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Abstract

In the case of a continuous integrand L : R n m —> RU {00} and a probability
measure v supported in R n m we indicate conditions both necessary and suf-
ficient for this measure to be generated as a homogeneous Young measure by
gradients of piece-wise affine functions Uk € I A + Wo'°°(Q) with the property
L(Duk) -* (L;v) in Ll(Q). Here A is the center of mass of v and I A is a
linear function with gradient equal to A everywhere. We show also that in
the scalar case m = 1 any probability measure with finite action on L has
this property. We provide elementary proofs of these results.

1 Introduction

Recent results in the area of Young measure theory, see [Ba], [Bl], [KP1],
[KP2], [Kr], [P], [SI]-[S3], showed that this theory presents a powerful tool
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for studying classical problems of the Calculus of Variations related to be-
havior of integral functionals on weakly convergent sequences. In fact, the
relaxation theorem was proved under optimal assumptions on integrands sat-
isfying standard growth conditions using this theory in [S2]. Moreover the
proof is based on quite different technique comparing with the previous ones
proposed for relaxation results, see [AF], [Bu], [D], etc. For other results
obtained by the same methods see [Si]-[S3].

The basic idea of this technique is to work directly with Young measures
instead of sequences generating them, provided the action of a measure on an
integrand is equal to the limit of values assumed by the integral functional
at the sequence. In the case of integrands L = L(Du) with p-growth

Ax\Du\p + BX< L{Du) < A2\Du\p + J32, p 2 >

the class of Young measures generated by gradients and having the above
property was characterized by Kinderlehrer &; Pedregal in [KP2]. These
measures were named homogeneous gradient p-Young measures.

In order to move analysis further towards the realistic problems in Elas-
ticity (cf. [B2], [B3], [BM], [C,Ch.4]) we have to obtain a characterization
of Young measures arising in the same way in the case of arbitrary inte-
grands. Note that even the case of realistic homogeneous isotropic materials
demands to deal with integrands L = L(Du) : R 3 x 3 -> R U {00} meeting

the requirement
L{Du) -> 0 as detDu -> +0.

Therefore, the basic assumption on L in this paper will be

(HI)

L : R n m - ) R : = R U {+00} is continuous and L(v) -» 00, v —> 00

We adopt the following conventions: for a subset A of R n the sets intA,
reintA, coA, and extvA are respectively the interior, the relative interior,
the convex hull, and the set of extremum points of A. B(a,e) denotes the
ball of radius e centered at the point a G Rn ; la is a linear function with
gradient equal to a everywhere. Weak and strong convergences of sequences
are denoted by —̂  and —>• respectively. We will assume that Q is a bounded
open subset of Rn with meas (dQ) = 0.



We will use notation C^(Q] Rm) for the set of piece-wise affine functions
vanishing at the boundary: u G Cg°(fi;Rro) if u G jy0

1>oo(Q;Rm) and there
exists at most countable decomposition of Q in Lipschitz domains such that
the restriction of the function u to the closure of each of these domains
is an affine function. Co(R!) will denote the class of continuous functions
$ : R* -* R vanishing at infinity. We use notation (•; •) to denote the action
of a measure on a function.

We will use the following

Definition 1.1 For an integrand L, which satisfies the condition (HI),
and a probability measure v, which has finite action on L and is centered
at a point A G Rnm, we call this measure a homogeneous gradient L-Young
measure provided there exists a sequence Uk G IA + CQ°(Q; Rm) such that
generates v as a Young measure:

$(Duk) ± ($; v) in L°°(fi) for all® G C0(R
nm),

and L(Duk) —^ (L\ v) in L\ as k —» oo.

Remark 1 We do not associate v with the set Q since validity of this
definition for Q implies its validity for all bounded open sets, cf. Lemma 2.2.

The first result of this paper is

Theorem 1.2 Let L satisfy (HI), and let v be a probability measure,
which is supported in Rnm and is centered at A G Rnm, with finite action on
L. Then v is a gradient L- Young measure if and only if for each $ G Co(Rnm)
the inequality

inf
(n;R™) meas

holds.

f {L(A+DxP(x)) + <f>{A + DiP(x))}dx < (L+$; v) (1.1)

Remark 2 As it will follow from the proof, the analogous result holds if in
the definition of gradient L-Young measures the class Co°(ri;Rn) is replaced
by the Sobolev class Wo'p(Q]Rm), p G [l,oo]. In this case tp in (1.1) should
be taken in the same class.



