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Abstract

A local acceleration method for primal-dual potential-reduction algorithms is intro-
duced. The method developed here uses modified Newton search directions to minimize
the Tanabe-Todd-Ye (TTY) potential function, and can be regarded as a primal-dual
variant of the Iri-Imai algorithm based on the multiplicative analogue of Karmarkar’s
potential function. When iterates are close to an optimal solution, the TTY poten-
tial function has negative curvature along the generated search directions. Therefore,
large reductions in the potential function can be obtained, guaranteeing polynomial
and quadratic convergence to nondegenerate solutions.
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1 Introduction

This paper considers interior-point methods for the solution of linear programming problems
given in the following standard form:

(LP) min, c’z
Az = b (1)
z > 0,

where A € R™", b € IR™, ¢ € IR" are given, and z € IR". The matrix A is assumed to have
full row rank without loss of generality.

We measure the quality of feasible solutions to the LP above using potential functions and
focus on potential-reduction methods to solve this problem. Ever since Karmarkar (1984)
introduced such a function to prove the polynomial convergence of his algorithm, potential
functions have been frequently used as both algorithmic and analytical tools in the study of
interior-point methods. Two recent surveys on potential-reduction algorithms by Anstreicher
(1996) and Todd (1997a) document these developments.

Currently, one of the most intensely studied aspects of interior-point methods is the de-
velopment of algorithms with fast local convergence in addition to global polynomial conver-
gence. Most of the developments in this area have focused on path-following methods. These
methods generate iterates that are restricted to stay in some neighborhood of the so-called
central path to reach the optimal solution. Proofs of superlinear convergence results for path-
following algorithms invariably and explicitly use these neighborhood restrictions imposed
on the iterates. While such restrictions are not required to establish the polynomial conver-
gence of potential-reduction methods, superlinearly convergent potential-reduction methods
without neighborhood restrictions are rare. Our focus is on the development of such methods.

The most relevant work on potential-reduction methods for our purposes is the method
developed by Iri and Imai. Iri and Imai (1986) develop an interior-point algorithm for
linear programming by applying the Newton’s method to the multiplicative analogue of
the potential function introduced by Karmarkar (1984). They demonstrate that when the
potential function parameter is large enough the multiplicative potential function is strictly
convex, and therefore, Newton directions are descent directions. Iri and Imai also establish
the quadratic convergence of their method for nondegenarete linear programming problems
when an exact line search is employed along the Newton directions. In subsequent work,
among others, Iri (1993) has established the polynomial global convergence of the Iri-Imai
method, and Tsuchiya (1995) showed that the quadratic convergence property holds even for
degenerate problems, provided that one uses exact line searches to minimize the potential
function along the generated directions. See also Sturm and Zhang (1996). Monteiro and
Wright (1995) describe a polynomially and superlinearly convergent affine-scaling method
that happens to be consistent with a potential-reduction method, but their method uses
neighborhood restrictions.

This paper considers a potential-reduction approach using the Tanabe-Todd-Ye (TTY)
primal-dual potential function. The motivation for this work is to improve the local conver-
gence rate of potential-reduction methods using this potential function. We achieve this goal
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using Newton search directions for the multiplicative analogue of the TTY potential func-
tion. Therefore, our approach can be seen as a primal-dual variant of the Iri-Imai method,
as indicated in the title of this study.

We interpret our search directions as modified Newton directions for the original TTY
potential function. An asymptotic analysis of these directions reveal that they become di-
rections of negative curvature near a solution, along which one can take large steps. Further-
more, one can obtain quadratic convergence for nondegenerate problems without resorting
to exact line searches. This technique can be embedded in any polynomially convergent
potential-reduction algorithm. Therefore, we are not concerned with the global convergence
of an algorithm using solely the directions generated by our technique. Rather, we regard the
method developed here as a local acceleration technique for primal-dual potential-reduction
algorithms. Specifically, we show that our method can be used in conjunction with the algo-
rithm of Kojima, Mizuno, and Yoshise (1991), retaining the polynomial convergence property
of their algorithm and improving its local convergence rate from linear to quadratic.

The paper is organized as follows: Following this introduction, in Section 2, we review
some of the primal and primal-dual potential functions for linear programming. We estab-
lish the convexity of the multiplicative primal-dual potential function with a large enough
parameter and derive our modified Newton search directions in Section 3. Section 4 is de-
voted to the analysis of the asymptotic behavior of our search directions. After proving our
polynomial and quadratic convergence results on nondegenerate problems in Section 5, we
conclude in Section 6.

The notation used here is mostly standard. || - || (without a subscript) denotes the 2-
norm of real vectors; we will use a subscript with the 1-norm. We use subscripts to denote
components of vectors or matrices, and superscripts to denote iteration indices. We also
use standard order notation: For sequences {z*} and {y*} of real numbers with y* > 0,
zF = O(y*) means that the sequence {%:—} is bounded above by a number independent of
k. If z¥ > 0 also, then z* = O(y*) means that z¥ = O(y*) and y* = O(z*). If {z*} is a
sequence of matrices, 28 = O(y*) and z* = ©(y*) mean that z§ = O(y*) and z§; = O(3%),
respectively, for each 7 and j. We will denote primal-only and primal-dual potential functions
using lower-case and upper-case letters, respectively. For an n-dimensional vector z, the
corresponding capital letter X denotes the n x n diagonal matrix with X;; = z;.

