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INTRODUCTION

In this note we consider the problem of whether a combinator P can consis-
tently (in most cases with beta conversion) be assumed to satisfy the functional
equation Mx = Nx. Much of the literature in this area concerns easy terms
first discovered by Jacopini. These are combinators P which can consistently be
assumed to be solutions to the equation x = Q for any Q. Here we shall prove
several results which might be viewed as unexpected; although given Jacopini's
result the unexpected should be expected in this topic in lambda calculus.

We shall construct an identity M = N which is not a beta conversion but
which is consistent with any consistent set of combinator equations. By a simpler
construction we shall build a functional equation Mx = Nx for which there is
no solution modulo beta conversion but such that for each consistent set S
of combinator equations there exists a combinator P with 5 U {MP = NP}
consistent. Next we consider the problem of which sets of combinators are
"consistency sets" i.e. sets of the form {P : MP = NP is consistent}. Each
such set is closed under beta conversion and pi-zero-one ("co-Visseral" in [5]).
We produce such a co-Visseral set which is not a consistency set, in contrast to
the case for first order arithmetic. Finally, we consider some questions involving
compactness. We give several examples of sets of functional equations Mx=Nx
such that

(*) for each finite subset there is a combinator which can
be consistently assumed to be a solution

but there is no single combinator which can consistently be assumed to be a
solution of the whole set.However, we show that if the condition (*) is made
effective then no such examples are possible. This is in contrast to the familiar
event of the effectivization of a classical theorem being false.

PRELIMINARIES

We adopt for the most part the notation and terminology of [1]. A combi-
nator is a closed term. The following are the usual combinators
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B :
C* :
K :
K* :
Y :
O :
to :

= Xxyz.x(yz)
= X xy.yx
= Xxy.x
= Xxy.y
= Xx.(Xy.x(yy))(Xy.x(yy))
= Xxy.y{xy)
- (Xx.xx)(Xx.xx)

but we reserve the symbol S for sets of combinators.
functional equations

We are interested in

in a single free variable x, which by abstraction can be put in the form

(Xx.U)x = (Aar.V>.

Functional equations in more than one free variable can be reduced to one by
pairing. For example the equation

Mxy — Nxy

can be replaced by

M(zK)(zK*) = N(zK){zK*)

with solutions z = (x, y) = Xa.axy. Similarly, several equations can be combined
into one by pairing. If S is a set of combinator equations then, by the well
known existence of free models ([1]), M = N is inconsistent with S if and only
if S U {M = N}\ — K = K*. Implicit in Jacopini's classic paper [3] is the
following

Theorem (Jacopini): M = N is inconsistent with S if and only if there exist
combinators PI , . . . ,Pp such that S\-K = PIM&PIN = P2M&...&PpN =
K\

Another way to state this theorem is to consider the graph whose points
consist of the congruence classes of combinators modulo provable equivalence
in 5, and whose undirected edges join points of the form PM to those of the
form PN. Then M = N is inconsistent <=> K and K* are connected by a path
<=> the graph is connected.

Among the congruence classes of combinators modulo equivalence in 5 are
some which do not contain any solvable terms such as the class of K—oo = YK.
We call the number of these classes the degree of S. For example Barendregt's
H* has degree 1 but the empty S (beta conversion) has infinite degree. Below
we shall observe that S"s of each finite degree exist.

When it comes to functional equations Mx = Nx it is possible for it to be
consistent to have a solution to the equation without it being consistent for any
particular combinator to be a solution. For example, in [4] we constructed a
Plotkin term P such that for each combinator M , PM beta converts to P but



P does not beta convert to KP. It is easy to see, by using Mitschke's theorem
[1] page 401, that the equation

Px = I

is consistent with beta conversion but clearly it is not consistent for any com-
binator value of x. It is also possible for a given combinator to be a consistent
solution to each of several functional equations separately when the entire col-
lection cannot have a solution. For example, Omega is a consistent solution to
x = K* and to x = Y(K,K*}.

Definition: Suppose S is a set of combinator equations. The functional equa-
tion Mx = Nx is said to be consistently solvable over S if there exists a combi-
nator P such that SU{MP = NP} is consistent. Such a P is called a consistent
solution over S.

Remark: When S is empty we drop the phrase "over S"\

Definition: The combinator equation M = N is said to be inevitably consistent
if M does not beta convert to N but for any consistent set S of combinator
equations SU{M = N} is consistent. The functional equation Mx = Nx is said
to be inevitibly consistently solvable if there is no solution in the combinators
modulo beta conversion but for any consistent set S of combinator equations
there exists a combinator P such that S U {MP = NP} is consistent.

Example: Y is a consistent solution to the equations

x = Ox, x = xO

since Y satisfies these equations in the Bohm tree model ([1]) but there is no
solution to these equations modulo beta conversion (Intrigila).

