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Abstract

The main idea of this paper is to reduce analysis of behavior of integral
functional along weakly convergent sequences to operations with Young
measures generated by these sequences. We show that Young measures can
be characterized as measurable functions with values in a special compact
metric space and that these functions have a spectrum of properties suffi-
ciently broad to realize this idea.

These new observations allow us to give simplified proofs of the results
of gradient Young measure theory and to use them for deriving the results
on relaxation and convergence in energy under optimal assumptions on in-
tegrands.

In comparison with the first version of this paper, published as a preprint
of SISSA, we do not discuss consequences of the new concept of Young
measures as measurable functions for the general Young measure theory.
However, this time we are more consistent with applications of the new
technique to the above questions - all proofs are now completely based on
this technique.
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1 Introduction
Consider the functional

/
n

where Q is a domain in Rn, u : ft -> Rm and where L : ft xRm xR n m -> R is
a Caratheodory function. Some of the fundamental questions in the Calculus
of Variations axe

• under which conditions on L is / lower semicontinuous with respect
to weak convergence in the Sobolev space Wrl>p(fi;Rm);

• can the lower semicontinuous envelope of / be expressed as an integral
functional;

• under which conditions do weak convergence Uk —̂  UQ in WljP(ft; Rm)
and convergence in energy I(uk) -> I(v>o) imply strong convergence.

A number of results that answer these questions in different generality
have been obtained in [AF], [Bl], [Dal], [Da2], [EG] since the fundamental
work of Morrey [Mol] (see also [ET], [MS], [Rel], [SI] for the scalar case m =
1). In recent years it has become clear that optimal results axe most easily
stated and proved in the framework of Young measures ([Ba], [B2], [KP1]-
[KP3], [Kr], [S2]). The purpose of this paper is to present a streamlined and
self-contained approach to the theory of gradient Young measures and its
applications to the above problems.

We do not mention here all previous contributions in the area under
discussion, but give appropriate references each time that we state a result
similar to a known one or utilize a proof repeating a scheme discovered
earlier somewhere else.

In this paper we do not touch other problems in which Young measures
play an essential role (see e.g. [BL],[V]). An intensive study of the appli-
cations of Young measure theory to PDE started since the works of Tartar
[Tl], [T2].

We assume ft is an open bounded subset of Rn, with meas(dft) =
0, unless otherwise stated. By Wrl)P(f2;Rm) we denote the space of all
measurable functions u with finite norm ||w||vr1.p(n;Rm) :== IMl

), W0
1)P(n;Rm) is the closure of C0°°(ft;Rm) in



By W|o£(ft;Rm) we denote the space of measurable mappings u : ft —> R m

such that n G W^1>p(i7;Rm) for any open set ft compactly embedded in ft
( f lCC ft). The space Co(R') is the closure of C Q ^ R ' ) in the supremum
norm. Equivalently,

Co(R') = {$ G C(R') : lim *(v) = 0}.
|v|-»oo

Recall that L(x, u, v) : ft x R m x Rn m ->• R is a Caratheodory inte-
grand if L(x, •, •) is continuous for a.a. x and L(-, u, v) is measurable for all
ti, v. It is well known that L is a Caratheodory integrand if and only if for
each e > 0 there exists a compact subset ftc of ft such that meas (ft \ ft€) < e
and the restriction of L to ftc x R m x R n m is continuous, see [ET].

Prom now on we will denote weak and strong convergence by —̂  and —>,
respectively. Convergence fk ~Sk* / in I/°°(ft) means convergence of integrals
fn fkgdx to JQ fgdx for all g € L1(ft). Convergence in W^(Q] R m ) means
convergence in Wl*((l\ R m ) for each ft CC ft.

The ball of radius e with center at x will be denoted by B(x, e). We
denote by R n m the space of all m x n matrices and, for A G R n m and
x G R n we denote by Ax the vector defined by matrix multiplication. By
IA we denote a linear function R n —> R m such that IA(%) = Ax everywhere.

We write .M(R*) for the space of all bounded Radon measures supported
in R', and ||/^||.M for the total variation of a measure \x. To distinguish the
action of a measure on a function from the scalar product we use the notation
(L; /i) in the first case. Sometimes we also utilize more classical notation

Recall the definition of Young measures

Definition 1.1 A family (^x)xen of probability measures vx G
is called a Young measure if there exists a sequence of measurable functions
zk : ft -> R' such that for each $ G C0(R

l)

*(**) -»* $ in L°°(ft), where ${x) = ($; ux).

If the Zk are gradients of a sequence Uk G Ty l jP(ft;Rm), p G [l,oo[,
which converges weakly in W1)P(ft;Rm) and for which the sequence
is equi-integrable, then {vx)x€Si is called gradient p-Young measure.

Note that u^ converges weakly in W^1>p(ft; R m ) to some txo, and
fnnm(')dvx f° r a-a- x € ft (cf. Theorem 3.7). Then no is unique (up to
additive constants) and is called underlying deformation.



We call a Young measure {vx)x€n an homogeneous Young measure
if vx does not depend on x. GMP(A) is the set of all homogeneous gradient
p-Young measures with the center of mass at A, GM^A) is the set of
all homogeneous measures generated by gradients of sequences converging
weakly* in PV1'oo(fi;Rm). We will frequently identify elements of the sets
GMP(A), GMoo(A) with measures in .M(Rnm). Note that the sets GMP{A),
GM^A) do not depend upon £2.

Note also that a function $(zo) : fi -> R coincides with the function
given by the action ($;520(.)) of the family of Dirac masses Szo^ on the
function $.

Other notations frequently used in this paper will be given in §3, which
is completely devoted to general Young measure theory.

An improved version of fundamental theorem in Young measures by
[Ba], [B2] states that any sequence, which is bounded in IP with p > 0,
generates (after passage to a subsequence) a Young measure. Moreover,
under certain conditions on an integrand the action of this measure on the
integrand coincides with the limit of the .yalues of the functional along the
sequence (see [Ba], [B2] and Theorem 3.7 stated below). In addition to
these facts a characterization of the classes of Young measures generated by
gradients of the Sobolev functions was obtained in [KP3].

These results give us a hope that analysis of behavior of integral function-
als on weakly convergent sequences can be completely reduced to operations
with Young measures generated by these sequences.

In order to implement this idea one have to find a simple characterization
of Young measures and effective tools for work with these objects. It turns
out that such a characterization exists. In fact, Young measures axe just
measurable functions with values in a compact metric space with the metric
having an integral representation (see Lemma 3.3). Although these functions
are not so simple as the ones with values in R*, they still have a broad
spectrum of properties (these properties axe given by propositions 3.2-3.5).

It turns out that the characterization of Young measures as measurable
functions and operations available for work with these functions suffice to
prove all standard results of general Young measures theory. In this paper
we do not discuss these matters, but concentrate on applications to gradient
Young measure theory and problems of the Calculus of Variations related to
behavior of integral functionals on weakly convergent sequences of Sobolev
functions. In view of that we restrict our work to families of probability
measures with measurable actions on continuous functions not proving ex-



plicitly that this class of families coincides with the class of Young measures.
A curious reader can consult about the omitted issues in [S3].