2 Potential Functions for Linear Programming

In his seminal work, Karmarkar (1984) introduced a potential function to measure the quality
of different feasible points. Under some mild assumptions, this function tends to —oo only
along the sequences that approach an optimal solution to the linear programming problem.
Therefore, a search for an optimal solution can be done by minimizing this function. The
potential function Karmarkar introduced is given below:

¢,(z) == pIn(cTz) — iln z, (2)
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Karmarkar assumes that the problem (1) is given in a particular form, and the optimal
objective value is a priori known to be equal to zero.
Iri and Imai (1986) consider the multiplicative analogue of the function ¢:

(cTz)P

p .
1=1 i

folz) = (3)
They show that f,(z) is strictly convex in the relative interior of the primal feasible region,
if the parameter p > n + 1. Then, they apply Newton’s method for minimization to this
strictly convex function. As mentioned in the introduction, Iri and Imai also establish the
quadratic convergence of their method for nondegenarete linear programming problems if an
exact line search is employed along the Newton directions.

The most succesful interior-point methods are the primal-dual methods. In addition to
solving (1), the primal problem, these methods simultaneously solve a related dual problem.
The dual of the linear programming problem given in (1) is:

(LD)  max,, by
ATy + s
s

c (4)
0,

VAT

where y € IR™ and s € IR".

Let GT be a null-space basis matrix for A, that is, G is an (n — m) x n matrix with rank
n —m and it satisfies AGT = 0, GAT = 0. Using this matrix and a vector d € IR" satisfying
Ad = b, one can rewrite (2) in a form that is identical to (1):

(LD min, d’s
Gs

S

Gce (5)
0.

(AVAN!

This form of the dual was discussed, among others, by Gonzaga (1992).
F and F° denote the primal-dual feasible region and its relative interior:

F = {(z,s): Az =b,Gs = G, (z,s) > 0}
F* = {(z,s): Az = b,Gs = Gc, (z,s) > 0}

We will assume that F° is non-empty and a point (z°,s°) € F° is available. This
assumption is not restrictive; any LP can be embedded in an artificial problem with a
known point in the relative interior of its feasible region; see, e.g., Ye, Todd, and Mizuno
(1994). Furthermore, certain solutions to this artificial problem will either give the optimal
solution to the original LP, or reveal that it is either infeasible or unbounded.

The main algorithmic tool in this paper is a primal-dual variant of Karmarkar’s potential
function ¢,. This function was introduced by Tanabe (1988), and Todd and Ye (1990)
independently and has been a very useful tool in construction and analysis of efficient interior-
point algorithms for linear programming and linear complementarity problems. For the
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primal-dual pair of problems (1) and (3), this function is defined as

®,(z,s) = pln(zTs) — Y In(z;s;), for every (z,s) > 0. (6)

i=1

Using a primal-dual update, Kojima, Mizuno, and Yoshise (1991) showed that when p >
n+ y/n, Tanabe-Todd-Ye (TTY) potential function can be reduced by at least 0.2 from any
feasible point (z,y, s) with (z,s) > 0. This guaranteed constant reduction in the potential
function leads to an algorithm with O((p —n)In %) complexity. They use the direction that
solves the following system to always achieve such a reduction:

AAzx = 0
ATAy + As = OT )
SArz + XAs = %fe — X Se,

where X = diag(z), S = diag(s), e is a vector of ones of appropriate dimension, and p’ is
a parameter related to p. Kojima, Mizuno, and Yoshise choose p' = p. Ye et al. (1993)
generalized their result to the case where p’ is not restricted to equal p and can vary from
one iteration to the other. If p’ is chosen carefully, it is possible to maintain the guarantee
of constant reduction in every iteration and to improve the practical performance. Kojima,
Mizuno, and Yoshise also provide an interpretation of the direction (7): When p' = p,
the solution to the system (7) can be regarded as a scaled and projected steepest descent
direction for the TTY potential function ®,.

The steepest descent interpretation of the direction (7) also indicates that an algorithm
using this direction is not likely to have better than linear convergence, since it only uses
first order information on the function ®,. In the vicinity of an optimal solution to the linear
programming problem under consideration, the potential function ®, tends to —oo, and for
faster convergence one needs to proceed along directions of negative curvature. In the next
section, we will define a modified Newton direction for minimizing ®, that we will later show
to be a direction of negative curvature around an optimal solution. We end this section by
evaluating the gradient and the Hessian of ®,:

Vo 5%3 X 8)
p ——g—x -S|’
zTs
and T
X2 p I p s s
25 _ P R
V<I>,,_[ 5_2]+sz[[ ] (xT8)2[xHx] . (9)



3 Modified Newton Directions for Potential-Reduction
Methods

A potential-reduction method to solve (1) and (3) using the TTY function is a method to
solve the following (nonconvex) nonlinear programming problem: :

ming s ®,(z,s)

Az = b
Gs = Ge (10)
T, s > 0.