Remark 3 Note that in (1.1) the function L can be replaced by an
equivalent integrand L, i.e.

CiL + Bx < L < C2L + B2 , C2 > Cx > 0, £2 , Bx € R.

In the case of an integrand L with p-growth this means that v is a gradient
L-Young measure if and only if

inf / {\A + DiP{x)\p + ${A + D^{x))}dx < (\ - \p + $(•); i/>

for each $ € Co(Rnm) (here A is the center of mass of is).
The original result of [KP2] says that v is a gradient p-Young measure

if and only if for each quasiconvex L with p-growth the inequality (L; v) >
L(A) holds. Our result shows that one can avoid checking this inequality
with quasiconvex functions. Instead it is enough to verify the inequality
for finite perturbations of the original integrand. Moreover, the arguments
we introduce here let us prove an analogous result for arbitrary integrands
satisfying the condition (HI).

In the case m = 1 we can prove that an arbitrary probability measure v
with finite action on L is a gradient L-Young measure.

Theorem 1.3 Let L satisfy the condition (HI) with m = 1 and let L
have superlinear growth:

L(v) > 9(v), where 9(v)/\v\ —>> oo as \v\ —> oo.

Let v be a probability measure supported in Rm and having finite action on
L. Then v is a gradient L-Young measure.

This fact follows from a possibility to generate any convex combination of
Dirac masses by gradients of a sequence of piece-wise affine functions, which
is bounded in Wl'°°(Q), see Lemma 4.2. In the case m > 1 far not each
probability measure is a gradient L-Young measure. For different types of
nontrivial restrictions these measures have to satisfy see [Svl], [Sv2].

Note that we do not make an attempt to characterize nonhomogeneous
gradient Young measures {vx)xen since difficulties associated with this case



are more or less equivalent to the problem of approximation of admissible
Sobolev functions (admissibility means that the value assumed by the integral
functional at the function is finite) by piece-wise affine admissible ones. One
of the aims of our work with Young measures is just to avoid dealing with
the latter problem - the problem which completely stopped research in the
area of realistic problems in Elasticity - through proving the Localization
principle (for a.e. x 6 J7 the measure vx is a homogeneous gradient L-Young
measure) for such problems.

We will prove some auxiliary results about Young measures in §2. In §3
we will prove the main result - Theorem 1.2. Theorem 1.3 will be proved in
§4.

2 Some facts from Young measure theory

In this section we recall some facts from Young measure theory which will
be involved in the proof of the main result.

Recall that a sequence f* : Q —» R/ generates a homogeneous Young mea-
sure v if v is a probability measure and for each $ G CQ(H1) the convergence

(2.1)

holds .
Let Av(£fc)n (k is fixed) be a measure defined as

meas
C0(R

l).

It is easy to prove that Av(f*)n is a homogeneous Young measure generated
by scaled copies of the function £*. Therefore the convergence in (2.1) implies
the convergence Av(£*)n -^ */, i.e.

($; Av(&)ft> -> <*;i/>, k -> oo,V<l> e C0(R')-

In the proof of Theorem 1.2 we will use a similar construction showing that
for a special sequence </>k 6 IA+CQ°(Q; R m ) the convergence (L; Av(D(j>k)n) -*
(L; u) holds.

To make the proof complete we will need



1) to show that Av(D(f>k)n are gradient L-Young measures provided L(D(f>k) G

2) to show that the convergences Av(D(j)k)n -^ v, (L; Av(D</>fc)n) ->
(L; i/) imply that 1/ is a gradient L-Young measure;

3) to establish a connection of these convergences with the inequality in
the statement of Theorem 1.2.