In §2 we will recall some auxiliary facts on Sobolev functions from [AF],
[BM], [IS]. The most important one is Theorem 2.1 recently proved in [Kr]
(for an alternative proof see [FMP]).

In §3 we prove the characterization of Young measures as measurable
functions into a special metric space and discuss basic properties of these
functions: Lusin property (Theorem 3.2), some quantitative estimates on
how the convergence of the elements of the families of probability measures
transforms into convergence of the families (Lemma 3.4), and a theorem on
measurable selections (Theorem 3.5). We also state a version of the funda-
mental theorem in Young measures in a form convenient for our purposes
(see Theorem 3.6). Since in this work we need to analyze behavior of inte-
gral functionals on sequences of Young measures, we extend the theorem on
relation of the value of an integral functional on a Young measure with the
values on a sequence of functions generating this measure to this generality
(see Theorem 3.7).

In §4 we give simplified and self-contained proofs of the basic results of
the theory of gradient Young measures (Theorems 4.2, 4.3), the main one
of which is the classification of gradient p-Young measures (Theorem 4.3),
obtained by Kinderlehrer & Pedregal [KP3]. In the homogeneous case, we
replace abstract duality arguments from [KP3] by ones relying on the inte-
gral formula for the metric corresponding to weak* convergence of measures
and Theorem 3.7. Then, we extend the result to the general case following
construction proposed in §6 of [SI].

In §5 we obtain some applications of the theory developed in §2-4 to the
behavior of integral functionals on weakly convergent sequences of Sobolev
functions. It turns out that the approach above leads to a simple proof of the
relaxation theorem under optimal conditions on integrands if the standard
growth conditions are assumed.

Recall that
a function L : Rn m -* R is called quasiconvex at A E Rnm if for each

<f> e C£°(ft;Rm) the inequality

I L(A + V<p{y))dy > L(A) meas ft
Jn

holds. This definition does not depend on the choice of an open set Q, with
meas (dil) = 0 (cf.[BM]).



Theorem 1.2 Let L{x,u,v) : Rn x Rm x Rnm -»• R be a Caratheodory
integrand such that

Ax\v\p + Bx <L{x,u,v) <A2\v\p + B2 (p > 1, A2 > Ax > 0).

Let

, u, ,o) - ^ ;Rm) ^ / n L(*. u,

T/ien L9C satisfies the same estimates as L, is a Caratheodory integrand, and
the function v —> Lqc(x,u,v) is quasiconvex for a.a. x eCt and all u G Rm .

Ifuk -^ u0 in Wl>p(n;Rm), then liminik^ooliuk) > Iqc(u0). Moreover,
there exists a sequence Uk G UQ + Co°(f2;Rm) such that the sequence |Vujt|p

is equi-integrable, uk -^ UQ in Wrl'p(fi;Rm) and I{uk) -> Iqc(uo).

Remarks
1. If L is continuous then Lqc is continuous (see the proof of Theorem

1.2).
2. It follows from the second part of the theorem that Iqc is the weak

lower semicontinuous envelope of the original functional / .

The previous most significant results in relaxation (see [AF], [Bu], [Da2])
involve some additional requirements on behavior of integrands with respect
to x, u. In [AF] a result on sequential weak lower semicontinuous envelope
has been stated under less restrictive assumptions on growth of L. We will
show how this result can be derived from Theorem 1.2 in the remark after
the proof of the theorem.

The following property of integral functionals is called the weak-strong
convergence property:

uk -* u0 in Wl*(fliRm),I{uk) -> I{u0) imply uk -> u0 in W^ifyR™)

We obtain precise characterization of integrands satisfying this property
at a fixed function in §5 (see also [S2]). Results of previous authors indicated
some sufficient conditions for this property to hold at a function, everywhere
(see [Rel], [Re2], [Va], [Vi], [EG], [KP3], [Kr] and papers cited in [SI]). In the
scalar case a pointwise characterization of this property has been obtained
in [SI].



Definition 1.3 (see [KP3], [P], [Kr];
Let L : R n m -* R be continuous function such that \L(v)\ < A\v\p + B,

A > 0. Then L is closed p-quasiconvex at VQ if / R n m L{-)dv > L{VQ) for
any homogeneous gradient p-Young measure v (see Definition 1.1) with the
center of mass at VQ. L is strictly closed p-quasiconvex if the inequality is
strict unless v is a Dirac mass.

Theorem 1.4 Let u0 € Wl*(tl; Rm) and let L : Rn x R m x R n m -» R
be a Caratheodory integrand satisfying the inequalities

\L(x,u,v)\< A\v\p + B , A > 0,p > 1.

Then the following assertions hold
1. If L(X,UQ(X),V) is strictly closed p-quasiconvex at v = VUQ(X) for

a.a. x G fly then the convergences Uk —̂  i*o in W^1>p(fi;Rm), I(uk) ~> I(uo)
imply the convergence u^ —> UQ in W l j l ( f i ;Rm ) for any sequence Uk such
that the negative parts of L(x,Ufc{x)1Vufc(x)) are equi-integrable.

2. Conversely, if the convergences Uk —1 UQ in WliP(Q\Rm) and I(uk) -»
I(UQ) imply the convergence Uk —> UQ in W/rl)1(fi;Rm) for all sequences Uk
such thatuk € uo-f Co°(f2;Rm) then either L(x,uo(x),v) or — L(x,uo{x), v)
is strictly closed p-quasiconvex at v = Vtto(#) for a.a. xGf l .

Remark
In the situation in 1. the convergence

L(x,Uk{x), Vuk{x)) -» L(X,UQ(X), Vuo(x)) in L1 holds.

The "sufficient" part of the theorem has been proved in [Kr] through
arguments introduced in [KP3]. We also will follow these arguments in the
proof of this part of the theorem.

Remark
As proved in [S2], for p > 1 and integrands bounded from below strict

closed p-quasiconvexity of L at VQ is equivalent to the property called in
[S2] strict p-quasiconvexity (see [S2] for the motivations of this choice in
terminology). The property is the following.

A function L : R n m —> R is strictly p-quasiconvex at vo E R n m if L is
quasiconvex at VQ and for every c, e > 0 there exists 8 = 6(c, e) > 0 such that
for <j> e Cg°(il; R m ) the inequalities

I L(v0 4- V(f>{x))dx < (L(vQ) + S) meas ft, ||V<£||Lp < c
KnTn



imply the inequality

meas {x € £2 : |V</>(x)| > e} < e.