In a sequential quadratic programming framework to solve this problem, one has a quadratic
model for the function ®, around the feasible point (z, s) such as

M(®,(z + Az, 5+ As)) = 8,(z, 5) + [V, (z, 5)] [ N ] + % [ " ]T Q(z, s) [ N ] ,

where Q(z, s) is a matrix related to the Hessian V2®, and is often chosen to be positive
definite. Then a search direction is found by solving the following local problem:

ming, M(®,(z + Az, s+ As))
AAzx =0 (11)
GAs =0

Let Z be a null space basis for the constraint matrix of (11). In the remainder of this paper,
we will use the following convenient form for Z:
GT
z -9 o] (12)
If Q is chosen so that ZTQZ is positive definite, the solution to (11) is found by solving the
following linear system:

(ZTQ(z,5)2) [ 238” ] = -ZTV®,(z,s). (13)

The Hessian matrix in (9) is generally indefinite. So, we are not even guaranteed to have
a descent direction if we use the (unmodified) reduced Newton direction (i.e., if we choose
Q(z,s) = V?*®,(z, s)). Instead, we will consider a @ matrix that is a rank-1 update of the
Hessian V?®,(z, s):

Q(z,s) = V?@,(z,s) +V,(z, s)VeT(z, s). (14)

Below, we show that this rank-1 update of the Hessian will guarantee that Z7Q(z,s)Z is
positive definite if p > 2n + 1. This modification to the Hessian is somewhat unusual; a
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multiple of the identity is preferred in most circumstances. We now give a justification of
this choice:

Consider the multiplicative analogue of the Tanabe-Todd-Ye primal-dual potential func-
tion:

(zTs)?
Fy(z,s) = T = exp{®,(z, s)}, for every (z,s) > 0. (15)
Since F,(z,s) is a monotone transformation of ®,(z, s), minimizing one of these functions
is equivalent to minimizing the other. Along a sequence of points (z*, s*) where ®,(z*, s¥)
tends to —oo, Fj,(x¥, s*) tends to zero. Note that,

VE,(z,8) = Fy(z,s)VP,(z,s), (16)
V2F,(z,8) = Fy(z,s)(V2®,(z,s)+ V®,(z,s)V®,(z,s)]T). (17)
Our choice for the @ matrix is precisely the second term on the right-hand-side of (17). Our

motivation for considering F,(z, s) is the fact that this function is strictly convex on the
relative interior of the feasible region for large enough p:

Theorem 3.1 The function F,(z,s) is strictly conver on F° if p > 2n + 1.

Proof:

To show the strict convexity of F, on F°, all one needs to do is to show that when p > 2n+1
the reduced Hessian matrix Z7V2F,(z, s)Z is positive definite, where Z is as defined in (12).
Below, 27! and s~! denote X e and S~!e, respectively. Using (8), (9), (16) and (17),

ZTV?F,(z,s8)Z

Fp(x’ 3)
[ GXGT b GAT
- AS—2AT ] Ts | AGT
p [Gs1[Gs]" [ #Gs—Gz'|[ £Gs—Gz' "
T («Ts)? | Az Az | + £ Az — As™! +4-Gz — Gs™!
_ [Gx2GT 1, ple-1[aGs][Gs]
- AST2AT | (zTs)? | Az Az

P Gs Gz} T+ Gz™1 cs 17 + Gzl Gz 1"
T iTs Az As™! As™1 Ax As™1 As™1
= H1+H21

where

~1
le[GX

[ X-1GT

1
AS-1 ] (Jon — o= 1627163;) S-1AT ] ) (18)



and

20D Gs — —2—GXle

H, = " where n= re Vele-1) ) (19)
lo=l) g ASle
T s VvV r(p-1)

If p>2n+1 (p=2n+1), H; is positive definite (positive semidefinite), since the only
nonzero eigenvalue of ey el is 2n. Positive semidefiniteness of H, is evident. Consequently,
ZTV2F,(z,8)Z
Fy(z,s)
Next, we analyze the case when p = 2n + 1. The arguments above indicate that Hy, H,,
and therefore, H; + H,, are all positive semidefinite even when p = 2n + 1. Assume that a

T
vector [aT ﬁT] with o € R*™™ and € R™ satisfies

if p > 2n + 1, the matrix = H, + H, is positive definite.

[o7 B7] (Hy + Hy) [ g ] = 0.

From the positive semidefiniteness of H, and Ha, it follows that

o7 ﬁ;-’]H,-[g]zo, i=1,2.

Let u = X 1GTa and v = S~'ATB. Then, the equations above can be written as:
2 1 & N2
I(u, I = o= uj + D vj)
2n = =

and n s o
' TS5
Dy +vj)zs85 = =Y (uy + vy).
=1 n 3
The first of the above equations and the Cauchy-Schwartz inequality imply that all u;’s and
vj’s are equal, say, to u. Then, the second of the above equations indicates that this holds

only if 4 = 0, which holds if and only if the vector |aT AT T is a zero vector since A and G

have full row ranks. Therefore, H; 4+ H, is positive definite even when p = 2n + 1.

ZTV2F,(z,8)Z
Fy(z,s)

p > 2n+ 1. Now the strict convexity of F, on F° for p > 2n + 1 follows immediately, since

F, is positive on its domain. 0

To summarize, we have shown that the matrix is positive definite for all

As mentioned above, Iri and Imai (1986) show that the multiplicative analogue of the
primal-only potential function is convex if the potential function parameter p > n+ 1. This
raises a question about the tightness of the condition p > 2n + 1 in Theorem 3.1. It turns
out that this bound on p is tight in the sense that one can find problem instances for which

7



the function F), ceases to be convex if p < 2n + 1. Below, we provide a class of LP instances
where F), is not convex when p = 2n — § with some small § > 0. The instances we found for
values of p closer to 2n + 1 are somewhat more complicated, so we do not include them here.