To answer the third question we need

Lemma 2.1 Let vk, k = 0 , 1 , . . . , be a sequence of probability measures
supported in R/. Then vk -^ v§ if and only if p{vk, ^o) —> 0, where

and {$i} C Co(R') is dense m C0(R')-

Proof is straightforward since the convergence v^ -^ I/Q nieans conver-
gence ($; i/fc> -> ($; i/o), fc -> oo, for all $ € Co(R')-

Lemma 2.2 Lei 0 G /A + C^^^R171) and let Cl be an open bounded
subset of Rn. Then, there exists a sequence (f>k G IA + Co°(Q;i?m) such that
D(j>k generates Av(D(j))n as a homogeneous Young measure in fi and for each
k G N the function D(j>k has the same distribution in £1 as D(j) in Vt, that is

Moreover, if L satisfy (HI) and JnL(D(f)(x))dx < oo then D(j)k generates
Av(D(fi)n as a homogeneous gradient L-Young measure.

In the proof we will use the following standard result: a family F of
closed subsets of R n is said to be a Vitaly cover of a bounded measurable
set A if for any x G A there exists a positive number r(x) > 0, a sequence
of balls B(x,Ck) with e* —> 0, and a sequence Ck G F such that x G C*,
Ck C B(x,ek), and (meas C^/meas B(x,ek)) > r(x) for all k G N.

The version of Vitaly covering theorem from [Sa,p.lO9] says that each
Vitaly cover of A contains at most countable subfamily of disjoint sets Ck

such that meas (A \ UkCk) = 0.

Proof of Lemma 2.2
Let fi be a bounded open subset of Rn.



By the above version of Vitaly covering theorem for each k G N we can
find decomposition of Q in sets 0,* := x\ + e^Q C Q, where e* < 1/k for all
i G N, and a set TV* of zero measure. We can assume also that for k' > k,
z, i' G N either ft*,' C fif or f # n Of = 0.

Define ^ as follows:

x- x*
(j>k{x) = e^(f>(—jr1-) if x e flf, z G N; ^ ( x ) = IA(X) - otherwise.

Then fa e U + C^{Q;Rm). Notice that for each &• and all k > j the
identity

/ $(D<t>k)dx = ($; Av(D<j>)a) meas fij (2.2)

holds. To show that for each $ e C0(Rn m)

in

we have to establish convergence

for all compact subsets K of Q. In fact, we can replace K by K' := K DQ',
where fi; := 0 ° ^ U-^ (intfl^), since Q' has full measure.

Note that the sets fi*-, z,j G N, form a Vitaly cover of K1. Hence for each

e > 0 there exists a sequence of disjoint closed sets fi*(/p, / G N, such that

meas {(K \ U^jg) U (Uffljjg \ A")} < e.

Since e > 0 is arbitrary and (2.2) holds for each pair i,j G N with k G N
sufficiently large, we infer

)n) meas K, V$ G Co(Rnm).

Since K is an arbitrary compact subset of Q we obtain

± in Z,°°(fi),V<S> G Co(Rnm). (2.3)



By construction D(j>k, k G N, has the same distribution in ft as D(j) in
ft, therefore A V ( D ^ ) Q = Av(D</>)n. This proves the first assertion of the
lemma.

To prove the second one notice that the convergence L(Dcf)k) —* (L; Av(L>(/>)
in LX(Q) can be proved by the same arguments as (2.3) since the sequence
L(D<t>k) is equi-integrable - it is easy to see that it has modulus of equi-
integrability of the function \L{D(j>)\ multiplied by the factor (meas £1/ meas Q).

QED

Lemma 2.3 Let uk^k € N, be a sequence of homogeneous Young mea-
sures generated by gradients of functions <\>\ G I A + 0^(0,] Rm) respectively,
and let vk -^ v.

Then v is generated as a homogeneous Young measure by gradients of a
sequence (j^n^, k € N. Moreover, if v\~ are gradient L-Young measures then
v is a gradient L-Young measure provided (L; Vk) —> (L; v).

Proof
For each fixed k there exists a sequence <j>\ G (^(f^R7 7 1), i G N, such

that $ generate vk as a homogeneous L-Young measure:

± <fc;i/*> in L°°{Q)J -> oo,V$ G C0(Rn m) .

