'S THEOREM FOR ANALYSIS

In this section we discuss a form of Ramsey's Theorem which was used by
A. Brunei and L. Sucheston in [5] to produce 1-subsymmetric sequences (i.e.,
quantifier-free indiscernible sequences). The method of Brunei and Sucheston has
now become standard in Banach space geometry, and in [61] H. P. Rosenthal la-
belled it: The Ramsey principle for analysts.

4.1. Proposition. Let (am>n)m?n<u; be a matrix of real numbers such that limn am,n

for every m, and

lim lim am,n = a.
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Then there exist k(0) < fc(l) < . . . such that

Proof. By definition, for every e > 0 there exists a positive integer M€ such that

m > Me implies | lim am n — a\ < e.
n '

Also, for every e > 0 and every fixed integer m there exists N™ such that

n > N™ implies |am,n ~ lima^^l ^ £•
Take A;(0) < k(l) < ... such that

MO) > Mi

k(l -f 1) > max { M2-i, N^\..., N*1} }.

It is easy to see that

i < j implies |afc(t),fc(i) - a\ < \/2x~l.

H

We need the multidimensional version of Proposition 4.1. The proof is similar.
(It can also be easily derived from Proposition 4.1 by induction and diagonaliza-
tion.)

4.2. Proposition. Let

6e a family of real numbers such the iterated limits

l im.. . l im ami,m2)...,md
TTlj TTI4

exist Then there exist k(0) < k(l) < ... such that

lim ak(ix),fc(i2),...,fc(*d) = lim...lim ami,m2,...,m<r

5. QUANTIFIER-FREE TYPES OVER NORMED SPACES

At this point and for the rest of the paper, we concentrate our attention on
quantifier-free types. Thus, hereafter, the word "type" will mean "quantifier-free
type". If a is a finite tuple and C is a subset of the monster model, tp(a/C) denotes
the quantifier-free type of a over C.

We now argue that it is sufficient to focus on the case when a is an element
(rather than a tuple of elements) and C is a Banach space.

We study only 1-types: The type of a tuple ao,...,an over a set C is com-
pletely determined by the types of the elements of the linear span of a0 , . . . , an.
This allows us to focus on types of elements of the monster model, rather than
tuples.

We consider only types over Banach spaces: If a be an element and C is a
subset of the monster model, the quantifier-free type of a over C is completely
determined by the formulas of the form
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where c is an element of the linear span of C. Since the function c ^ \\a + c\\
is uniformly continuous, it has a unique extension to the closed span of C.
Thus, we can assume without loss of generality that C is a Banach space.

Recall that the norm of a 1-type is the norm of an element realizing the type.

5.1. Remark. If M > 0, the set of types of norm less than or equal to M is
compact, because if (tp(ai/X) ) i € / is a family of types with \\ai\\ < M and U is
an ultrafilter of / , then limijutp(ai/A') is exactly the type over X realized in the
U-ultrapower of span{ X U {a* | i € 1} } by the element represented by the family

The type of a over a Banach space X can be identified with the real-valued
function

II i II / /— V \

x »—• ||x -r a\\ (x E A).
Furthermore, it is easy to see that in this identification the logical topology corre-
sponds exactly to the product topology inherited from R x . Proposition 5.2 shows
that the space of types over X corresponds the closure of the set of realized types
(i.e., the types of the form tp(a/X), where a G X). Thus, in particular, the space
of types is separable if X is separable. 3

5.2. Proposition. Let X be a separable normed space and let r be a real-valued
function on X. Then the following conditions are equivalent.

1. r is the function corresponding to a type over X;
2. There exists a sequence (xn) in X such that

T(X) = lim ||xn -f x||, for every x € X.
n—>oo

Proof Notice that if (xn) is as in (2), then (xn) is bounded. Hence, (2) =*• (1)
follows from Remark 5.1. To prove (1) =4> (2), suppose that r corresponds to
tp(c/X). Then let { dn \ n € a;} be a dense subset of X. Since every approximation
formula of every formula in tp(c/X) is satisfied X, we can find a sequence (xn) in
X such that

forfc = 0,. . . ,n.

Then we have limn-*^ \\xn + x\\ — \\c + x\\ = r(x) for every x € X. H

5.3. Definition. Let t(x) be a type over a normed space Y and let X be a subspace
of Y. A sequence (xn) in X is called approximating for t if

lim tp(xn/X) = t(x).
n—KX>

We say that (xn) approximates t.

5.4. Proposition. Every bounded sequence in a separable Banach space X has a
subsequence which approximates some type over X.

Proof. By Remark 5.1 and Proposition 5.2. H

3This argument shows that in general, the density character of the space of types over X equals
the density character of X. However, for the kinds of results that we wish to prove in this paper,
we do not lose generality by restricting our attention to separable spaces.
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5.5. Proposition. Suppose that t is a type over a separable space Y and X is
subspace of Y. Then every approximating sequence for t \ X has a subsequence
which is approximating for t.

Proof Let (xn) be an approximating sequence for t \ X and let a be a realization
oit. Then,

lim \\xn + x\\ = \\a + x||, for every x E X.
n

Let D be a countable dense subset of Y\X. By a simple diagonalization argument,
we can find a subsequence (x'n) of (xn) such that

lim \\x'n + d\\ = \\a + d||, for every x € D.
n

The sequence (x'n) approximates t. H

5.6. Proposition. Let Y be a normed space and let X be a separable subspace
ofY. Then the following conditions are equivalent.

1. tp(a/y) is semi-definable over X;
2. There exists a sequence in X which approximates tp(a/X)

Proof (2) => (1) is clear. We prove (1) => (2). Let { dn \ n G a;} be a dense subset
of X. Since tp(a/y) is semidefinable over X, we can find a sequence (xn) in X
such that

for fc = 0,. . . ,n.||a + dfc|| l< TT>n + 1

Clearly, l i n i n g tp(xn/X) = tp(a/X). H

6. FUNDAMENTAL SEQUENCES

6.1. Definition. Let X be a normed space and let t(x) be a type over X. We will
say that a sequence (an) is a fundamental sequence for t if

1. For every n < a;, tp(an/X) = t;
2. (an) is indiscernible over X;
3. For every n < a;, the type

t p ( a n / X U { a i | i < n } )

is semidefinable over X.