Consider problem instances with n variables and a single primal constraint. Assume that
p = 2n — 6 with § > 0. The class of LP instances in consideration are given by:

1 -1 0 -+ 0O
1 0 -1 --- 0
A=[11 1], 6= :
1 0 0 cee =1
b=1 c=[00 - 0]
Note that z = z(e) = [1—(n—1)6 g€ - e]T and s = [1 1 .- l]isastrictly

feasible primal-dual pair of solutions, as long as 0 < € < % On the other hand, for each

0 < é < 1, there exists a positive € < % such that the direction [ - —€ -+ —€ 1 ]T is
a direction of negative curvature for F, at z(¢) and s. Therefore, F,(-,) is not convex.

Gonzaga (1991) proves that the reduced Hessian matrix of Karmarkar’s potential function
¢, (in addition to its multiplicative counterpart) is positive definite for p greater than n —1,
for points on the central path. He assumes that a compactness condition holds for the feasible
set. A primal-dual analogue of this result is not possible: For points on the central path, the
reduced Hessian matrix of the TTY function is guaranteed to be positive definite only for
small enough values of p, e.g., for p less than 7. Small values of p are not useful, because
they give too much importance to the barrier terms and polynomial convergence can not be
achieved.

We will assume that p > 2n+ 1 in the rest of the paper. Let dgy be the reduced Newton
direction for F,(z,s) at some strictly feasible point (z,s). That is, dgy is a solution of the
following system:

(ZTV?F,(x,5)Z)dgy = —ZTVF,(z, s) (20)
which is equivalent to
(27 (V2@ (2, 5) + VO, (2, 5)V B, (2, 5))Z) dpw = —ZTV, (g, 5). (21)

In the remainder of this paper, we describe and analyze algorithms that make use of the
full space direction Zdgy. Since V2F,(z, s) is positive definite on F°, the direction Zdgy is
guaranteed to be a descent direction for F, and, thus, for ®,. We will see in Section 5 that
Zdpy is also guaranteed to be a direction of negative curvature for ®, near a solution.

The left hand side matrix of the equation (21) consists of a block diagonal matrix and a
rank-two matrix. Therefore this system can be solved efficiently using the Sherman-Morrison
formula. Although the derivation is somewhat tedious, the resulting directions are relatively
simple. Below, these directions will be presented formally, but first we introduce some
notation. We will make use of two orthogonal projection matrices:

=Z(z) = X 'GT(GX*GT)'GX7!, (22)

(1]
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and
L=X(s) = ST'AT(AS24T)"'4S 1, (23)

We note that = and T are orthogonal projection matrices into the range spaces of X 1GT
and S~1AT, respectively. These range spaces are the same as the null spaces of AX and GS,
respectively. Consequently,

(1

= J- XAT(AX2AT)“1AX, (24)
and
> = I- SGT(GSZGT)‘IGS. (25)

The analysis of the search direction defined in (21) relies heavily on an accurate estimation
of the matrices = and X, and of the orthogonal projections of the vectors e and X Se using
these matrices. To this end, we define

_ e"XS(E+X)XSe
5 - CRSEZEINS (26)
XS (E+Y)e
ﬁ? L (.'L'TS) ’ (27)
Bs = el (E+X)e, (28)
A = (ph~1)(p-F—1)+p(1— B)% (29)

Above, A is the determinant of the 2 X 2 matrix encountered when using the Sherman-
Morrison formula to invert the left-hand-side matrix in (21).

Proposition 3.1 Let dgn be the unique solution to (21). Then,

X-2GT -1gx-1 1— —
dpy = — ((61;45‘2AT§‘1AS“1 (p_(A—(xT—ij)‘Xse"‘ pﬂlA 13)~ (30)

Now let (AzT,AsT)T = Zdpy. Then, Az and As satisfy the following equations:

XAz = —p(A—l(;—T%lE(XSe) - ﬁl—A——lEe, (31)
S-1As = -”—(A}G}%)z(xse) - -”-ﬁl—AI_lze. (32)

Proof:
Equation (30) can be verified by direct multiplication. Equations (31) and (32) follow from

(30). Using (24) and (25), it is easily seen that Az and As lie in the null spaces of A and
G, respectively. 0



Note that the bulk of the work in computing Az and As from (31) and (32) is in the
factorization of the matrices AX2AT and AS~2AT, which is twice the work required for an
iteration of most interior-point methods. Once these factorizations are completed, all that
is needed is a few backsolves, and matrix-vector products, which are all of lower order of
complexity. We end this section with an evaluation of the change in the duality gap along
the direction defined above:

Proposition 3.2 Let Az and As be defined by (31) and (82), and let (z,s") = (z,5) +
a(Az,As). Then,

@'st = @) (1= 3om—5). (33)
Proof:
(zH)Tst = (e+aX'Az)TXS(e+ aS™'As)
= z7s—ae’XS (i’g(—m}%—)(z + X)X Se + ﬁfi—A_—l(E + z:)e)

= zTs <1 - g—(p(l — B2)B1 + (pBr — 1),52))
= (z7s) (1 - %(Pﬁl - ﬂz)) .

The second equality above uses the identity Az7 As = 0 and the the third equality uses the
definitions (26) and (27). 0

4 Analysis of the Search Directions

4.1 Symmetry and Invariance Issues

The search directions given by (31) and (32) are new for interior-point methods, although
they are linear combinations of certain directions used by methods using primal-only or dual-
only scaling. Our primal direction uses a primal-only scaling and our dual direction uses
a dual-only scaling for the respective projection matrices. This fact may seem unpleasant,
since the motivation for the search direction was a primal-dual potential function. Despite
this seeming asymmetry in the projection matrices, the directions we use possess primal-dual
symmetry, as well as scale invariance. These two important and desirable properties of search
directions in primal-dual interior-point methods were studied by Todd, Toh, and Titinci
(1996). Also, see papers by Todd (1997b) and Tungel (1997) for axiomatic descriptions of
“desirable” search directions.