Since Co(Rnm) is separable by standard diagonalization arguments we
can find a sequence <t>\k)-> ^ ^ N, with the properties

{$\v) in L°°(n), k -> cx),V$ G C0(Rn m) .

This means that D^k\ generate v as a homogeneous Young measure.
In the case when vk are gradient L-Young measures we have also

L{D$) -* (L; vk) in L1 as i -> oo, fc G N.

Because of the convergence (L; i/*) ~> (L; z/), k -» oo, the sequence <t>^ can
be also chosen in such a way that

L{D(f>k
i{k)) -* (L; i/) in Ll{Q), k -> oo.

Therefore £> is a gradient L-Young measure. QED

8



3 Proof of the main result

Proof of Theorem 1.2
If v is a gradient L-Young measure centered at A then there exists a

sequence fa G IA + Co°(Q',Hm) with the properties L(Dcf>k) —̂  {L\v) in L l5

^ ($; i/> in L°°(fi) for all $ G C0(Rn m). In this case

J^̂{L(Dfa) + ${Dfa)}dx -> (L + $; i/) meas ft, V$ G C0(R
nm),

that implies validity of (1.1).
To prove the converse we will first show that the set G := {Av(D(f>)n :

(f> € lA + C^(Q;Rm)} is convex. Let ul := Av(Z>^i)n, z/2 :=
A e]0,1[. Let fix, Q2 be disjoint open subsets of SI such that meas
meas(9Q2) = 0 and meas Qi = A meas Q, meas ^2 = (1 — A) meas Q. By
Lemma 2.2 there exist functions u1 G ̂ + ^ ( ^ 1 ; R m ) , u2 G Z ^ + C g 0 ^ ; Rm)
such that Av(Du1)Ql = i/1, AV(DU2)Q2 = v2.

Let w = w1 in fi1? i/ = u2 in f̂ 2- Then Av(Z)u)n G G and Av(Du)n =
Az/1 + (1 — A)i^2. This proves convexity of G.

The theorem will be proved if we will show that v belongs to the closure
of the set G in the following sense:

mf M/i, v) + \{L- fx) - (L; v)\] = 0. (3.1)

In fact (3.1) implies existence of a sequence v^ G G such that p{yk,v) +
\{L\ uk) — (L; z/)| ~> 0, A: —> oo. Convergence of the first term to zero means
that Vk -^ v. Then, by Lemmata 2.2, 2.3 convergence of the second term to
zero implies that v is a gradient L-Young measure.

We will prove (3.1) by contradiction. Recall that

where the sequence {$;} is dense in C0(Rn m).
If (3.1) does not hold, then for a sufficiently large / and an e > 0 we have

/ j



Then, the subset of R/+1 given by the vectors

is convex since G is convex, and the vector generated by v does not belong
to its closure. Hence, there exists a vector c G Hl+l such that

i i

inf{co{L^) + J2ci($uV)} > co{L;u)+Y^Ci(^u)+S,6 > 0.
^ i=i i=i

Then
i

inf (L; /x) > (L; v) + 5, with L = c0L + Y c ^ . (3.2)

Note that the coefficient CQ cannot be negative - otherwise the value at the
left-hand side is —oo. In the case CQ = 0 we can replace L by L+rjL and (3.2)
still holds for 77 > 0 sufficiently small. Note that the integrand {L + 7]L}/c0

is of the type L + <J>, $ G C0(Rnm), and due to (3.2) the inequality.(1.1) fails
for this integrand.

The above contradiction proves that (3.1) holds and that v is a gradient
L-Young measure. This completes the proof of the theorem. QED

4 Proof of Theorem 1.3
To prove Theorem 1.3 we will need the following two lemmata.

Lemma 4,1 Assume that A G intco{t?i,... ,vq}. Then there is a func-
tion u0 € IA + Co°(fi) su°h that Du0 G {^i,..., vq} a.e. in Q.

Proof
Without loss of generality we can assume that vi, . . . ,vq are extremum

points of a compact convex subset of J?n.
To construct UQ with desired properties consider the function

ws(x) = m a x ( t ; i — A , x) — s,s > 0.