We say that (an) is a fundamental sequence if there exists a type t such that
(an) is fundamental for t.

6.2. Proposition. Every type has a fundamental sequence for it

Proof By the results in Section 3. H

6.3. Remark. When the space X is stable with respect to quantifier-free types,
then a type is semidefinable over A if and only if it is nonforking over A, so the
concept of fundamental sequence coincides with that of Morley sequence.

6.4. Proposition. Let X be a separable Banach space. Then the following condi-
tions are equivalent for a bounded sequence (an) in X.

1. (an) is a fundamental sequence for a type over X;
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2. There exists a bounded sequence (xn) in X such that whenever
and x £ X,

lim... lim ||r0xno + h rkxnk + x|| = \\roao + • • • + rkak + x||;
Ufc no

9. TTiere exists a bounded sequence (xn) in X such that whenever ro, . . . ,rk

and x G X,

lim ||roxno + • • • + rkxnk -f x|| = ||roao + • • • 4- rkak + s||;
<<nfc

Proof. The equivalence between (2) and (3) follows from Ramsey's Theorem (Propo-
sition 4.2). Now, (1) follows from these two equivalent conditions because (3)
trivially implies that (an) is indiscernible, and (2) implies that, for every n < a;,
tp( an / X \J {ai | i < n }) is semidefinable over X.

(1) =» (2): Let

t= | J tp(an/XU{ai \i<n}).
n<ut

Then t is semidefinable over X. Let (xn) be a sequence in X which approximates
t. Then (xn) approximates tp( an / X U { a, | i < n }) for every n < u>. Hence, if
7*0,..., rk 6 R and x G X,

||roao H + rkank 4- x\\ = lim... lim ||r0xno H 4- rkxnk

6.5. Proposition. Let X be a separable Banach space. Then for every bounded
sequence (xn) in X there exist:

• A subsequence {x'n) of (xn);
• A type t over X such that (x'n) approximates t over X,
- A sequence (an) fundamental for t such that for ro,...,rk G l and x € X;

t lim f ||r0a40 + • • • + rkx'nk + x\\ = \\roao + • • • + rkak + x\\.
no<--'<nk

Proof By extracting a subsequence, we can assume that tp(xn/X) converges to a
type t over X. Let (an) be a fundamental sequence for t (which exists by Proposi-
tion 6.2) and define

t= |J tp(an/XU{ak\k<n}).
n<a>

Then i is semidefinable over X. By Proposition 5.5 we can assume that (xn)
approximates i. Then, for ro, . . . , rk G R and i G l ,

lim... lim ||roxno + • • • + rkxnk + x|| = \\roao + • • • + r^a* 4- x||;
n/t no

By Ramsey's Theorem (Proposition 4.2), we can now take a subsequence (x'n) of
(xn) such that the conclusion of the proposition holds. H

6.6. Definition. If (an) is a fundamental sequence for a type over a normed space
X, the space generated by X and the sequence (an) is called the spreading model
of the fundamental sequence (an) over X.
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7. SYMMETRIC TYPES

We can define a scalar multiplication of types naturally as follows.

7.1. Definition. Suppose that t is tp(a/X). If r is a scalar, we denote by rt the
type tp(ra/X).

7.2. Definition. A type t is symmetric if t = —t.

7.3. Proposition. For every space X there exists a nonzero symmetric type over
X.

To prove Proposition 7.3, we will invoke a famous result from finite-dimensional
topology. For an integer k > 1, let Sk denote the fc-dimensional unit sphere, i.e.,

where || || denotes the usual Euclidean norm. A map / : Sk —• R' is called antipodal
i f / ( -* ) = - / ( * ) .

7.4. Theorem (Borsuk-Ulam Antipodal Map Theorem). Letk > 1 and let f: Sk -
Rfe be a continuous antipodal map. Then there exists s G Sk such that f(s) = 0.

7.5. Remark. An analysis of the proof of the Borsuk-Ulam Theorem reveals that
the Euclidean norm can be replaced with any norm. Hence, Rk can be replaced by
any finite dimensional Banach space E, and Sk by the unit sphere of E.

Proof of Proposition 7.3. By compactness, we just have to prove the assertion in
the case when X is finite dimensional. Assume, then, that X is generated by
xo, . . . , xni and define a map / on the unit sphere of X by letting

f{x) = (\\x + xo|| - \\x - xoll, . -. , ||s + xn\\ - \\x - xn\\).

Then / is continuous and antipodal. By the Borsuk-Ulam Antipodal Map Theorem,
there exists s in the unit sphere of X such that f(s) = 0. Then, tp(s/X) is
symmetric. H

Two sequences (an) and (6n) are called equivalent if the map an >—» bn determines
an isometry between the span of { an \ n < LJ } and the span of { an \ n < u }.

7.6. Definition. A sequence (an) in a Banach space is called 1-unconditional if
whenever (en) is a sequence such that en = ±1 , the sequence (enan) is equivalent
to (an).

7.7. Proposition. Every sequence which is fundamental for a symmetric types is
indiscernible and 1-unconditional.

Proof. Immediate from Proposition 6.4. H

8. £p- AND CO-TYPES

In Definition 7.1 we defined an operation on types, namely, scalar multiplication.
In this section we introduce another operation on types, that of convolution. The
convolution is a binary operation defined on scalar multiples of a given type.

8.1. Definition. Let i be a type over X, and let (an) be a fixed fundamental
sequence for t. If TQ, . . . , rn are scalars, we define rot * • • • * rnt, the convolution
of rot,..., rnt, as the type tp( roao + h rnan / X ) . We denote by [t] the set of
types of the form rot * • • • * rnt, where ro , . . . , rn are scalars and n < u.
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8.2. Remark. The convolution of scalar multiples of a type t depends on a given
fundamental sequence for t. Thus, when we refer to convolutions of scalar multi-
ples t, it should be understood that a fundamental sequence for t is fixed in the
background.

8.3. Definition. Let p be a real number satisfying 1 < p < oo. A type t over X
is called an £p-type if

• t is symmetric;

• If r, s > 0, then rpt * spt = (rp + sp)l/pt.

The type t is called a CQ-type if

• t is symmetric;
• If r, s > 0, then rt* st = max(r, s)t.