The primal-dual symmetry of the search directions is related to the symmetry of the
primal and dual linear programming problems, that is, the fact that the dual of the dual
problem is the primal problem itself. If one were to treat the dual problem as the primal,
and vice versa, the search directions given by certain algorithms may be different from what
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one would obtain without performing such a switch. If the directions are invariant under
this switch of the primal and dual problems, they are called primal-dual symmetric. From
our construction, it is easy to see that the directions defined in (31) and (32) are primal-dual
symmetric. Somewhat paradoxically, the fact that the primal direction uses a primal-only
scaling and the dual direction uses a dual only scaling establishes that the directions would
not change if one were to swap the primal and dual problems and variables.

Scale invariance refers to the invariance of the search directions under a change of the
measuring units used to describe the primal and dual variables. If the primal variable vector
T is scaled using a diagonal scaling matrix D, so that new variable vector is defined by
Z := D~ !z, then the dual variable vector s is scaled to § := Ds, and the data is updated in
the following manner:

A—A:=AD, G- G:=GD™},
c—é¢:=De, d—d:=D7.

Let (Ax, As) be the search direction found by a particular method using the unscaled vari-
ables and data. If the search direction (Az, As) found using the same method but the scaled
data and scaled variables satisfy that

Az =D"'Az and As= Ds, (34)

then this particular method of finding search directions is said to be scale-invariant. A search
direction given by a scale-invariant method is called a scale-invariant direction. The scale-
invariance of our search directions immediately follow from the scale-invariance of Newton
search directions. However, a direct argument using the equations (31) and (32) is simple and
instructive, so we include it here: Since GX~! = GX~! and AS~! = AS~! regardless of the
scaling matrix D, the orthogonal projection matrices = and ¥ that appear in the equations
(31) and (32) are invariant under this scaling transformation. Similarly, the scalars §;,
j =1,2,3 and A are not altered with the scaling. Therefore the search directions for the
scaled problem satisfy (34), and our search directions are scale invariant.
We summarize the above discussion in the following proposition:

Proposition 4.1 The search direction given by (81) and (32) is primal-dual symmetric and
scale invariant.

Most search directions for interior-point methods coincide when they are defined for
points on the central path. For example, centering and affine-scaling directions are identical
upto a scalar constant when they are defined for central points. Next, we demonstrate that
the directions (31) and (32) share this property:

Proposition 4.2 Let (z,s) be a point on the central path C. Then, the search direction
given by (31) and (32) is a scalar multiple of the primal-dual affine scaling direction.

11



Proof:
The point (z, s) on the central path C satisfies XS = uI for some x> 0. One can verify
that =+ ¥ = I for such (z,s). Therefore, 8, =1, 83 = n, and

SAz + XAs = ———-—l—XSe.

p—n—1

4.2 Estimation of the Projection Matrices

In this subsection, we analyze the asymptotic behavior of the projection matrices =(z*) and
¥(s*) on nondegenerate linear programs. Our analysis here is similar to the superlinear
convergence analysis of Zhang, Tapia, and Dennis (1992).

Before we present our first result, we state the nondegeneracy assumption formally:

Assumption 1 There is a (unique) nondegenerate pair of optimal solutions (z*,s*) for the
primal-dual pair of problems (1) and (3).

Without loss of generality we may assume that the first m elements of z* are positive.
Let
A = [B|N] (35)

be the corresponding partition of the constraint matrix for the LP, where B is an m x m
nonsingular matrix. B and NN will also be used to denote the index sets corresponding to
the indices of columns of matrices B and N; no confusion should occur.

Lemma 4.1 Assume that the iterates (z*,s*) generated by some (feasible) interior-point
algorithm converge to (z*,s*) described in Assumption 1. Then the matriz =(z*) + T(s¥)
converges to the identity matriz.

Proof:
k

Let us denote the subvectors of ¥ and s* corresponding to the partition (35) by z%, =%,

and s%, sk, respectively, and let X% = diag(z%), etc. We use formulas (24) for =(z*) and

(23) for L(s*).
E(z*) + 2(s*)
= I-[BX: NXKT(B(X.)’BT + N(X%)’NT)"'[BXY NX}]
+[B(SE)™ N(SY)T(B(S5) BT + N(SK) > NT)[B(S5)™" N(Sy)7']
* I*Rk Ik I* Rk
= 17| wyre (myTIERE } i [ (RETI¥ (RE)TISRE ]
where
RE = (XE)'BTINXy, R{=SyBT'N(Sy)™, (36)
If = (I+RYRY)T)™, If=(I+R{RYN)™ (37)
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Since X§ and S}, are bounded away from zero and X§, and S§ converge to zero, Ry and R*
both converge to zero matrices, and I* and I*¥ both converge to the m x m identity matrix.
Thus, the lemma follows. 0

In order to analyze the asymptotic behavior of the directions given in (31) and (32) we
need to estimate the scalars 3;, # = 1,2,3 and A. For this purpose, a tighter estimation of
the matrices Z(z*) and £(s*) is required. Since R¥ — 0 we have that

I* = I, — RE(REYT + REO(||RE|1?)(RYT = I, — REO(1)(RE)T.