Therefore, Theorem 1.4 indicates the additional requirement to quasi-
convexity on behavior of integral functionals on linear functions both nec-
essary and sufficient for the weak-strong convergence property to hold. In
the scalar case (ra = 1) strict p-quasiconvexity at a point VQ becomes strict
convexity: Yli°iL(vi) > L(VQ) for any Q > 0, Vi ̂  vo such that ]£CJ = 1,
^2c{Vi = VQ (see [SI], [S2]). In this case the second claim of Theorem 1.4
still holds if restricting considerations to the class of Uk with equi-integrable
|Vujt|p. We did not succeed to prove analogous result in the vector-valued
case. As for the result from [S2], it also has been obtained for the sequences
Uk with equi-integrable |Vtz*;|p, however assuming more restrictive growth
conditions.

In this paper we do not treat the case p = 1. We also do not consider
the situation when the exponent of the Sobolev space, in which the weak
convergence holds, is less than growth exponent of the integrands at infinity.
For results in this direction and counterexamples see [AD], [Bl], [BFM], [BM]
[BZ], [CD], [DS], [FH], [FM], [GMS], [Mai], [Ma2], [Malyl], [Maly 2] and
papers mentioned therein. It seems that the papers [FM], [BFM] describe
these results in the most generality.

2 Some auxiliary results

This section contains some auxiliary facts utilized in this work. The basic
fact from the theory of Sobolev functions which we need in this work is the
following (see [AF], [IS], [Kr,Th.3.10], [FMP])

Theorem 2.1 Letp €]1, oo[ and let u^ be a sequence bounded in W1>p(fi; Rm) .
There exists a subsequence Uj, and a sequence Vj G W1)P(fi;Rm) such that
\VJ — Uj\ + \V(VJ — Uj)\ -» 0 in measure and \VVJ\P is equi-integrable.

It took a surprisingly long time to understand that the key point in some
previous results is the above property of Sobolev functions. The technique
sufficient to prove Theorem 2.1 had been utilized in [AF] while the theorem
was first stated explicitly only ten years later in [Kr,Th 3.10] (as a conse-
quence of the stability result in the Hodge decomposition from [IS]). An
alternative proof has been proposed recently in [FMP, §4].



Another important observation from [BM] is the following fact. Let ft
be an open bounded set such that meas (dft) — 0 and 0 G ft. Let ft be an
arbitrary open and bounded set. Then by Vitali covering theorem [Z, Ch.l]
for any e > 0 there exists a decomposition of ft in sets of the form a* + f̂ ft
(i G N), where €{ < e, and a set NQ of zero measure. Moreover

Lemma 2.2 Let u0 G I A + Wo
ljP(ft;Rm). For each k G N consider the

decomposition of ft in disjoint sets of the type a* + e*ft (i G N, e\ < l/k)
and a set Nk of null measure.

Defining Uk as Ax + e*uo((x — a*) A*) for x G a* + ef ft, and as ^4x o£/i-
erwise, we obtain that Uk —̂  />i in ^^( f i jR 7 7 1 ) and, moreover, the sequence
\Vuk\p is equi-integrable with the same modulus of equi-integrability as the
function |Vtzo|p multiplied by the factor (meas f2/meas £2).

Proof is given in [BM] with exception of the estimate for the modulus
of equi-integrability of |Vufc|p which follows immediately from the relation

meas{x G Cl : |Vufc(x)| > M}/meas Q = meas{x G ft : |Vwo(a;)| > M}/meas

Proposition 2.3 Let K C Rn be a compact set of nonzero measure.
Then, for each r] > 0 there exists an open set O^ (consisting, possibly, of
several domains) with smooth boundary and such that supx 6 O dist(x,K) <
rj, meas {{K \ Or,) U (Or, \ K)} -> 0 as tj -> 0.

Proof
Let / > 0 be a usual mollifying kernel, i.e. let / be smooth with the

support in the unit ball and / R n / = 1. Let fe(x) = e~nf(x/e).
The convolution fe * x> where x IS the characteristic function of K, is a

smooth function with support lying in 2e-neighborhood of the support of x-
Moreover, meas (supp(/e * x) \ K) -> 0 as e —> 0.

For almost all S G]0,1[ the set 5^ = {x : fe * x = ^} 1S a smooth
hypersurface (consisting, possibly, of several connected pieces). Actually, by
the Sard theorem for a.a. S G]0,1[ the inequality |V(/C * x)(^)l > 0 holds
for all x G 5J. For each such 5 and x G 5 | the hypersurface 5J is smooth
in sufficiently small neighborhoods of x by the implicit function theorem.
Because of compactness of 5J we obtain smoothness of 5 j everywhere.

Because of the convergence fe * x -> X a-e- i n R-n» for each a > 0 we can
isolate eo = to{cr) such that €Q < a and

meas {x G K : (f€0 * x)(^) > 1 — ^} > nieas if - a. (2.1)



The sets On can be chosen as {x € Rn : (/CO(T;) *x)ix) > 1 ~~ £(*/)}> where
S(r]) E]/;, 2r][ are such that the hypersurfaces S^P are smooth. Indeed, by
(2.1) meas (K \ On) <77-»Oas77-*O. The rest follows from the inclusion
Ov C supp(/C0(T?) * x).

The proof is completed.

3 General Young measure theory. Theorem on
behavior of integral functionals along sequences
of Young measures

In this section we will prove that the families of Radon measures (vx)xen
with measurable actions on elements of Co(R') can be identified with mea-
surable functions into a certain compact metric space (Lemma 3.3). This
fact will allow us to apply some standard (but powerful) tools for construct-
ing Young measures. In fact these tools, which are given by propositions
3.2-3.5, are enough to prove all standard results of Young measure theory
(see [S3]).

By the Riesz representation theorem, bounded linear functionals I over
the space Co(R') are given by actions of Radon measures: /($) = ($;^).
Therefore the space M{Rl) of all Radon measures over R' is dual to
Moreover it is a Banach space with the total variation

\\V\\M ~ sup / $(v)di/
\\*Uc0(ni)<lJ*'1

as a norm.
Let Kc = {v G M(R!) : \W\\M < c} and let {$f : i e N} ($, + 0) be a

dense set in Co(R0- The metric

f ^ i / > - < * « M > i (3-D

defined for elements of Al(Rf) endows Kc with weak* topology for each
c > 0. It follows again from the Riesz representation theorem that (Kc, p)
is a compact metric space.

Definition 3.1 Let ft be a bounded measurable subset ofHn. A family
of Radon measures {UX)X^Q, where ux G Kc for a.e. x € £2, is called weak*

10



measurable if for any $ G Co(Rl) the function ($;^(.)) is measurable. We
denote the set of these families as Lw(tt;Kc).

A sequence (Vx)xen of such families converges weakly* to a family {vx)xen
in LW(Q,;KC) if (<&;i/^) -** ($;^(.)) in L°°(£2), k -+ oo, for each $ G

. In this case we use the notation (v£)xen ~~^* (^z)zeft-

The space of weak* measurable families of Radon measures, which is
UCLW{Q;KC), is the dual space to LI{Q,CQ(R1)) (cf.[B2],[Ed,p.588]) and
this motivates our terminology.