Example (generalization): We say that M is consistently solvable if there
exists Nl... Nn such that MNl... Nn = / is consistent with beta conversion.
For each e construct a combinator P(e) such that

Xx.P(e)(n +1) if the eth Turing Machine
converges on input n

P(e)n = {
an order zero unsolvable otherwise.

This can be done directly or by the Visser fixed point theorem ([5]). Then P(e)0
is consistently solvable <=> the eth Turing Machine is not total.

INEVITABLY CONSISTENT AND CONSISTENTLY SOLVABLE
EQUATIONS

Theorem 1: Suppose that S is a set of combinator equations of finite degree.
Then there exists a functional equation



Pxyz = Qxyz

such that for any combinator equation M = N.
S U {M = N} is inconsistent <=> PMNz = QMNz has a solution over S

Proof: Suppose that S is given of degree n. Consider the graph described after
the statement of Jacopini's theorem above. Now a shortest path which joins
two combinator classes containing terms with distinct Bohm trees has at most
n intermediate points. In addition, by Bohm's theorem [1], if such a path exists
then there is one which is not longer connecting the class of K and the class of
K*. Thus for p = n -4- 3, by Jacopini's theorem, if M — N is inconsistent with
S there exist P I , . . . , Pp such that

S\-K = PIM&PIN = P2MSz... SzPpN = K*

in other words

K = xlM.xlN = x2M, ,xpN = #*

has a solution over S. •

The following corollary follows from the proof.

Corollary: If S is a set of combinator equations of finite degree then there
exists a functional equation

Pxyz = Qxyx

such that M = N is inconsistent with some extension of S O PMNz = QMNz
is consistently solvable over S.

Remark: For the case that S is empty the construction in the proof of theorem
1 does not work. This is verified in 6. However it is still the case that the theorem
is true (the best proof comes from 4).

Theorem 2: There exist S of every finite degree.
We shall present a proof of this theorem elsewhere.

Theorem 3: There exists an inevitibly consistent combinator equation.

Proof: For this we need a result from 5. A V-set is a set of combinators which
is both RE and closed under beta conversion. A ^-partition of a F-set is a
partition of that set whose blocks are themselves V-sets. A F-partition is said
to be RE if there is an RE set which contains only indicies of sets which are
blocks of the partition and at least one index for each block.

Theorem [5]: Suppose that X is an RE K-partition of a F-set. Then there
exists a combinator H such that for any combinators M and N



HM beta converts to HN <=> M beta converts to N or M and N belong
to the same block of X (and thus to the V-set
partitioned by X).

Indeed, in the construction of H, if X is not a real partition in that blocks
of X overlap then H has the same value on elements of blocks with shared
members and the same values on elements once removed etc., etc., etc. Now
the construction of if is uniform in the RE index, say e, of the given set of
indicies for X\ that is, there exists a combinator G such that Ge beta converts
to H. To apply this theorem consider an enumeration of the finite sequences
P I , . . . , Pp of combinators. Given combinators M and N we construct two lists
of combinators

.., PpN)),..
(PlM,...,PpM,K*)),.

where (XI,..., Xn) is the usual sequencing combinator Xa.aXl... Xn. Clearly
these lists share a combinator modulo beta conversion if and only if M = N is
inconsistent. In the case of consistent M = N, these lists generate a ^-partition
of the y-set obtained as the beta conversion closure of the two lists. As the index
of this V-partition is uniform in M = N there exists a combinator F such that
F(#(M, N)) beta converts to the H for this partition. Let P I , . . . , Pp be the
first element in the enumeration of the sequences and set

LI = \a.((Pl,...,Pp),(K,Pla,...Ppa))
L2 = Aa.((Pl, . . . ,Pp),(Pla, . . . ,Ppa,^*)).

By the fixed point theorem [1] there exists a pair M, N such that (M, N)
beta converts to <F(#(M, JV))(LliV), F(#(MyN))(L2M) >. Now if M = N is
inconsistent then F(#(Af,iV))(LliV) beta converts to F(#(M,JV))(L2Af) and
thus M beta converts to N. Conversely if M beta converts to N then by the
construction of H we have M = N inconsistent. Thus M does not beta convert
to N. Similarly if M = N is inconsistent with S then S\ - F (# < M,7V >
)(L1N) = F(# <M,N >)(L2M) i.e. S\-M = N. Thus M = N is inevitibly
consistent. •

Remark: It is easy to see from Mitschke's theorem [1] that any inevitibly
consistent equation must contain a universal generator. This is indeed the case
for our example. The following theorem follows from theorem 4; however, it has
a simpler proof.

Theorem 4: There exist inevitibly consistently solvable functional equations.