Therefore,
k
S AN I A B2 )
where
B — {Rf. 0 H o(1) 0(1)(R’;)TH(R’;)T 0}
= = | o (RBYT || RRO1) 0Q) 0 R;|
Similarly,
n(s) = [Ig‘ 8]+[(R2)T %]—Ef (39)
where

- [ e %) &)

4.3 Estimation of the Projected Vectors

As in the proof of Lemma 4.1, let z%, %, and s%, sX, denote the subvectors of z* and s*
corresponding to the partition (35). Let p; and p, be nonnegative integers, and let N; and
Bj denote the ith and jth components of the index sets N and B, respectively. Then, for
any ¢ and j,

(zh ) (s5,)% = O(((")Ts)er+29).
Therefore, if H is a matrix such that H = O(1), the following relation holds:

(XRPH(SE? = O (((z%)TsH) e, (40)

13



Using (40), we make the following straightforward observations:

0 k. [ (Xk)_lB_lNSI’% (Xk)ze B Tk
[ (R5)T 0 ]st - [ BXMNTB_T)?%(BN ] =0 (((z"7s"?),
_ [ (xE)'B'N) Xke | _
(Rk)T 0 ] € = - X]k\:, (NTB—T(XE)_I) e =0 ((xk)Tsk) ’
R [ Sk(B—lN)Xke .
[ (Rlsc) 0 ] Xkske = b ((S]’%)'IBNTB_TXgI\j (S§)2e ] =0 (((:I:k)Ts ) ) ,
0 R [ Sk (B-IN(SE) ) e

Note that, the matrices in parentheses in the middle terms of the four equations above
are all O(1) matrices, which justifies the second equality in each of these four systems. We
continue by evaluating asymptotic values of some relevant vector-matrix-vector products:

T vk gk [ 0 Rf: ] k ¢k _ T ok -1 k sk \2
eT X*S (YT 0 Xkske = 278k (BTINSK) (Xk)%
= 0((@"7"s"°),
[ 0 RE]
eT (Rk)T O:z chske — 0(((:L'k)TSk)2),

0 Rk
el [ (R)T 0 ] e =0 ((xk)TSk) )
and similarly;

(R":)T R;).’: ]stke — 0(((xk)T$‘k)3),
R

T 0 f k Qk kT _k\2
e [(Rf)T 0 ]X.S'e = 0(((=""s"?),
7 [ (RET i ] e = O((@")7s).
The identities above also imply that
T X*SH(EE — EF)XFSte = O (((zM)TsH)Y),
e (BX — EF)X*Ste = O((
eT(Ef—Ee = O((
Now we are ready to estimate §;, 1 = 1,2,3:

14



Lemma 4.2 Under the assumptions of Lemma 4.1 we have the following:

stke 2
b - S o),
Be = 1+0((=H7s*), (42)
Bs = n+0(@h)"s"). (43)

Proof:
We only derive the result for 3,, derivations for 8, and (3 are similar. Using (38) and (39),

eT Xk Sk (sk + k) XkS*e

' (ORI
0 Rt — RE
Tstk (] T chsk
Paaksh)?  © [ (R{ —Ry)" 0 ¢
((z%)T s¥)2 ((zF)TsF)2
eT XkSk(EX — EX) Xk Ske
((zF)Tsk)2
|| X*Skell3 K\T k
XA SRl +0((=)7s*).
The last equality above follows from the asymptotic results preceding the lemma. 0
Note that, for (z*,s*) > 0,
1 | XkSke||2
- <6(zF,sF) = 2 < 1. 44
n =0 = s e

The first inequality above follows from the Cauchy-Schwartz inequality and it holds with
equality only if (z¥, s*) is on the central path, i.e., when all z¥s¥ values are equal. Therefore,
6(z*, s¥) can be regarded as a measure of centrality. The second inequality is always strict
for (z*,s*) > 0. The important fact for our purposes is that 6(z*, s*) is bounded below and
above by positive numbers independent from the iterate (z*,s*). Lemma 4.2 also implies
that

A=(pb—1)(p—Bs— 1) +p(1 =) = (obr —1)(p—n—1) + O ((z5)"s).  (45)
If (z*, s*) is amall enough pB; > 1 and A > 0, so we can write,
A= (pd(z*,s*) - 1)(p-n-1)+0 ((x")Tsk) = 0(1). (46)

The next lemma establishes that the search direction defined by (31) and (32) is similar
to the primal-dual affine scaling direction. In the lemma we use Op and ep to denote |B|-
dimensional vectors of zeros and ones, respectively. The same applies for Oy and ey.
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Lemma 4.3 Under the assumptions of Lemma 4.1, the search direction defined by (31) and -
(82) satisfies the following relations:

-1 _ 1 0p K\T k
XAz = —m[eN}+O(($)S), (47)
-1 _ 1 €B K\T _k
S7'1As = ——————p_n_l[ON]—&—O((z)s). (48)
Proof:
Using Lemma 4.2 and (46) we have that
p(1—B) pbhL—1 1 K\T k
NN = O(1), and = _p_n_1+0((x) s5). (49)

Next, using (38), (39), and the results preceding Lemma 4.2 we obtain:

EXkSke = (’)((xk)Tsk),

=, _ |08 K\T k
Se = -eNJ—i-O((x) s),
sXkSte = O((=4)TsY), (50)
T
Ye = - Of; | +0 ((a:k)Tsk).
The statement of the lemma follows directly from (49) and (50). 0