In the following we frequently identify {vx)x£Q. with the map v : £2 —»
{Kc,p) given by i/(x) = vx. It turns out that (vx)xen 1S weak* measurable
if and only if v is measurable: for any closed subset C of {Kc,p) the set
v~l(C) is measurable (see Lemma 3.3). This identification let us utilize
some standard (but powerful) results on measurable maps, first of which is
the Lusin property.

Theorem 3.2 (Xusin type characterization of measurable func-
tions,)

Let ft be a bounded measurable subset ofRn, (M, d) be a compact metric
space. A function £ : £2 -> (M, d) is measurable if and only if for any e > 0
there exists a compact set Q,e C fi such that meas (fi \ fie) < e and the
restriction of £ to Qe is continuous.

The proof is a straightforward modification of the proof of the standard
version of this theorem.

Lemma 3.3 Let Q be a bounded measurable subset ofKn. Let vx G Kc

for a.a. x G fi. The family {vx)xen is weak* measurable if and only if
v : fi —> (KCyp) is a measurable mapping.

Proof
Assume that a family {vx)xen has measurable actions on elements $ of

Co(Rl). Let also {$*} C CQ(R1) be a sequence of functions, which is dense
in C O ( R ' ) - F° r given e > 0, i G N there exists a compact set Q* C £2
such that the restriction of ($*;*/(.)) : ft -* R to fl{ is continuous and
meas (ft \ £2;) < e/21'. Then meas (£2 \ D£2;) < e and the restrictions of all
functions (3>j ;&>(.)) to fl£2j are continuous. This implies continuity of the
function v : Dili —> (Kc,p). Then v : £2 —> (Kc,p) is a measurable function.

11



Conversely, let v be a measurable mapping from £1 into (Kc,p). Then,
by Theorem 3.2, the Lusin property holds for v. Thus, for any fixed e > 0
there exists a compact subset Q£ of £2 such that meas (ft \ fic) < e and the
restriction of v to Q,e is continuous in p-metric, that implies continuity of
the restriction of the function ($; i/(.)) to Qe for each $ G Co(R*)« Therefore
($;i/(.)) is a measurable function for each $ € Cb(R*)- This completes the
proof. QED

We define the average Av(/ix)x€n of a weak* measurable family of mea-
sures as follows

meas Q

It is clear that if \xx E Kc for a.e. xGfl then Av(/[xx)xen is a linear functional
over CQ(H1) bounded in norm by c. Thus Av(/zx)x^o £ -Kc-

We will need the following continuity property of the operation Av(/ix)xEn.

Lemma 3.4 Let 0, be a bounded measurable subset ofHn and let (/ix)zen>
(/ixk^^(^ifc). Then

1) If Q§ is a measurable subset of Q such that meas (Vt \ il$) < S meas £2
and P(A4,/XX) ~ ^ / o r a^ x

< (2c + 1)5.

J/p(/ifc(-),/i(-)) -> 0 i r i measure, where (/ix)x€n, (Mx)xeri G

fc) as k -+ oo.

Proof of the first claim is based on the representation formula for p.
Actually, if #* = *i/||*t|lc(R') t h e n

9i{v)dAv(£)x£n- f ViW

meas

12



2cS + T,i(J L ̂ i{v)

& I H ft) </
n6 i

2c6 + f p(/4, fil)dx/ meas ft < 2cS + 6.

The second assertion of the theorem is an immediate consequence of
the first one. Actually, let ft be a measurable subset of ft. By the first
statement of the theorem Av(/z*:)x€^ -** Av(/zx)xG^ as k —> oo. Hence, for
any $ 6 C0(R*) the convergence (*;/i(:.)) -

1* (*;/i(.)> in L°°(fi) holds.
The proof of Lemma 3.4 is completed. QED

We recall also a version of the theorem on measurable selections from
[K-RN] (for more sophisticated versions of such theorems see [CV]).

Let Q, be a bounded measurable subset of R n and let (M, d) be a compact
metric space. A mapping V : ft —> 2M is a closed measurable multi-valued
mapping if, for a.a. x G f l , the set V(x) is closed and if for any closed subset
C of M the set {x G ft : V(x) D C ^ 0} is measurable.

Theorem 3.5 / / V : ft —> 2 M is a closed measurable multivalued map-
ping then there exists a measurable selection, i.e. a measurable map v : ft —>
(M, d) such that v{x) G V(x) for a.a. x G ft.

The following result is a version of fundamental theorem of Young mea-
sures (see [B2], p a ] , [Ev], [Tl], [T2], [Yl], [Y2]) stating weak* compactness
of families of Radon measures.

Theorem 3.6 ( Compactness result ) Let ft be a measurable bounded
subset ofRn and let (VX)XGSI € LW(Q,;KC). Then there exists a subsequence

(not relabeled) and a (vx)xen G LW(Q;KC), such that

n LW{Q; Kc)

that is ($; i/fj) ^ * (*; i/(.}> in L°°(ft) for any $ G Co(R*).

If (^x)xen is a family of probability measures then {vx)x6n a^o consists
of probability measures provided there exists a function g : R* —> R+ such
that lim|t;|_>oo<7(t;) = oo and

11 c.

13



In particular, each sequence of measurable functions z^ : £1 —> Rl such
that SQ9{Z^{X))(1X < c contains a subsequence generating a Young measure.

Proof of the compactness result is given in [B2], [Ev], [Kr]. It fol-
lows from the duality L°°(£2;.M(R')) and L^fyCoCR/)) and the Banach-
Alaouglu theorem. For a proof in context of the concept of Young measures
as measurable functions see [S3].

To prove the second part of the theorem note that vx is nonnegative for
a.a. z G £2 and ||^X||AI < 1-

Let ft* be an increasing sequence of compact subsets of £2 such that
meas (£2 \ £2*) "•* 0 as k —¥ oo and the restrictions of v : £2 —> (K\,p) to J2&
are continuous. Let i G N and £2^ = {x G £2* : | |^x | |x < 1 — 1/*}- Then
Q^k is a closed subset of £2*. Suppose that meas £2^ > 0.

Consider v* = Av(^)xEQi fc, v = Av(vx)x£nik. By the assumptions we
have v* -** i/ (this follows from the convergence (Vx)xen -^* (^x)xen in
Lti;(£2;i<'c)), /R/ g(v)dvi < c, and ||^||^( < 1 — 1/*- In particular one has,
for all C < oo the inequality

{Rl \ B(0, C)) i

holds. Thus for any sufficiently large C we have i/J'(B(0,C)) > 1 — l/2i for
all j 6 N.