8.4. Definition. Let p be a real number satisfying 1 < p < oo. A sequence (an)
is said to be £p over X if whenever x £ X and ro,. •., rn are scalars,

i = 0

The sequence (an) is said to be CQ over X if whenever x £ X and ro,. . . ,rn are
scalars,

riCLi

i = 0

= ||x-h (max|ri|)ao

8.5. Proposition. Lett be a symmetric type over X and let (an) be a fundamental
sequence inducing a convolution on multiples of t. Then the following conditions
are equivalent for 1 < p < oo.

1. t is an £p-type;
2. (an) is £p over X;
3. For every x G X and every natural number k,

m - 1 n

x + ^T r^i -h fc1/pam 4- ^ ^
i=0 i=m+l

m—1 m+k

^2ri€Li + Ylai +

t=0 i=m i=m+l

Proof (1) => (2): We prove by induction on n that the first equality in Defini-
tion 8.4 holds. If n < 1, the equality is immediate. Assume n > 1. Let (xk) be an
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approximating sequence for t in X. Then,

n

X + Y2riai
i = 0

= lim . . . lim
Kn-2 «0

= lim ... lim
kn-2 k0

=

n - 2

* + ]C riXjti + rn-ian_i + rnan
i = 0

n - 2

X 4" TTiXfc. 4- (\rn i \P 4-
/ ^ * *Vl ' VI n — 1 | • | • 74 | / ~"U

i=0
n-2

T* _L \ ^ v n _1_ (\m IP _L 1^ IP^/P^,
x-r 2_^ riai + llrn-i|^4- |rn|^J /J/an

i=0
n - 2

<lp)1/Pao + (|rn-ir + rn\
p)1/pan

i = 0

n

T . / V l r
i = 0

i\ ) a0

(2) => (1) and (2) =» (3) are immediate. We prove (3) => (2).
Fix scalars ro, . . . , rn. Since £ is symmetric, we can also assume ro , . . . , rn > 0.

Furthermore, by the uniform continuity of the norm, we can assume that rf is
rational, for i = 0, . . . , n. Therefore, we can take positive integer such that Mr\ is
an integer, for i — 0, . . . , n. By the indiscernibility of (an) over X, for every x e X
we have

Mr"

i = 0 i=o i=o

2=0

Dividing by M1^, we obtain the desired result.

8.6. Proposition. Lett be a symmetric type over X and let (an) be a fundamental
sequence inducing a convolution on multiples oft. Then the following conditions
are equivalent.

1. t is a co-type.
2. (an) is Co over X.
3. For every x e X and every natural number k,

m-l

i=0
am+

i=m+l

m - l m+k

f=0 i=m+l

Proof. Similar to the proof of Proposition 8.5

8.7. Exercise. Prove that if t is an ^,-type (or co-type) and (xn) is an approxi-
mating sequence for t, then or every e > 0 the sequence (xn) contains a subsequence
which is (1 -f e)-isomorphic to the standard basis of £p (respectively, Co). [Hint: Fix
eo, e i . . . such that 0 < e0 < ei < • • • < e. Then, by induction, find n0 < n\ < ...
such that (xn.)i<k is (1 -f- 6fc)-isomorphic to the standard basis of £p(n).]
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9. WHERE DOES THE NUMBER p COME FROM?

Our goal is to find £p-like sequences inside Banach spaces. A common ques-
tion is: how does the p arise? Generally, p is obtained through a combination of
Proposition 10.3 and the proposition in this section, as follows. One starts with a
type, and obtains an indiscernible sequence by taking fundamental sequences. An
order-homomorphism of the sequence induces an operator on the Banach space X
spanned by the sequence. In general, one will have countably many such operators,
say, we have a family { Tn } of operators on X. Proposition 10.3 then provides an
extension X of X and a subspace Y of X such that Tn = XnI on Y. By choosing
the operators appropriately, we will be able to assure that the sequence { An } is
nondecreasing. Then, the following proposition will provide the desired number p.

9.1. Proposition. Let { An }n>i be a sequence of real numbers such that
1. 1 = Ai < A2 < . . .
*£. AmAn = A m n .

Then, either An = 1 for every n, or there exists a number p > 1 such that Xn = nl/p

for every n.

Proof. Suppose A2 > 1 and let p = -̂ f-̂ - Fix integers ra, n > 2. For every integer k
there exists an integer h = h(k) such that mhW < nk < mh(/e)+1. By (1) and (2),
we have \%k) < Xk

n < A#fc)+1. Hence,
logn

(where |_rj denotes the largest integer less than or equal to r). By letting k —* 00,
we conclude ^ = ^ . Hence, An = n 1^. H

10. A LITTLE OPERATOR THEORY

In this section we include a few basic facts from operator theory. We have
included the proofs for completeness. Proposition 10.3 will be used in Section 11
to transform indiscernible sequences.

Recall that the set of operators on a Banach space is a Banach space, with
the norm of an operator T defined by supi^u^ ||T(x)||. The identity operator is
denoted / . Note that if T, W are operators on X, then \\TW\\ < \\T\\ \\W\\.

10.1. Proposition. Let X be a Banach space.
1. IfT is an operator on X with \\T\\ < 1, then I -T is invertible.
2. The set of invertible operators on X is open in the norm topology.

Proof. (1): Let W = ^2nT
n. It is easy to see that W is an operator on X and

(/ - T)W = W{I -T) = I.
(2): Suppose that W is an invertible operator on X. If T is any other operator,

||/ _ TW~l\\ < \\W - T\\ \\W-l\\. Thus, if ||W - T|| < ||Wr-1ir1> t h e n TW~X i s

invertible by (1), and hence so is T. H

The spectrum of an operator T is

{ A e R I T - XI is not invertible }.

It follows from Proposition 10.1 that the spectrum of an operator is a closed subset
ofR.



INDISCERNIBLE SEQUENCES IN BANACH SPACE GEOMETRY 23

10.2. Proposition. Let T be an operator on a Banach space X, and X be an
element of the boundary of the spectrum of T. Then there exists an ultrapower
(X,f) of(X,T) andeeX with \\e\\ = 1 such that f(e) = Xe.