5 Polynomial and Quadratic Convergence on Nonde-
generate Problems

The search direction introduced in (31) and (32) is a pure Newton direction for the multi-
plicative potential function F,. Since this function is strictly convex on F°, this direction
is a descent direction for both F, and ®,. Next, we show that this direction is actually a
direction of negative curvature for ®, when the duality gap z7s is small:

Proposition 5.1 Let Az and As be defined by (31) and (32). Then,

[ Az ]TVQQ),,(:I:,S) [ Az ] _ A-(- Pﬂl)(l — 0By,

As As A?

which is negative if B, > %. If Assumption 1 holds, with small enough z7s we have 5, >
and [AzT AST|T is a direction of negative curvature for ®,,.
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Proof:

Az 1" A
[ m] V2®p(r,s)[ i] = AzTX2Az + AsTS2As

- (sTAz + 2T As).

(zTs)?
Since,
AzTX2Az + AsTS2As = || X 1Az|2 + ||S~As|?
p2(1 = B2)2B1 + 2p(1 — B2)(pBr — 1) B2 + (pBr — 1)*Bs
= A3 ,
and
T T .’L'TS
ssAx+x As = ——A—(Pﬁl — ),

after some simplification we get

T

o] veea | a7 = 2= a- om)
(0B — 1)(p — B3) + p(1 — B2)?

(pBr = 1)(p— Pz — 1)+ p(1 — B2)?

Recall that 3; = eTZe + eTLe = eT=2%e + €T L%, which is the sum of squares of the norms
of two different orthogonal projections of the vector e. Each of these squared norms are
bounded above by n, so 83 < 2n and p — 3 — 1 > 0. This implies that the right-hand-side
of the above equation is negative when (1 — pf;) < 0.

From (41) we have that 8; = §(z, s) + O(zT's) for nondegenerate problems, and from (44)
we have 6(z,s) > 1/n. Since p > 2n + 1, we conclude that (1 — pf3;) < 0 is negative when
zTs is small. Thus, the statement of the proposition follows. 0

(1—pB).

Polynomial convergence of potential-reduction algorithms for linear programming prob-
lems is established by guaranteeing a significant reduction in the potential function in each
iteration. As stated before, Kojima, Mizuno, and Yoshise (1991) proved such a result for an
algorithm using the TTY potential function ®,, assuming that p > n++/n. Their algorithm,
which we will call the KMY algorithm, converges linearly to an optimal solution. Here we
will argue that, we can embed our technique within their algorithm, obtaining a variant
that retains the polynomial convergence property and also exhibits quadratic convergence
to nondegenerate solutions.

Let us describe this variant formally. We assume that an LP problem that satisfies
Assumption 1 is given. Also, let p be an O(n) parameter greater than 2n + 1, and let
e > 0. Finally, let (z°, s°) be a strictly feasible solution for this LP such that &, ((zO)Tso) =
O(nln ).
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Step 1. Let k=0.

Step 2. Compute the search direction (Az, As) from (31) and (32) and choose
a step size of such that (z*,st) := (z*, s*) + of(Az, As) > 0.
Step 3. If ( ®,(z%,s%) - ®,(z,s) < —0.2) then

let (zF+1, sk+1) := (zF, s*¥) + o*(Az, As), k = k + 1. Go to step
2.

else

compute (Az, As) from (7) and choose the step size prescribed
in Kojima, Mizuno, Yoshise (1991). Let (zF*1, s¥*1) := (z*, s¥) +
a*(Az,As), k =k + 1. Go to step 2.

End if

Figure 1: A quadratically convergent variant of KMY algorithm

The algorithm in Figure 1 is reminiscent of the algorithms using fast and safe steps to
achieve superlinear convergence. Polynomial convergence of this algorithm follows from the
polynomial convergence of the KMY algorithm. To show that quadratic convergence can be
obtained, we need to demostrate that appropriate step sizes can be found in Step 2 of the
algorithm such that a sufficient decrease in the potential function ®,, and that a quadratic
reduction in the duality gap can be achieved simultaneously.

A delicate balance in the selection of the step sizes is required, as the larger steps necessary
for quadratic convergence may not guarantee reduction in the potential function; barrier
terms may increase faster than the duality gap term decreases. Let af,. be the largest
feasible step size in iteration k:

of  =max{a:zf +alAz* > 0,55 + aAsF > 0}

max

If Az and As are given by (31) and (32), from Lemma 4.3, we have
ok =(p-n-1)+0 ((mk)Tsk) . (51)

We will choose a*, the step size in iteration k, as of = 7%ak , with7F =1-0 ((m")Tsk) <1.
We first show that when (z¥)7's* is small enough, this choice of the step size gives a significant
reduction in the TTY potential function, and then establish that it also ensures the quadratic
convergence of the duality gap sequence.

Theorem 5.1 Let Ar and As be given by (31) and (32). Let o* = t*ak, with 7% =
1-© ((:c")Ts") < 1, and (zF*1, s*1) = (2%, s*¥) + o¥ (Az, As). Then, under the assumptions
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of Lemma 4.1,
Bp(ah !, ) — @,(ak %) < (p-n)In (O ((@M)7s¥)).