If $ : R' -* [0,1] is continuous, $(v) = 1 for |v| < C, and $(v) = 0 for
\v\ > 2C, then

/ ${v)dvj > 1 - l/2i > 1 - 1/t > / *(v)di/

for all j 6 N. This contradiction with the convergence i/-7 —̂* v proves that
meas £2̂ * = 0. Thus meas (Ui^iyk) = 0 and, as a consequence, ||̂ X||.M = 1
for a.e. x G £2. QED

Recall that the main idea of this work is to replace analysis of behavior of
integral functional along weakly convergent sequences by work with Young
measures generated by these sequences. In order to implement this idea
we need to characterize the cases when the action of a Young measure on
an integrand coincides with the limit of the values assumed by the integral
functional at a sequence generating this measure. In the general case only
the lower semicontinuity result holds (see [Ba], [Re3], and Theorem 3.7).
Since the inner demands of the theory which we develop in this paper require
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work with sequences of Young measures instead of functions, we have also
to indicate such a characterization in this, more general, situation.

It turns out that a relevant characterization is the following one.

Let F{x,v) : Rn x R ' 4 R+ be a nonnegative Caxatheodory integrand,
(*4)z€n € Lw(tt;Kc) (i € N). We will say that (j4)xeft satisfies the tight-
ness condition with the integrand F o n f i C Rn if

lim s u p / ( /

where f A/ : R —> R is a continuous function satisfying the requirements:
0 < £M(*) < * everywhere, £M(*) = 0 for t < M, £M(t) = t for t > 2M.

It is easy to see that in the case i/K = Sz.^ the tightness condition
coincides with equi-integrability of the sequence F(-,Zi(-)).

The next theorem gives answer to the above question.

Theorem 3.7 Let Q, be a bounded measurable subset ofRJ1.
Let (Vx)xen be a sequence of families of probability measures with support

in Rl, and let L(x,v) : fi x R' —> R be a Caratheodory integrand. Suppose
that (v^xett satisfies the tightness conditions with the negative part L~ of
L (therefore the integrals of the functions /R/ L(-,v)dvl,\ are either finite
or equal +00^ and that (yx)x^n generates a family of probability measures

liminf / ( / L(x,v)diy{
x)dx > f ( / L(x,v)dux)dx.

i-K» Jn Jui JQ Jui

Then

Moreover, lim^oo Jn fKi L(rc, v)dvl
xdx —> fn JKi L(x, v)dvxdx if and only if

{vx)X£Q satisfies the tightness condition with \L\. In this case /R/ L(',v)dvl, % —J

JKiL{',v)diy(.) in Ll.

Proof
Let Qk be a sequence of compact sets such that meas (Q \ fi^) -> 0 as

k —> 00 and the restrictions of L to fî  x R' are continuous. Let us prove
first the theorem under the additional requirement of boundedness of L from
below.

Consider a sequence of continuous functions $j : R* —> [0,1] such that
*j(v) = 1 for v e 5(0, j), $j(v) = 0 for v G Rl \ 5(0,2j\ and ^-(t;) is
nondecreasing in j for any fixed uGR'.
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For fixed k G N , j G N let w be a modulus of continuity of the restriction
of L to Ctk x [—2j, 2j]*. Decompose fi* on the sets K\,..., K m in such a way
that di&mKp < <$, p G { 1 , . . . , m}. Let also xp G ifp, p = 1 , . . . , m. Then,
for any fixed p G { 1 , . . . , m}

f $j(v)Z/(xp, v)di/J \ —̂* / $j(t;)£/(xp, v)di/(.) in i/°° as i —>• oo,
R̂  7R'

(xp,v) - L(y,v)\ < w{S), if y € Kp,v G R f .

Thus, letting <J->0 we obtain

m iv (SZfc),2 —> oo.

Since L is bounded from below the Fatou lemma implies

^ (J^WLfav^dx-* ^ (J^L(x,v)dvi)dx

as j -> oo, i G N (the same holds for the family (^x)x€fi)- Thus

linainf / ( / L(x,v)dvl
x)dx > / ( / Llx^v)dux)dx.

i*̂ oo ynfc ^Rf 7afc JRl

It is also clear that for the complete convergence we need tightness of
(*4)z€nfc with L + . In this case JKi L(-,v)di>U —* / R i L{^v)dv^ in L 1 ^ * ) .

Because meets (!7\fifc)—)-Oasfc->oo and L is bounded from below the
desired result follows. Theorem 3.7 is thus proved for integrands bounded
from below. For general integrands consider the auxiliary integrands Ln =
max{L, —n} for which the inequality

/ ( / Ln{x,v)dvi)dx> [{[ Ln(x,v)dvx)dx
j->oo JQ Jm JQ Jfti

has been proved. In view of the tightness condition for (vx)xen with L~ and
Fatou's lemma the same holds for the original integrand. Moreover we have
complete convergence if and only if (*4)x€f2 satisfies the tightness condition
with L + , and in this case fKi L(-,v)di>1^ -* fKi L(-,v)dv(.) in Ll as i -> oo.

The proof of the theorem is completed. QED

In the following we will frequently use Proposition 3.8.
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Proposition 3.8 Let Q be a bounded measurable subset of R n . Let
Zj : ft —> R' be a sequence of measurable functions that generates a Young
measure (vx)x€n- Then the following assertions hold.

1.) The sequence Zj converges in measure if and only if vx is a Dirac
mass for a.a. x G ft.

2.) If the sequence yj satisfies Zj — yj —> 0 in measure as j —> oo then it
generates the same Young measure.

Proof Convergence Zj —> zo in measure implies strong convergence
&(zj) ~~* ®(zo) m Ll(il) for each $ G Co(Rl). Hence Zj generates the
family 6zo{.y. *(z i) --* <*;<S,0(.)> = *(*o) in L°° for all $ e C0{R1)-

Given e > 0 we can find a bounded continuous integrand L : f i x R ! - ^ R
and a set £le C ft such that meas (£2 \ Qe) < e, 0 < L < 1 everywhere, and
for each x G Cl€ we have L(rr,v) = 1 for v G B(zo(x),e/2), L(x,v) = 0 for
v yGB(*d(s),e)- By Theorem 3.7 we have L(. ,^( .))-^*L(-^o(-)) in L°°(ft).
Since JnL(x,zo(x))dx > meaus Q€ we infer

lirrij^oo meas {x G ft : ^ (x ) G B(^o>^)} ^ meas fte > meas ft — e.

This implies convergence Zj —> z$ in measure.
Proof of the second part of Proposition 3.8 is immediate since $(yj) —

${ZJ) -> 0 in Lx(ft) for each $ G C0(R'). QED

4 Gradient Young measure theory

Recall first the definition of gradient p-Young measures. Let ft be an open
bounded domain with meas (5ft) = 0.

Definition 4.1 A Young measure (vx)xen is a gradient p-Young mea-
sure, p G [l,oo[, if it is generated by gradients VUJ of a sequence Uj G
W^ljP(ft;Rm) such that Uj converges weakly in W1)P(ft;Rm) and the func-
tions \VUJ\P are equi-integrable.