Proof By replacing T with T — A/, we can assume that A = 0.
Suppose that the conclusion of the proposition is false. Then there exists 6 > 0

such that inf||x||=1 ||T(x)|| > S. Also, since 0 is in the closure of the spectrum of
T, we can find arbitrarily small real numbers \x such that T — jil is invertible. Fix
such /i with |/x| < | . Then, by Proposition 10.1, the operator 1 -f fi(T — / i /)"1 is
invertible. But then so is

which contradicts the fact that 0 is in the spectrum of T (since it is in the boundary
and the spectrum is closed). H

10.3. Proposition. Let { T{ }i6/ be a family of operators on a Banach space X
such that T{Tj = TjTi for i,j G / . For each i £ I, let A* be an element of the
boundary of the spectrum ofTi. Then there exists an ultrapower (X,T) of (X,T)
and e G X with \\e\\ = 1 such that Ti(e) = Â e for every i G / .

Proof By compactness, it suffices to consider the case when / is finite. We prove
the proposition by induction on the number of elements of / . If / is a singleton,
our proposition is just Proposition 10.2. Assume, then, that / = { 1, . . . , n }.

By induction hypothesis, there exists an ultrapower (X,Ti \ i < n) of (X,Ti |
i < n) and e G l with ||e|| = 1 such that Ti(e) = Â e for i < n. Let

Y = {xeX | fi(x) = \tx for i < n }.

Since Tn commutes with T{ for i < n, we have Tn{Y) C Y. By Proposition 10.2 and

compactness there exist an ultrapower Y of Y and an ultrapower (X,Ti \ i < n)

of (X,Ti | i < n) such that X contains Y and there exists / G Y with ||/|| = 1

satisfying Ti{f) = Xif for i = 1, . . . , n. H

11. BLOCK REPRESENTABILITY OF lv IN TYPES

11.1. Theorem. Let t be a symmetric type over X and let * be a convolution on
the scalar multiples oft. Then there exists a sequence (en) such that

1. (en) is Co or £p over X, for some p with 1 < p < oo.
2. There exists a sequence of types (ui) in [t] such that:

(a) (en) is fundamental for lim/ u\;
(b) Whenever ro , . . . , r^ are scalars,

tp( roeo + • • • + rkek / X ) = lim (roui * • • • * rkui).

Proof Let (aq)qeQn[o,i) be an indiscernible family such that, for any scalars ro, . . . , rk,

tp( r0aqo H 1- rkaqk / X) = rot * • • • * rkt, if qi < • • • < qk.

Let Y be the subspace spanned by X and (aq). For each n > 1 define an operator
Tn : Y -• Y as follows. If x G X and q0 < • • • < qk are in Q n [0,1),

n - 1 k

)
i=0 j-0 i=0
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Then, for every ro, n,
(i) TmoTn=Tmn-

(ii) 1 < | | rn | | < n.

(The second inequality in (ii) is immediate from the indiscernibility of (aq)\ the
first one is an easy exercise; you'll need the fact that t is symmetric.) Now we
apply Proposition 10.3 to find an extension (Y,fn \n> 1,) of (y , Tn \n> 1)
and a nonzero element e £Y such that Tn(e) = Ane for some real number An. By
Proposition 9.1 and (i)-(ii) above, we conclude that either An = 1 for every n, or
there exists a real number 1 < p < oo such that An = n 1 ^ .

Let (yi) be a sequence in the span of (aq) such that lim/tp(y//X) = tp(e/X),
and let ui G [t] be such that tp(yi/X) = ui.

Let { cn | n < LU } be a set of new constants and let T(cn)n<u> be a set of sentences
expressing the following facts:
(iv) (cn) is indiscernible over X and fundamental for tp(e/X);
(v) tp( roco H h rkck / X) = lim*(roui * • • • * rkui) for any scalars r 0 , . . . , rk;

(vi) If x G X, and r o , . . . rn are scalars,

m—1 n

=

m - 1 m+fc

' 4" / ^ ^i^i 4~ ATHCT^ 4"

i=0 i=m-\-l i=0 i=7n z=?n-|-l

Every finite finite subset of T(cn)n<UJ is realized in Y by interpreting the con-
stants with the blocks of Tn(yi) for sufficiently large n and I.

Let (en)n<lJj realize T(cn)n<CJ. We prove first that (en) is fundamental for
tp(eo/X). By Proposition 6.4, for every / < CJ, there exists a sequence (zj) in
X such that

• For any k < UJ and scalars r o , . . . , rk,

jo<--<jk Jo Jk

• If I < /', the sequence (z1-) is a subsequence of (zj).

By diagonalization, we obtain a sequence (ZJ) such that whenever k < u and
r o , . . . , rk are scalars,

||roeo H h rjtefc 4- x|| = l im(r0^ * • • • * rkui) = lim \\rozL H h rfcz^ II-
/ jo<--<jk

Then the sequence (en) is fundamental by Proposition 6.4, and condition (2) of the
theorem is satisfied.

If An = n1/^, then (en) is £p over X by (vi) and Proposition 8.5. Otherwise
An = 1 for every n, and (en) is CQ over X by (vi) and Proposition 8.6. H

12. KRIVINE'S THEOREM

If (ao , . . . , CLk) and (bo,..., bk) are finite sequences, X is a Banach space, and
e > 0, we write

and say that the types tp( a 0 , . . . , ak / X) and tp( 6 0 , . . . , bk / X) (14- e)-equivalent
over X if there is a (1 4- e)-isomorphism / from span{ {ai \ i < k} U X} onto
span{{6i \ i < k} U X} such that /(a*) = bi for i = l , . . . , fc and / fixes X
pointwise.
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Let (an) be a sequence in a Banach space. We say that bo,...,bk are blocks
of (an) if there exist finite sets F o , . . . ,Fk C w such that maxF* < mm Fi+\ and
bi e span{ an | n € Fj } for n = 1, . . . , fc.

12.1. Proposition. Suppose (an) is a fundamental sequence for a symmetric type
over a Banach space X. Then there exists a sequence (en) such that

1. (en) is Co or ^p over X, for some p with 1 < p < oo;
2. For every e > 0 and even/ k e w there exist blocks 6o,..., bk of (an) satisfying

tp( 60 , . . . , ek IX) ^ tp( bo,...,bk/X).