It easy to see that ws is Lipschitz, Dws(x) G {v{ — A : i = 1, . . . , q} a.e., and
ws\dPs =0 , where

Ps ;= {x : max^f — A, x) < s}
1<T<^
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is a compact set with Lipschitz boundary and nonempty interior.
Note that Ps = sPi.

Since Vitaly covering arguments let us decompose Q in disjoint sets of
the form yi + SiPu i G N, and a set of zero measure, we can define u0 as

lA{x) + wSi(x - y^ for x G yi + SiPu i € N.

Then uoelA + Q°(fi) and DuQ G {vu . . . , vq} a.e. in Q.
QED

Lemma 4.2 Let V{ G R n , C{ > 0, i = 1 , . . . , q, be such that Y,i ci = 1̂
S i civi == -4- r/ien for each e > 0 f/iere ezzste a sequence of piece-wise affine
functions (j>k € /^ + CQ0

) e{v{:i = l,...,q}UB(A,c)fora.a. x G fi;

generates the measure J2i=i CiSVi.

Proof
Without loss of generality we can assume that d > 0 for all i.
1.
Consider first the case when A £ intco{vi,. . . ,vq}, but A has unique

representation in the form of a convex combination of v\,..., vq. Then we
have A G reintco{vi,... ,vq}. Let P be the largest subspace of R n per-
pendicular to all vectors Vi — A, i e {1,... ,</}. Assume that dimP = m
and Vg+i,...,vg+m+i are such vectors in P that co j^+ i , . . . ,t^+m+i} has
nonempty interior in P and 0 belongs to this interior.

For each s > 0, 5 > 0 consider the function

where
Vi = Vi for z G { l , . . . , g } ,

i>« = 4̂ + Svi for z G {q + 1 , . . . , q + m + 1}.

It is clear that for each 5 > 0 the inclusion A G int co{61 ? . . . , S9+m+1} holds
and 6 i , . . . , vq+m+i are extremum points of a compact convex set.

11



Moreover, if Ps := {x : maxi<i<q+m+i(vi — A,x) < s} then

meas{x G P$ : Dw8j £ {vi — A,...,vq — A}}

meas {x e Ps : Dw$iS G { î - A , . . . , vq - A}}

as S —> 0 uniformly with respect to 5.
For k G N consider a Vitaly covering of fi by the supports Qi := re* + P5i

of the functions min{0, w5i,i/fc(- — #;)} with Si < 1/fc and define
' A ( 0 + ^5i,i/^(* ~" xi) in &i (i S N), (/>/t = /^ -otherwise. In this case

meas {x G fi : D ^ ^ { f i , . . . , vq}} -> 0, fc -> ex).

Therefore, if for a subsequence of </>* (not relabeled)

L. m e a s ( x 6 f i : D(f>k = Vj} - ,

measn oc,t

then 53 Ci = 1, YjCiVi — A, and because of uniqueness of the representation
of A in the form of a convex combination of Vi (i = 1 , . . . , q) we infer that
di = Cj. Hence, c£ -> Q as k —> oo for the original sequences c-% i G { 1 , . . . , q}.

Therefore the sequence Dfa generates the measure 5Z?=i c*^. It is also
obvious that (f>k satisfies the requirement 1) for all sufficiently large k G N.

2.
The general case will be reduced to the one discussed above. We can

assume without loss of generality that A = 0 and V{ i=- A, c; > 0 for all
z € { l , . . . , ? } .

For g = 2 the result follows from the argument above since in this case 0
has unique representation in the form of a convex combination of V\ and v<i-

Suppose the claim of the lemma is valid for q = 5. We want to prove it
for the case q = s + 1. If 0 has unique representation in the form of a convex
combination of vectors f i , . . . , us+i, then the claim was already proved above.
Otherwise we can find Vi and Cj > 0, j G { 1 , . . . , i — 1, i + 1 , . . . , s + 1}, such
that

In this case

0 = H civi
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where / i j > c i , j G { l , . . . , i - l , i + l , . . . , s + 1}, and J2j& t*j = 1-
We can find e e]0,1[ such that efij < Cj for all j ^ i and at least for one

jo ^ i the identity e/i^ = Cj0 holds.
Then

0 = *]£ W> 0 = YKCJ " WJ)VJ + Wi. (4.1)

We can decompose Q in two disjoint subsets fii and ft2 in such a way that

meas Qi = e meas Q, meas Q2 = (1 — e) meas Q.