If UJ -* u0 in Wl>p(Q;Rm), then Theorem 3.7 implies Vuo(x) = fKnm(-)dvx

for a.a. x G ft. The function UQ is called the underlying deformation.
A Young measure (vx)xen is called homogeneous if it does not depend

on x. By GMp(A) we denote the set of all homogeneous gradient p-Young
measures with the center of mass at A. By GM^A) we denote those of
them which are generated by gradients of sequences converging weakly* in

O(n]Rm). Both these sets do not depend on ft.
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By v o A we denote the measure obtained by exchanging the center of
mass of v to A: if v is generated as a gradient p-Young measure by Vu*
and B is the center of mass of v then v o A is generated by the sequence

The main purpose of this section is to give self-contained proofs of the
following two basic results of gradient Young measure theory first proved in
[KP1]-[KP3].

Theorem 4.2 Let (vx)xen be a gradient p-Young measure with under-
lying deformation UQ, p G [l,oo[. Then

1) (Averaging principle) / / there exists an A G R n m such that uo —
IA e Wi*{il;Rm) then Av(vx)x£Q G GMP(A). If u0 - l A e W^^R™)
then Av{5Vuo(x))xen G GM^A).

2) (Localization principle) For a. a. x G J l the measure ux is a homo-
geneous gradient p- Young measure.

Corollary of Theorem 4.2
Let L : R n m -> R be continuous, \L{v)\ < A\v\? + B,pe [1,oo[. Then
1. the following identities hold

inf (L;i/>= inf (L;i/>= inf ? —
veGMp(A) veGMoo(A) <t>ec«>(Q;Rm) meas fJ

2. the function L is quasiconvex at A if and only if

inf (L\v) >LIA).
GM(A) ~~

Theorem 4.3 (Characterization of gradient p-Young measures)
A family (vx)xen € Lw(il]K\) of probability measures is a gradient p-

Young measure with p G [1, oo[ if and only if
(i) there exists u0 G Wl*(fyTLm) such that J R » m ( -K = Vuo(x) for a.a.

x G Ct;
(ii) for a.a. x € Q the inequality L(Vuo(x)) < fKnm L(v)dux holds for

any quasiconvex function L such that c < L(v) < A\v\p + B.
(Hi) Sn /Rnm(l + \v\*>)dvxdx < oo.

Remarks The theorem asserts that a probability measure v G M{Hnm)
is a homogeneous gradient p-Young mesure if and only if (1 + | • |p; v) < oo
and L((-; v)) < (L; v) for all quasiconvex L with c < L < A\ • \p + B.
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Thus {vx)xen £ Lw(Ct; K\) is gradient p-Young measure if and only if
(i), (iii) hold and for a.a. x € ft the measure vx is a homogeneous gradient
p-Young measure.

In the scalar case min{n,m} = 1 quasiconvexity becomes convexity.
Therefore any family of probability measures satisfying conditions (i),(m) is
a gradient p-Young measure. This fact was also implicitly proved in [SI,§6]
through approximation results from [ET, Ch.10].

To prove Theorems 4.2, 4.3 we will need two simple auxiliary propositions

Proposition 4.4 1. Let p G]1,OO[, (^x)xen be a Young measure gen-
erated by gradients of a sequence Uj bounded in W r l 'p(fi;Rm) (no assump-
tions on equi-integrability of \Vuk\

p)j and let UQ be the underlying deforma-
tion. Then (vx)xen is generated also by gradients of a sequence vk G uo +
Co°(ft;Rm) such that the functions \Vvk\

p Q>re equi-integrable and vk —* uo
in W1 | P(£i;Rm) . In particular, (vx)xen is a gradient p-Young measure.

2. Letp e [l,oo[, let \VUJ\P be equi-integrable anduj -* u0 G Wl*(Sl;ILm)
in W^( f2 ;R m ) . Let also VUJ generate a Young measure (vx)xen. Then
there exists a sequence Vk € uo 4- Co°(f2;Rm) gradients of which generate

5 a gradient p-Young measure.

It is clear that in the case p > 1 the statement of the second assertion
is close to the statement of the first one, but proofs of the seconds parts
of both propositions 4.4 and 4.5 do not involve Theorem 2.1. We state the
second assertions of these propositions separately in order to show that, like
in [KP3], Theorem 4.3 can be proved without using Theorem 2.1.

Note that Proposition 4.4 was proved the first time in [KP3] using ar-
guments similar to those in [AF] and Theorem 4.3. Theorem 2.1, which we
use here, were established later in [Kr].

Proof
1. By Theorem 2.1 there exists a subsequence Uj (not relabeled) and a

sequence Wj € WlJ>(il\ R m ) such that |VWJ\P is equi-integrable and \V(WJ —
Uj)\ -» 0 in measure. By Proposition 3.8 VWJ generates the same Young
measure as VUJ . Without loss of generality we can also assume that Wj —̂  no

Let £lk CC ft be an increasing sequence of sets with smooth boundary
such that meas(ft \ £lk) -> 0 as k -> oo. Let <j>k e Cfi°{Qk+i;Ilm) be
a sequence such that 0 < <$>k < 1, <p = 1 on Qk. Consider a sequence
Vk = uo + (wj(k) — uo)<f>k- We will prove that there exists a subsequence
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j(k) -> oo such that the sequence |Vi>fc|p is equi-integrable and vk -^ UQ in
™). We have

m - VuQ)<t>k + (wj{k) - u0)

Then

First two terms in the right-hand side of the first inequality converge to
zero for any choice of j(k) -> oo, both the last term and the right-hand side
of the second inequality converge to zero for a special choice of j(k) -> oo
since Wj — UQ -> 0 in L^0C(Q) as j —> oo. Thus |Vvfc|p is equi-integrable for
this choice of j(fc), and vk —* uo in Wo1>p(fi;Rm). Because Vvk — Vwj^ -> 0
in measure the sequence Vvk generates the same Young measure {vx)x^ (cf.
Proposition 3.8).

In order to meet the last requirement Vk £ UQ + Co°(fi; jRm) we can take
the mollifiers with sufficiently small radii of the already obtained sequence

Vk-

The second part of the proposition may be proved by the same argu-
ments, taking Wj = Uy

Proposition 4.4 is proved. QED

Proposition 4.5 Let {i^l)xen be a sequence of gradient p-Young mea-
sures such that (vi)xen "A* (^x)xen as j -> oo and the underlying deforma-
tions uj are equi-bounded in Wl'p{Ct\Km), p E [l,oo[.

1) V Sn / R ^ ^ C 1 + \v\p)duldx < c and p > 1 then {vx)xen is a gradient
p- Young measure.

2) If the sequence {vl)xen satisfies the tightness condition with the inte-
grand (1 + | • \p) then (^x)xen is a gradient p-Young measure.