Proof. Suppose that (an) is fundamental for a nontrivial symmetric type t over a Ba-
nach space X and let * be a convolution on the scalar multiples oit. By Theorem 11.1
there exists a sequence (en) such that

1. (en) is Co or >̂ over X, for some p with 1 < p < oo.
2. There exists a sequence of types (m) in [t] such that:

(a) (en) is fundamental for lim/iz/;
(b) Whenever r 0 , . . . , rk are scalars,

tp( roeo H h r^e* / X) = lim (rou/ * • • • * rkui).

Fix e > 0 and k G u. By (2-b) above and the fact that the unit ball of (Mfc, || ||oo) is
compact, we find blocks &o, • • •»bk of (an) such that whenever r0 , . . . , rk are scalars,

tp(roeo H + rkek /X)1^ tp(ro6o H + r̂ fefc / X ) .

The conclusion of the proposition now follows. H

A sequence (en) is block finitely represented in a sequence (an) if for every e > 0
and every k < UJ there exist blocks eo,..., ek of (an) such that

tp(eo , . . . , e f c /0) 1 A e tp(& o , . . .A/0) .

12.2. Theorem (Krivine's Theorem). Given any bounded sequence (xn) in a Ba-
nach space, either there exists p with 1 < p < oo such that £p is block finitely
represented in (xn), or Co is block finitely represented in (xn).

Proof Let (xn) be a sequence a separable Banach space X. By extracting a sub-
sequence, we may assume that (xn) approximates a type t over X. Let (an) be a
fundamental sequence for t. By Proposition6.5, we may refine (xn) so that whenever
7*0,..., rk are scalars,

(t) lim tp( roxno H h rfcxnfc / X) = tp( roao -f h rkak / X)
n<<rifc

Let now X' = span{ an \ n < UJ } and let (a!n) be a fundamental sequence for a
nonzero symmetric type over X' (which exists by Proposition 7.3).

Fix e > 0 and k < cu. By Proposition 12.1, there exists a sequence (en) such that
1. (en) is co or £p over X, for some p with 1 < p < oo;
2. There exist blocks &o, • • •» &fc of (a£J with

(t)
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Using (f) and the fact that the unit ball of (Rfc, || W^) is compact, we find blocks
yo,--,yk of (xn) such that

Putting this together with (J), we obtain

Krivine's Theorem now follows, since e is arbitrary. H

13. STABLE BANACH SPACES

A separable Banach space X is stable if whenever (xm) and (yn) are bounded
sequences in X and IX, V are ultrafilters on N,

lim lim \\xm + yn\\ = lim lim ||xm + j / n | | .
in,u n,V n,V m,U

Let ip(x,y) be a positive bounded formula and let ip'(x,y) be an approximation
of if (see Section 2). We will say that the pair (p,<p' has the order property in the
space X if there exist bounded sequences (xm) and (yn) in X such that

X \= tp(xm,yn), if m < n;
,i/n)), if ra > n.

13.1. Proposition. A separable Banach space X is stable if an only if no pair of
quantifier-free positive bounded formulas has the order property in X.

Proof. Every quantifier-free positive formula <p(x, y) is equivalent to a conjunction
of disjunctions of formulas of the form

||A(x,f/)|| < r or ||A(x,y)|| > r,

where r is a scalar and A(x,y) is a linear combination of x and y. Hence, by the
pigeonhole principle, a pair of quantifier-free formulas has the order property in X
if and only if there exist bounded sequences (xm) and (yn) in X such that

sup( | | s m +i / B | | ) )^ inf (||xm + yn||)).
m<n m>n

But, by Ramsey's Theorem (Proposition 4.1), this is equivalent to unstability of X.
H

Suppose that (xm) and (xf
m) are bounded sequences in X and It is an ultrafilter

on N such that

limtp(xm/X) = \imtp(x'm/X).
m,li ra, u

Then, if (ym) is a bounded sequence in X and V is an ultrafilter on N,

lim lim ||xm 4- yn\\ = lim lim \\x'm + yn||.
n,V ra,U n,V m,U

Similarly, if (yn) and (y^) are bounded sequences in X and V is an ultrafilter on N
such that

\imtp(yn/X) = \imtp(y'JX),
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then, whenever (xm) is a bounded sequence in X and IX is an ultrafilter on N, we
have

lim lim ||xm + yn\\ = lim lim \\xm +yr
n\\.

m,U n,V m,U n,V

Thus, if X is stable, we can define a binary operation * on the space of types
over X as follows. Let t,t' be types over X and let (xm) and (yn) be sequences in
X such that t = \immiutp(xm/X) and tf = \imnytp(yn/X). We define

t * t' = lim lim||xm+yn | |
m,U n,V

The preceding remarks prove that this operation is well defined. This operation is
called the convolution on the space of types of X

13.2. Proposition. The convolution on the space of types of a stable Banach space
is commutative and separately continuous.

Proof. Immediate from the definitions. H

13.3. Remark. A space X is stable if and only if there exists a separately contin-
uous binary operation * on the space of types over X which extends the addition
of X in the sense that if x, y G X,

tv(x/X) * tp(2//X) = x + y.

13.4. Remark. In Definition 8.1 we defined a convolution on the scalar multiples
of a type, by fixing for every type t a fundamental sequence (an) for it and for
scalars ro , . . . , rk letting

(2) rot * • • • * rkt = \\roao H h r^a*||.

There is no conflict between this notion of convolution and that defined in this
section. If X is stable, then (2) holds for any type t over X and any fundamental
sequence (an) for t.

Examples of stable Banach spaces include the £p and Lp spaces. For a proof that
these spaces are stable, we refer the reader to [46]. For further examples of stable
spaces, see [16, 55, 56].

The space c$ is not stable. For each n < UJ let xn be the nth vector of the
standard basis of c0, and let yn = XQ H h xn. Then

J l , if m>n

12, if m < n.

Since the property of being stable is closed under subspaces, no stable space can
contain CQ.

14. BLOCK REPRESENTABILITY OF £P IN TYPES OVER STABLE SPACES

14.1. Definition. Let t be a symmetric type over X and let 1 < p < oo. We will
say that £p (or i^) is block represented in [t] if there exists a sequence (en) such
that

1. (en) is £p (respectively, c0) over X;
2. There exists a sequence of types (m) in [t] such that:

(a) (en) is fundamental for lim/ w/;
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(b) Whenever ro , . . . , rk are scalars,

tp( roeo H h rnek / X) = lim (r0Uf * • • • * rkui).