Proof:
To simplify the notation we let (z*,s%) = (zF*1, s¥+1), (x, 5) = (z*, s*), and @ = o*. From
Proposition 3.2,

8,(z*,s) - ®,(z, )
- ()

zTs

i=1 i i=1 Si

25) S (14 a2%).
i i=1 J

T Si

> In (1 + anzi) —Y In (1 + aASi)

= ol (1- 308 - B)) - Sln (1+a
Using (41), (42), (45), and (51), we get:
%(Pﬂl — B2)

(1 - G(sz)) ((p —n—1)+ O(:L‘TS)) (pé(:c, s)—1+ O(sz))
(pd(z,8) —1)(p—n—1)+ O(zTs)

= 1-0(zTs).
Also, from Lemma 4.3 we have,
1+ aAa':i =0O(z7s)i €N, 1+ aési =0O(z7s) i € B,
Az; i .
1+a—2 = - 0O(zTs) i € B, 1+aAss =1-0(z"s)ieN.
i i

From the definition of the order notation, there exists positive real numbers r and R in-
dependent from the current iterate (z,s) such that, any number z = ©O(z7s) satisfies
r(zTs) < z < R(z¥s) and any number z = O(zTs) satisfies z < R(zTs). Using the
asymptotic relations above, we obtain:
®,(z%,s7) — @,(z,5) < pln(R(z7s)) — nin(r(zTs)) — OQ1)
= (p—-n)In(zTs) + OQ)
(p—n)ln ((9 (sz)) .

Therefore, as z7s tends to zero, the reduction in the potential function tends to —oo. 0

Theorem 5.2 Let Az and As be given by (31) and (82). Let of = %ok with % =

1-0 ((:c")Ts") <1, and (zF*1, s¥*1) = (zF, s*) + ¥ (Az, As). Then, under the assumptions
of Lemma 4.1,

($k+1)T3k+l

(G
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Proof:
As in the proof of Theorem 5.1,

k —_
o (pﬂ; B2) - 1-0 ((zk)TSk)
Therefore,
(z5+1)T gk+1 o
@ T 1- = (pB1 = f2)
= 0 ((a:k)Ts") .
This last equality indicates that
(*+1)T gh+1 B
(@7~ oW

0

Under Assumption 1, there is a unique solution to the primal-dual pair of problems
in consideration. The global convergence property of the KMY algorithm indicates that
assumptions of Lemma 4.1 hold for our algorithm. By virtue of “safe steps”, the duality gap
will eventually get small. Therefore, the large decreases in the potential function expressed
in Theorem 5.1 as well as the quadratic convergence outlined in Theorem 5.2 will take effect.
Therefore, we have:

Corollary 5.1 Assume that an LP problem that satisfies Assumption 1 is given. Also, let
p be an O(n) parameter greater than 2n + 1, and let € > 0. Finally, let (z°,s°) be a strictly

feasible solution for this LP such that ®, ((:co)Tso) = O(nlnl). Then, the algorithm given

in Figure 1 finds a solution (z*,s*) with duality gap less than € in O(nlnl) iterations.
Furthermore, if the step sizes in Step 2 of the algorithm are chosen as in Thereom 5.1, the
duality gap sequence {(z*)Ts*} converges to zero quadratically. 0

6 Conclusion

This work was motivated by the following questions: Can primal-dual pure potential-reduction
algorithms converge to optimal solutions of linear programs superlinearly? Superlinearly
convergent path-following algorithms converge to optimal solutions by staying close to the
central path. Is it possible to achieve such convergence without imposing any neighborhood
restrictions on the iterates?

To answer these questions, we developed search directions that use second order infor-
mation on the Tanabe-Todd-Ye primal-dual potential function. Since the Hessian of this
function is indefinite in general, a modified Hessian is used in Newton’s equation to produce
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descent directions. The modification we consider is a rank-1 modification using the gradient
of the function. We obtain a search direction that is equivalent to a pure Newton direction
for the multiplicative analogue of the TTY function, which we show to be convex inside the
feasible region when the function parameter is large enough.

Our approach is a primal-dual variant of the Iri-Imai method that uses similar ideas on
Karmarkar’s primal-only potential function. While Iri and Imai use their search directions
from start to end, we prefer to use our directions only to improve local convergence. With
this approach, we are able to modify Kojima, Mizuno, and Yoshise’s polynomially convergent
potential-reduction algorithm so that it converges quadratically to nondegenerate solutions.
We believe our approach will attain its full potential once similar convergence results are
established for degenerate problems. Our preliminary computational results in this direction
are encouraging; degeneracy does not appear to hurt superlinear convergence. We leave a
theoretical analysis of this case to a future study.

Finally, we would like comment on an issue that may have confused some readers. Al-
though our search directions are Newton directions for the multiplicative primal-dual poten-
tial function F),, the asymptotic step sizes we use to achieve quadratic convergence are much
larger than 1, the usual step size for Newton’s method. Indeed, our step sizes converge to
the constant p—n—1. For the sake of the argument, assume that p is an integer. If one were
to extend the definition of the function F, and its derivatives for boundary points by using
limits and extended values, it could be verified that first p — n — 1 derivatives of F), are zero
operators at the optimal solution of a nondegerate problem. In other words, for a nondegen-
erate problem, the unique optimal solution is a root of multiplicity p—n — 1 for the nonlinear
equation VF, = 0. In such cases, the standard Newton’s method converges only linearly to
the optimal solution, while the quadratic convergence can be recovered by multiplying the
Newton step with the multiplicity of the root. This is essentially what we do in our approach.
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