Proof
By Proposition 4.4 for any fixed j there exists a sequence v?k G Uj +

Co°(fi; R m ) {UJ is the underlying deformation for (^x)xen) such that (5VUJ ,x))xen

{y°x)xen in Lw(Sl; Ki) and u{ - uj -^ 0 in W ^ f t ; R m ) as k -> oo, and the
functions |Vu^|p are equi-integrable. In particular Theorem 3.7 shows that

l i m ( | { ( ) | )
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Because of the convergence (vi)xen -** (^x)xefi by usual diagonalization
arguments we may isolate a sequence ifL7-\ bounded in WljP(ft;Rm) such
that (SVuJ (x))x€n -** (^x)xen in £„,(«; #1) as j -> oo and

/ (1 + IVuJyjWPJdx - / / (1 + M')*4cfe -> 0, j
7n u ; ,/n JR™

oo.

Thus, the first assertion follows from Proposition 4.4.
To prove the second assertion note that the tightness condition implies

/ ( M ) / ( M ) ( . , i n

R n m

see Theorem 3.7. Now we proceed as before, and because of the convergence

(1 + \v\*)dvxdx/ ( \ { U ) ( ) n /
n U) Jn

by the same theorem we obtain that the functions |VujL.Jp are equi-integrable.
By the second part of Proposition 4.4 (^x)xen is a gradient p-Young measure.

Both assertions of Proposition 4.5 are proved. QED

Proof of Theorem 4.2
Without loss of generality we may assume that OGfi. Consider first the

case (i/x)x€ft = {huo(x))xen. Recall that u0 € I A + W0
1'P(fi;Rm)-

For each i € N consider a cover of ft by disjoint sets f2] of the form
dj + €ljQ (j € N) with diamft] < 1/i, and a set iVz of zero measure. Suppose
also that for each i' > z, / G N either ilZ C fij or Sll n ft*- = 0.

j J j J

Define vl(x) = 6Juo(-~rL) for a; G ft}, vf(rr) = IA(X) otherwise. Then

Qj = Ay(huo(x))xen for each j .

We claim that

Let (Svvk(x))xen be a subsequence (not relabeled) which generates a Young
measure (yx)x£^ Let (l := fl^UjftJ), where ftj is the set of interior points
of Qlj. It is clear that meas(ft \ ft) = 0. For each XQ € ft there exists a
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sequence ftj^ such that #o G ft*-^ for each i G N. By the Lusin property

(Theorem 3.2) and Lemma 3.4

A v K ) * e m . -^* "xo in C 0 (R n m ) ' as i -> oo

for a.a. xo G ft. Because

Av(*vv*(*))*€nJ(0 -** A v ( ^ x ) x € f ^ in C 0 (R n m ) ' as k -> oo and

for any k > i

we infer that Av(z/X)x€f2i = AV(5 V U O ( X ) ) X € Q f° r all * € N. Then vXo =

Av(5Vu0(x))xGfi for a.a. x0 G ft.
Because each subsequence of the original sequence {S\7Vi(x))xen contains

a subsequence converging weakly* in Lw(Ct] K\) to the homogeneous Young
measure Av(5ytI0(x))x€n we obtain that the original sequence has this prop-
erty.

By Lemma 2.2 the functions | W | p are equi-integrable. Hence Av(<Svuo(z))z€fi

GMP{A). In the case uoeU + WQIO°(Q]Km) we have that v* - ^ -^* 0 in

W0
lfOO(n;Rm). Thus Av(«V t t o ( s ))x € n G GM^A).
If (^x)xen is a gradient p-Young measure with the underlying defor-

mation UQ G I A + WQ^^IV71) then by Proposition 4.4 there exists a se-
quence U{ G I A + Co°(fi;Rm) generating (^x)z€ft as a gradient p-Young
measure (in this case the functions |Vu;|p are equi-integrable). Because
Av(5vui(z))zeft ~^* Av(^x)x €^ and the modulus of equi-integrability of p-
powers of gradients of sequences generating Av(5yUi(x))x^Q does not exceed
modulus of equi-integrability of |Vui|p (cf. Lemma 2.2) we obtain that the
sequence Av(5yu.(x))x^n satisfies the requirements of the second assertion
of Proposition 4.5. Hence AV(I/X)XGQ G GMP(A). This completes the proof
of the first claim of the theorem.

Let us prove the second claim. Let {vx)xen be a gradient p-Young
measure. There exists a sequence ft* of compact subsets of SI such that
meas (ft \ ilk) -> 0 as fc -> oo, the restrictions of u^ to Qk are continuous in
p metric, and all points of ft* are Lebesgue for the map x -» (1 + \v\p] ux).

Let Vui be a sequence generating (vx)xen as a gradient p-Young measure.
Let xo be a Lebesgue point of Q^ and let B(xo1e) C ft for an e > 0. For
j G N consider a sequence u], i G N, defined on B(xo, e) C ft by the formula
ul{x0 + y)= j{ui{xQ + y/j) - Ui{x0)}.
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For \y\ < e we have that Vu{(xo + y) = Vui(xo + y/j). Then Vuj, i G N,
generate a gradient p-Young measure (^l)xeB(xQye) with i^0 + y = vXo+y/j,
y G i?(a;o,e). By continuity of the restriction of 1/ : ft -> (.Ki,p) to ft* and
Proposition 3.4 we infer ( ^ ) I 6 B ( I 0 , C ) -** ^x0 in Lw{B(x0,e);Ki) (here i/Xo

is a homogeneous Young measure). Moreover, since xo is a Lebesgue point
for the map x —> (1 + |u|p; i/x) we have

oo.
£(xo,c) *

Thus (^l)x£B(xOie) satisfies the tightness condition with the integrand 1 +1 • \p

(cf.Theorem 3.7). By the second assertion of Proposition 4.5 we infer that
vXo is a homogeneous gradient p-Young measure. This proves the second
claim of the theorem.

The proof of the theorem is completed. QED

Proof of Corollary of Theorem 4.2
It is obvious that infJ/GGMp(A)(L; v) < infi/€GMoo(j4)(L; v). The inequality

inf (L\ v) < inf —^—r f L(A + V<f){x))dx
veGMoo(A) ~~ <£ec°°(Q;Rm) meas ft J

holds because Av((5v^x))x€^ G GMOO(A) (cf. Theorem 4.2). To prove the
converse inequality

inf ]-— f L(A + V(f>{x))dx < inf (L; v)
^GC°°(n;Rm) meas ft J ~~ veGMp{A)

notice that by Proposition 4.4 a v G GMp(A) is generated as a gradient
p-Young measure by gradients of a sequence Uk G I A + Co°(ft;Rm). In
particular, by Theorem 3.7

I L{Vuk{x))dx -> (L; v) meas ft as A; oo.