For a symmetric type t over X, we define

P W = { P £ [1> °°] I p̂ is block represented in [£] }

Theorem 11.1 says exactly that for every Banach space X and every symmetric
type t over X, the set p(t) is nonempty.

14.2. Proposition. Suppose that X is stable. Ift,tf are symmetric types over X
such that t G [F], then p(t) C p[t'].

Proo/. Suppose that p G p(£) and take (en), and (u/) corresponding to p and [£] as
in Theorem 11.1. Since ui G [t], we can write

uz = sl
ot * • • • * sj-(z)t,

where 5Q, . . . , stm are scalars. Also, since t E [t], there exists a sequence (wm) in
[£'] such that t = limm tt;m. Then for any scalars r i , . . . , r^ we have the following
equalities. The last one follow from the separate continuity of the convolution and
Ramsey's Theorem (Proposition 4.2).

tp( roeo + h rnek / X ) =

lim [ro(s
l
ot * • • • * sj ( i )t) * • • • * rk{sl

ot * • • • * sl
j(l)t) ] =

lim [ r0 ( 4 lim i/;m * • • • * sl
i(l) lim ium) * • • • * rk (s

l
0 lim wm * • • • * sl

j(l) lim xym) 1 =

We conclude that p € p(t'). H

14.3. Proposition. Suppose that X is stable. Then there exists a type t over X
such that

1. \\t\\ is symmetric;
2. \\t\\ = 1;
3. p(£') = p(t) for every type t' G [t] of norm 1.

Proof. Suppose that the conclusion of the proposition is false. We construct, in-
ductively, a sequence (ti );<(2*o)+ of types over X such that

1. \\ti\\ is symmetric;
2. l l f c l l ^ l ;
3. U G [tj] for i > j ;
4. p(U) C p(^) for i > j .

This is clearly impossible.
We construct U by induction on i. The case when i is a successor ordinal is given

by assumption. Suppose that i is a limit ordinal. Fix an ultrafilter IX on i. By
compactness, there exists a type t1 over X such that Y\mj<i,utj — *'• Conditions
(l)-(3) are satisfied by letting U = tf.

H
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15. ^P-SUBSPACES OF STABLE BANACH SPACES

Let (E, <) be a partially ordered set. For an ordinal a we define the set S a as
follows.

• E° = E;

E a + 1 = { ( e E Q I There exists 77 G E a with 77 > f }

• If a is a limit ordinal,

Ea = f| E*.
/3<a

The ranA; of E, denoted rank(E), is the smallest ordinal a such that
0. If such an ordinal does not exist, we say that E has unbounded rank and
write rank(E) = 00.

15.1. Proposition. Suppose that rank(E) = 00. Then there exists a sequence (£n)
in E such that £0 < £1 < • • •

Proof. Fix an ordinal a such that E a = E^ for every /3 > a. Take £0 e E a . Then
£ G E a + 1 , so there exists £1 G E a with £1 > f0- Now, 6 £ E a + 1 , so there exists
£2 G E a with £3 > £2- Continuing in this fashion, we find (£n) as desired. H

Let X< u ; denote the set of finite sequences of X. If f, 77 G X< a ; , we write £ < 77
if 77 extends £.

15.2. Proposition. Suppose that X is stable. Then there exists p G [l,oo] such
that for every e > 0, the set

{ £ G X<u) I £ ^ ep(n) for some n < u }

has unbounded rank.

Before proving the proposition, let us invoke it to prove the following famous
result.

15.3. Theorem (Krivine-Maurey, 1980). For every stable Banach space X there
exists a number p G [l,oo) such that for every e > 0 there exists a sequence in X
which is (1 + e)-equivalent to the standard basis of £p.

Proof. By Proposition 15.2, there exists p e [1, 00] such that for every e > 0 there
exists a sequence in X which is (1 -f- e)-equivalent to the standard basis of £p. But
the stability of X rules out the case p = 00, so the theorem follows. H

Proof of Proposition 15.2. Use Proposition 14.3 to fix a symmetric type t0 over X
of norm 1 and such that p(t) = p(t) for every type t G [to] of norm 1 . Fix p G p(t).

We construct for every ordinal a a type ta over X such that

1. IIU = l;
2. ta is symmetric;
3. ta G [tp] for every (3 < a;
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4. For every e > 0, every finite dimensional subspace E of X, and every element
c with tp(c/X) G [ta], the set

tp (^XiXi/E) ^
i=0 i=0

whenever AQ, . . . , An are scalars >

has rank > a.

Notice that if (x0 , . . . ,xn) G E[e,£?,c] and c ̂  0, then ( | * j , . . . , f^) G E[e,£,c]
Hence, condition (4) ensures that rank(£[p, e]) = oo. The other conditions are set
so that the inductive construction goes through.

Note that (3) implies that p G p{ta) for every ordinal a.
The type to denned above, satisfies (l)-(3). Condition (4) is immediate from the

symmetry of t and the fact that every approximation of a type over X is realized
in any finite dimensional subspace of X.

Suppose that ta has been defined, in order to define ta+i- Fix e > 0 and a finite
dimensional subspace E of X. Take real numbers 61,62 such that 0 < 61 < 62 < €
and (1 H- <52)

2 < e.
Let (ui) be a sequence of types of norm 1 in [ta] which witness the fact that

P £ p(*a)- Let t a + i = limut. Conditions (l)-(3) are clearly satisfied. We prove
(4).

By (2), if 7*0,..., rn are scalars,

(t) ( 7 kilp) t a = limfrow/* • •• *rnu/).
2=0

Fix an element c such that tp(c/X) G [ta+i]- Each ui is in [ta], so using (f) and the
fact that the convolution is commutative and separately continuous, we find types
wo,.. •, wn G [ta] such that

) rowo*---*rnwn

whenever roj---?rn are scalars. Let d be a realization of wo- Since E is finite
dimensional, there exist a i , . . . , an G E such that

(« (X:h|p)1/Ptp(c/£;) W tpirod + JTnai/E)
2=0 2=1

whenever r 0 , . . . , rn are scalars. Fix (x 0 , . . . , xn) G E[e, £", c]. We now prove that
(xo, • • •, Xw, a>\, • • •, ̂ n) € £fc> E1, c]; This will conclude the proof of (4). Fix scalars
Ao, • • •, An, n\,..., fin. Since tp(d/X) = WQ G [ta], by induction hypothesis we have

i=0 i=l i=0 i=l

Hence, by (J),

n

i = 0 2 = 1 2=0 2 = 1
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Since (1 + 5)2 < e, it follows that {xo,... ,xn,a\,... ,an) € E[e,2£,c]. Hence,
rankE[e,2?,c] > a + 1.