Proof: We can restate Jacopini's theorem for the empty S as follows. M = N
is inconsistent with beta conversion O- there exists a combinator P of the form
Xa. aPl ...Pp such that B(C*K*)(PM) beta converts to B(PN)(C*K). Now



by [4] there exists a combinator R such that RP beta converts to R if and only
if P beta converts to the form Xa.aPl...Pp for combinators P I , . . . , Pp. Thus
the equations

(*) Rx = R, B(C*K*)(xM) = B(xN)(C*K)

have a solution modulo beta conversion if and only if M = N is inconsistent
with beta conversion. Moreover, if S is a consistent set of combinator equations
then (*) has a solution over S if M = N is inconsistent with S. Hence the
equations

(**) Rx = R, B(C*K*)(x(Omega)) = B(xy)(C*K)

once the two variables are replaced by one variable through pairing, are in-
evitible. For given an S either Omega is inconsistent with every solvable term
or Omega is consistently inconsistent with at least one unsolvable term, and
Omega is easy. This completes the proof. •

CONSISTENCY SETS

Clearly if S is RE then the set of consistent solutions to Mx = Nx is a co-
Visseral ([5]) set. It is natural to ask if every co-Visseral set is representable in
this manner as a "consistency set". By [5] it suffices to consider only co-Visseral
sets of the form {P : P does not beta convert to Q }.

Theorem 5: Let Mx = Nx be given. Then there exists a combinator P
not beta convertible to Omega such that either M(Omega) = iV(Omega) is
consistent or MP = NP => M(Omega) = iV(Omega).

Proof: Suppose that Mx = Nx is given and M(Omega) = iV(Omega) is
inconsistent. Then M(Omega) and N(Omega) have beta eta distinct Bohm
trees ([1] page 504 and page 244).Without loss of generality we may assume that
M(Omega) and iV(Omega) are not separable. Thus M(Omega) and JV(Omega)
have reducts with equivalent subterms one of which is unsolvable and the other
of which has a head normal form. Symmetrically assume that the unsolvable
one is in a reduct of M. By the Bohm-out technique there exists a possibly
open term X such that

,^, _ _ . - t f no head normal form
X(Mx) 13 converts to {
X(Nx) (3 converts to y

Clearly we may assume that the second alternative for X(Mx) does not occur.
In addition we can arrange it so that X(Mx) has the property X(Mx) either
has infinite order or order zero. By the fixed point theorem there exists a



combinator P such that P beta converts to (Xz. z((\y. X(MP))zj) (Xz. zz).
By the standardization theorem P does not beta convert to Omega. However
whenever MP — NP we have P = Omega. This completes the proof. •

Corollary: The set { P : P does not beta convert to Omega } is not a consis-
tency set.

FINITELY CONSISTENTLY SOLVABLE SETS OF EQUATIONS

Definition: If S is a set of functional equations then S is said to be (effectively)
finitely consistently solvable if there is a partial (recursive) function / defined
on exactly the finite subsets of S such that if F is a finite subset of S then

{M(f(F)) = N(f(F)) :Mx = Nx in F}

is consistent with beta conversion.

Remark: The effectiveness condition in the definition really has two parts

(a) S is RE

(b) consistent solutions can be computed for finite subsets.

Next we show that neither of these restrictions can be relaxed.
Theorem 6: There exists a finitely consistently solvable set which is not con-
sistently solvable.

Proof: We shall actually build two variations on the same example only one
of which is RE. The RE example goes as follows. For each combinator M we
shall use two "local" variables y and z which actually depend on M. For each
such combinator we take the equations

zx = K, zM = yM, yx = K*.

Our example consists of all these equations with all the local variables
replaces by one global variable through pairing. Clearly this set is not consis-
tently solvable. However for any finite subset correcponding to the combinators
M l , . . . , Mm we can find a consistent solution as follows.

Let M have a head normal form distinct from the head normal forms of the
solvable members of {Ml, . . . , Mm}. Let ATI,..., Nn be such that

then for each of the sets

zx = K, zMi = yMi,yx = K*

we have the solution of M for x and



if Mi is solvable then there exists a Bohm-out term P such that PM beta
converts to K* and PMi converts to K and p P
for y and KK for z

if Mi is unsolvable then there exists a fixed point P without head normal
form such that P beta converts to PNl... NnK*. Putm
Ax. xNl... Nn for y and / for z. This works in the Bohm
tree model where all the unsolvable are equal; in
particular Mi = P.

Clearly computiong the finite consistent solution requires determining the solv-
ablitiy of Mi. Computing a finite consistent solution can be simplified by passing
to a non-RE example. We keep the above equations for those terms M which
are unsolvable and add the following for terms N in head normal form

It should be clear how to solve for the variables in any finite subset of these
equations. This completes the construction.

Theorem 7: If S is effectively finitely consistently solvable then S is consis-
tently solvable.

Proof: Suppose that S is effectively finitely consistently solvable and the func-
tion / is as above. For each finite subset F of S define T(F) = {Mf(F) =
Nf(F) : Mx = Nx belongs to F}. By Visser's theorem 3.8 ([7]) there exists
a combinator P such that for each finite subset F of S T(F)U{P = f(F)} is
consistent. Thus by the compactness theorem the set { MP = NP : Mx = Nx
belongs to S } is consistent. This completes the proof. •
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