Since each of the combinations in (4.1) contains at most s terms, by the in-
duction assumption and Lemma 2.2 we can find sequences u\ € /^ + Cro°(fii),
u\ 6 I A + Cro°(5l2) such that Du\ generates the homogeneous Young mea-
sure v\ = J2j& Vjdvj 5 Du\ generates the homogeneous Young measure v2 =

Du\{x) e {vi,... ,Vi-UVi+u ... ,v8+i} U B(Q,e) a.e. in Qu

Du2
k{x) e {vi,... ,vjo-uvjo+i,... ,vs+i] U B(0,c) a.e. in Q2-

Defining uk — u\ in Qi, u^ = u\ in fi2 w^ obtain that Uk € IA + C
Duk{x) e {vi,..., vs+i}uB(0, e). Then, the claim of the lemma follows from
Lemmata 2.2, 2.3 since Av(Dv,k) -^ ^, where i/ = ei/i + (l — e)u2 = J2jt\ CjSVj.

This completes the proof of the lemma. QED

Proof of Theorem 1.3
Let v be a probability measure with finite action on L. Let A be the

center of mass of v. Without loss of generality we can assume that 4̂ = 0.
We will construct convex combinations of Dirac masses uM (M G N)

centered at 0 with the properties:

VM = 53 C Z M ^ M ; (L\ VM) -» (L] v),vM^v, as M ~> oo. (4.2)

Before proving (4.2) we first note that it implies the theorem. Due to Lemma
2.3 to prove this claim it is enough to show that each vM is a gradient L-
Young measure.

Fix M 6 N. Since (L; vM) < oo we infer that V™ e {v 6 Rn : L(v) < oc},
i e { l , . . . , g } . Then we can find e > 0 and t)2, i e { l , . . . , p } , such that
L(vi) < oo for each i € { 1 , . . . ,p} and 5(0, e) C intco{6i,.. •, vp}.
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By Lemma 4.2 we can find a sequence of functions uk G /o + C
such that Duk G {v^, . . . , ^ M } u B ( 0 , e ) and Du* generate Young measure
S c f ' ^ M . Due to Lemma 4.1 in each subset of f£, where Duk is affine and

^, . . . , v ^ } , we can modify uk in such a way that the gradient of the
modified function uk takes values in {v\,..., vp} a.e. in the subset. Then Duk

generates Young measure vu := *£,($*SVM (since meas{x G fi : Duk(x) ^
Duk(x)} -» 0, k —» oo) and L(Duk) -^ ( L J ^ C ^ ^ M ) in Lx. Therefore, I/M is
a gradient L-Young measure.

To complete the proof of the theorem we have to construct measures VM
satisfying (4.2). There exists a point A1 G Rn and e > 0 such that \L\ < Mi
in B(Af,2e) and v(B(Af,e)) = Co > 0. For each integer M > M\ consider
the set

UM = {veRn: L{v) < M}.

We can decompose UM in sets Ul
M, i = 1 , . . . , /(M), C7 ,̂ i; = 1 , . . . , /'(M),

of diameters less than 1/M in such a way that oscillation of L in each of
these sets does not exceed 1/M, and U^ C B(A!, c), i' = 1 , . . . , T(M), £7^ c

Let cMft = v{Ul
M), cMj = v(Uii) and cM = ^ ( ^ n \ I/M)• Note that

CM

Let A l
M £ ^ , i = l , . . . , /(A^), ^ZM G t/£, i' = 1 , . . . , / ' ( ^ ) - Consider the

probability measure

Let ZM be the center of mass of HM> It easy to check that because of
superlinear growth of L the convergence ZM —* 0, M —> oo, holds. Then the
measure

is centered at 0. Moreover, by construction we have

VM
 A v, (L; vM) -)• (L; v) as M ->• oo.

This way we establish validity of (4.2) and complete the proof. QED
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