If a is a limit ordinal, we take an ultrafilter U on a and define £a = \imp<a,ut/3-
H

16. HISTORICAL REMARKS

Section 2: The general construction of Banach space ultrapower was intro-
duced by D. Dacunha-Castelle and J. L. Krivine in [12] (although ultrapowers
had been used by Krivine and others in earlier publications; see [11]). The
classical reference for Banach space ultrapowers is [25]. A somewhat more
recent survey is [65].

The ultrapower construction is a particular case of the nonstandard hull
construction introduced by W. A. J. Luxemburg in [48]. For a survey on
applications of nonstandard hulls to Banach space theory, see [34].

The logic of positive bounded formulas and approximate satisfaction was
introduced by C. W. Henson in [31]. The precursor was [30]. (See also [26,
27, 28, 29, 33].) In the general framework of Banach space model theory, one
considers structures of the form

(X, Ri, fj, ck | iel, jeJ, keK),

where the c^'s are constants, the /j's are functions from Xn into X, (for some
n depending on j), and the R^s are real-valued relations, i.e., functions from
Xn (for some n) into the extended real numbers. The functions and real-
valued relations are required to be uniformly continuous on every bounded
subset of X, and the language is required to come equipped with norm bounds
for the constants and moduli of uniform continuity for the functions and real-
valued relations on each bounded subset of X. One does not generally deal
with ultrapowers, but rather with general models.

The notion of (1 + e)-approximation and Theorem 2.10 are due to S. Hein-
rich and C. W. Henson [26].

In this section we have discussed only the most basic aspects of Banach
space model theory. For more advanced aspects of the theory, e.g., forking
and stability, see [36, 35, 40, 41].

Related, but less general approaches to Banach spaces as models were
proposed by J.-L. Krivine [43, 44] and J. Stern [66].

Section 3: The notions of splitting and semidefinability in model theory are due
to S. Shelah, and the results in this section are straightforward adaptations
of results in [63].

Section 4: For a survey on applications of Ramsey's Theorem to Banach space
geometry, see [50].

Powerful strengthenings of Ramsey's Theorem due to W. T. Gowers and
B. Maurey have led to the construction of Hereditarily Indecomposable spaces
and to a chain of some of the most spectacular breakthroughs in the history
of Banach space theory. For a nontechnical exposition, see [19] and [53]. The
paper [20] contains a more recent although more technical survey. Further
remarks on these important developments are at the end of this paper.

Section 5: The definition of "type" in analysis was introduced in [46]. The
definition in [46] is as follows. A separable Banach space X is fixed. If a G X,
the function ro: X —> R is defined by ra(x) = \\a + x\\. The space of types is
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the closure of the set { ra \ a G X } in the product space Rx. Proposition 5.2
shows that the space of types in this sense is exactly the space of quantifier-
free types over X.

For further applications of the concept of type to Banach space geometry,
see, for example [8, 14, 24, 23, 49, 58, 60, 61].

The definition of "approximating sequence" is also given in [16]; it appears
there, however, without the clause "over X", since there, the space X is
regarded as fixed throughout.

Section 6: Spreading models were introduced in analysis by A. Brunei and
L. Sucheston [4, 5] in the study of sumability of sequences in Banach spaces.
The authors proved in [5] that whenever (xn) is a bounded sequence in a
Banach space X, there exists a subsequence (x'n) of (xn) such that the limit

lim \\rox' -f • • • + rkx
f + x||

nj<-<n'fc

exists for every r o , . . . , rk GE. The sequence (x'n) is called a good subsequence
of (xn). We outline the argument of Brunei and Sucheston. A good subse-
quence (xf

n) induces a seminorm on Rw (or C^ if the space X is complex) as
follows. If (en) is the standard basis of unit vectors in R4 ,̂

^ 1 1 = f lim / | | rox; o + --- + r f cx; f c+x| | .
i
 no<"<nk

This seminorm is a norm if (and only if) the sequence (x'n) is nonconvergent.
The resulting Banach space is called the spreading model defined by the se-
quence (xn). The clause "over X" is not used by analysts, since the space X
is normally regarded as fixed. The sequence (an) in Proposition 6.5 is called
the fundamental sequence of the model. It should be remarked that, despite
this terminology, neither the good sequence (x'n) nor the sequence (an) are
uniquely determined by (xn).

The indiscernibility of the fundamental sequence is expressed by analysts
by saying that the fundamental sequence of a spreading models is 1-subsymmetric.

J.-L. Krivine constructed spreading models in [45] using iterated Banach
space ultrapowers. Both constructions are presented in detail in [2].

Section 7: Symmetric types (and types in Banach space theory in general) were
explicitly introduced in [46] in the context of stable Banach spaces. Under
the presence of stability, the existence of a symmetric type is immediate, for
if t is a nonzero type, then t * (—t) is symmetric, since * is commutative (see
Proposition 13.2).

We obtained our proof of existence of symmetric types using the Borsuk-
Ulam Theorem from [61].

Section 8: £p- and co-types were introduced in [46].
Section 10: The simplification of the proof of Krivine's Theorem through the

use of eigenvectors of operators (Proposition 10.2) is due to H. Lemberg [47].
See the comments on Sections 11 and 12 for further remarks on Lemberg's
proof.

Section 11: Our proof of Theorem 11.1 is based on H. Lemberg's proof of
Krivine's Theorem [47]. We have tried to highlight the fact that, from a
model theoretical perspective, the main idea is in fact simple.

Section 12: The original statement of Krivine's Theorem in [45] was that given
any bounded sequence (xn) in a Banach space, either there exists p with
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1 < p < oo such that £p is block finitely represented in (xn), or there exists a
permutation of (xn) such that Co is block finitely represented in (xn). In [59],
H. P. Rosenthal expounded Krivine's Theorem and showed that the permuta-
tion of (xn) in the CQ case was unnecessary. In [47], H. Lemberg extracted the
essential aspects of Rosenthal's proof, and simplified the argument further by
using Proposition 10.2.

For a long time, it was an open problem whether every Banach space has
a spreading model containing £p (1 < p < oo) or c$. The question was
answered negatively by E. Odell and Th. Schlumprecht in [54]. In the same
paper, the authors also provided an example of a space with an unconditional
basis for which £p and c$ are block-finitely represented in all block bases.
Proposition 12.1 shows that every spreading model has in turn a spreading
model with a fundamental sequence (en) which is equivalent to the standard
basis of Co or £p, for some p with 1 < p < oo.

Section 14: Proposition 14.3 is from [6], and it plays a role analogous to that
played by minimal cones in [46].

Section 15: The question of what Banach spaces contain £p or CQ almost iso-
metrically has played a central in the history of Banach space geometry. The
first example of a Banach space not containing £p or Co (not even isomorphi-
cally) was constructed by B. S. Tsirel'son [67]. This phenomenon was even
more dramatic for the dual of the original Tsirel'son space [15], which later
became also known as the Tsirel'son space and has been used as cornerstone
for further variations of the original. TsireVson spaces became an object of
rather intense study. (See [7].)

In 1981, using probabilistic methods, D. Aldous proved [1] that every sub-
space of L\ contains Co or some £p (1 < p < oo) almost isometrically. Almost
immediately, J.-L. Krivine and B. Maurey generalized the methods of Aldous
to a wider class of spaces: the class of stable Banach spaces. The role played
by types in [46] (regarded as real-valued functions, see the notes on Section 5
above) is analogous to that played by random measures in Aldous' proof.

A wealth of examples of stable Banach spaces is exhibited in [46]. Further-
more, the authors provide methods to construct new stable Banach spaces
from old ones; specifically, it is proved that if X is stable, then the space
LP(X) is stable, for 1 < p < oo. Further examples are given in [16] and [55].

The general theory of model theoretical stability for Banach space struc-
tures (e.g., forking, stability spectrum, etc.) was developed in [39]. See [36,
35, 40].

Our proof of Theorem 15.3 is based on a proof by S. Q Bu [6]. In [6],
Bu invokes a principle from descriptive set theory that C. Dellacherie in [13]
labelled the Kunen-Martin Theorem. Bu proves Theorem 15.3 by showing
that there are types of arbitrarily high countable rank. Our argument shows
that one need not invoke the Kunen-Martin Theorem if one considers values
on all ordinals, rather than countable ones.

For an important application of ordinal ranks in Banach space theory, we
refer the reader to [3].

F. Chaatit [9] showed that a Banach space is stable if and only if it can be
embedded in the group of isometries of a reflexive Banach space.

It was noticed by Krivine and Maurey that if X is a stable Banach space,
then the space of types over X is strongly separable, i.e., separable with respect
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to the topology of uniform convergence on bounded subsets of X (recall that
for Banach space theorists stable spaces are by definition separable, and types
are real-valued functions; see the notes on Section 5 above). E. Odell proved
(see [50] or [57]) that strong separability of the space of types does not imply
stability by showing that the space of types over the Tsirel'son space of [15]
is strongly separable. Later, in [24], R. Hay don and B. Maurey proved that
every space with a strongly separable space of types contains either a reflexive
subspace or a copy of l\. In [38], the author identified topological conditions
on the space of types of a Banach space that characterize stability of the
space.

We conclude by remarking that the decade of the 1990's has been a time of his-
torical developments in Banach space geometry. A remarkable number of problems
that had remained open since Banach's time and were regarded as intractable has
been solved. The key lay in a deeper understanding of Tsirel'son's space. A central
protagonist in these events has been W. T. Gowers.

Based on a construction of Th. Schlumprecht [62], Gowers and Maurey [22]
constructed a Hereditarily Indecomposable space i.e., a Banach space such that no
subspace X of it is isomorphic to a sum of two infinite dimensional subspaces of
X. The authors proved that a Hereditarily Indecomposable space does not contain
an unconditional basic sequence (i.e. no sequence (xn) satisfying || X^n^n^nll <
^11 J2rnXn II for some K > 0, and all scalars rn for which J2rnxn converges, and
all 9n with |0n| = 1), thus solving the Unconditional Base Problem. The authors
also proved that a Hereditarily Indecomposable space cannot be isomorphic to any
of its subspaces, and therefore it cannot be isomorphic (let alone isometric) to any
of its hyperplanes. This solves Banach's Hyperplane Problem. (Gowers had just
presented a solution to the Hyperplane Problem in [17].)

Later, Gowers [18] refined the techniques of [22] to exhibit a space that contains
no isomorphic copy of Co, ^i, or an infinite dimensional reflexive space, answering
a long standing question.

More recently [21], Gowers solved negatively the Schroeder-Bernstein Problem
by exhibiting two nonisomorphic Banach spaces that are isomorphic to comple-
mented subspaces of each other. The construction is based on the space with no
unconditional basic sequence provided in [22].

In [20], using topological games and sophisticated forms of Ramsey's Theorem,
Gowers provided the final positive solution to Mazur's Homogeneous Space Prob-
lem. A space is homogeneous if it is isomorphic to all of its infinite dimensional
subspaces. Gowers shows in [20] that any Banach space either has a subspace
with an unconditional basis, or contains a Hereditarily Indecomposable subspace.
Hence a homogeneous space must have an unconditional basis, and by a result of
R. Komorowski and N. Tomczak-Jaegermann [42], it must be isomorphic to ^-

A Banach space (X, || ||) is said to be distortable if there exist an equivalent
norm | | on X and a e > 0 such for every infinite dimensional Y of X we have

sup{ \y\/\x\ | x, y € Y, \\x\\ = ||v|| = 1 } > 1 + e.

The Distortion Problem is whether every Hilbert space is distortable. In [52],
E. Odell and Th. Schlumprecht solved affirmatively the Distortion Problem. (The
solution had been announced earlier in [51]. See also [53].) Furthermore, the authors
proved that any space not containing an isomorphic copy of £\ or c0 contains a
distortable subspace.
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