The first assertion is proved. Let us prove the second one.
If L is quasiconvex at A then for any k G N the inequality

/ L(Vuk(x))dx > L(A)meas ft
Jn

holds with the above u*, and, as a consequence, (L;i/) > L(A).
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Conversely, if <f> £ IA+CQ°(H; R m ) then the inequality (L; Av(<5v< (̂x))xen) >
L(A) holds because Av(<5v</>(x))zen £ GMoo(A). This implies the inequality
fn L(A + V<f>(x))dx > L(A) meas £2. Thus L is quasiconvex at A,

The proof of the corollary is completed. QED

The proof of Theorem 4.3 from [KP3] is based on an abstract version of
Hahn-Banach theorem for special functional spaces, the relaxation theorem
in the simplest form (Theorem 4.6), and some technical approximation re-
sults (see Lemma 5.1 and the proof of Theorem 1.1 from [KP3]). We also
prove this result first in the homogeneous case through the relaxation theo-
rem (we give a direct and self-contained proof of the latter theorem). In this
case we propose a proof based on the integral representation of the metric
p and Proposition 4.5. This proof admits fax-reaching extensions, see [S4].
Then we extend the result to ihe general (nonhomogeneous) case utilizing
construction in the proof of Theorem 3 from [SI].

Theorem 4.6 Let L : Rn m —> R be a continuous function satisfying the

estimates

Ai\v\p + Bi< L{v) < A2\v\p + B2, P e [l,oo[, A2 > Ax > 0.

Then there exists a function Lqc, which is the greatest among all quasi-
convex functions minorizing L. This function is given by the formula

— inf / L(v)dv,

where GMP(A) is the set of all gradient p-Young measures with the center
of mass at A. Moreover Lqc is continuous and satisfies the same estimates
as L.

There are proofs of this theorem not involving Young measures (see
[Dal], [Da2]). In this case Lqc(A) is defined first as

inf — ± — / L{A + V<t*(x))dx.
j°(n;Rm) meas Q Ja

Then the result follows from the corollary of Theorem 4.2. We propose here

a proof which may be easily extended to the general case (see the proof of

Theorem 1.2 in §5), but involves Theorem 2.1.

Proof Consider first the case p > 1.

24



By Theorem 3.7 and Proposition 4.5 the infimum of I(v) := funm L(v)dv
over GMP(A) is attained. Let V(A) denote the set of minimizers of this
problem.

If Ak —> A as k -» oo and v^ G V{Ak) then for a subsequence ^ we have

lim I(UJ) = liminf / ( ^ ) 5 ?̂ "^* ">

where 1/ is automatically a gradient p-Young measure with the center of
mass at A (cf. Proposition 4.5). By Theorem 3.7 ]imJ^QQI^J) > I{v).
Thus, liminffc-^oo-k^C^fc) > Lqc(A), i.e. Lqc is lower semicontinuous at A,

To prove upper semicontinuity notice that if v G V^A) then the measures
i/o Ak are gradient p-Young measures centered at Ak, respectively, and

A*) < lim I(uk) = /(i/).

Therefore L9C is continuous.
Since each function <\> G Co°(ft; R m ) can be approximated in WrljOO-norm

by piecewise aifine ones, to establish quasiconvexity it is enough to prove
the inequality

/ Lqc(A + 7<f>(x))dx > Lqc(A) meas Q
Jn

for piecewise aifine functions <\> G W(J>00(ft;Rm). Fix such a <$>. Let Qj
(j = 1 , . . . , A;) be a finite collection of subdomains of fi on which A + V</>
has constant values A\,..., Ak respectively. Let Vj G V(Aj), j g { l , . . . , f c } .

By Proposition 4.4 there exist functions Uj G Co°(fij;Rm) such that

/ Lqc{Ai)dx= f f L{v)dvjdx> f

Define u(x) as </>(x)+Uj(x) for x G fij, j G { 1 , . . . , &}, and as <£(rr) otherwise.
We have

/ Lqc(A + Vcf>(x))dx = / L(^l + V<£(a;))dz + Y / L^iAAdx >

V(t>(x))dx 4- V / L ( ^ + VuAx))dx - e >
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/ L(A + Vu(x))dx - e + f {Lqc{A + V<f>(x)) - L{A + V<f>{x))}dx.

The first term in the right-hand side of the inequality exceeds Lqc(A) meas ft
since

L{A + Vu{x))dx = (L; Av(<5Vti(x))x€n) meas ft,Lin
where AV((5V^(X))X€Q 6 GMP(A) by Theorem 4.2. The second term tends
to zero as k —> oo. Because e > 0 may be chosen arbitrary small we obtain
that

/ Lqc{A + V<f>{x))dx > Lqc{A) meas Q.
Ja

This proves quasiconvexity of Lqc.
By the construction Lqc is the greatest function among quasiconvex ones

minorizing L. Indeed, if F is a quasiconvex function minorizing L then for
any v G V(A) we have

L*c(A) = (L;v)>(F;v)>F(A),

where the last inequality follows from the corollary of Theorem 4.2. Hence
Lqc{v) >AX+ Bi\v\p, while the estimate A2 + B2\v\p > L(v) > Lqc{v) is
obvious.

The theorem is proved in the case p > 1.
Consider the remaining case p = 1. To treat this case consider a family

of auxiliary integrands L^-) := L(-) + /x| • |2, /i > 0, and their quasiconvex-
ifications L£c. For any fixed v € R n m the values LJf(v) decrease to L(v)
as \x -> 0. Because L^c axe continuous functions bounded below by B\ the
function L is upper semicontinuous and is bounded below by B\.

Because the inequality

+ Vcf>{x))dx > Lf{A) meas ft

holds for any <f> e C^°(ft; R m ) and A € R n m the same holds for the integrand
L by monotone convergence theorem and then L is quasiconvex.

To establish continuity of L it is enough to prove lower semicontinuity.
The latter follows from quasiconvexity of L. In fact if Ak -* A then there
exist functions <f>k G I A 4- C£°(ft;Rm) such that meas{x G ft : <f>k(x) ^

0 and ||</>jt||v̂ i.«> < c < oo. Then

meas ft - / L(A 4- V(f>k{x))dx -> 0.
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Since the second term exceeds L(A) meas ft we infer that lim inf*-^ L(Ak) >
L(A).

Therefore L(A) is a continuous quasiconvex function. By the Dini con-
vergence theorem Ujf —* L as /i -» + 0 locally uniformly. Because Lq^ are
the greatest functions among quasiconvex ones minorizing the integrands
L(-) +/i | • |2 the function L is the greatest among quasiconvex ones minoriz-
ing the original integrand L.

In order to prove
inf (L;v)

notice that by Corollary of Theorem 4.2 the following holds

L(A) = lim L«C(A) = lim inf (£(•) + fi\ • |2; u) =

lim inf (L(-) + //I • |2; i/> = inf (L; u) = inf (

This completes the proof of Theorem 4.6. QED

Proof of Theorem 4.3
Necessity of the conditions (i)-(iii) follows from Theorem 3.7, Theorem

4.2 and its corollary. To prove their sufficiency we will prove first the theorem
in the homogeneous case. In this case the result follows from the integral
representation for the metric p. The result will be then extended to the
general case following the construction in the proof of Theorem 3 from [SI].

In the homogeneous case ux does not depend on x (we will denote this
measure as v). Recall that GMP(A) denotes the set of all homogeneous
gradient p-Young measures with the center of mass at A.

We prove first that GMP(A) is a convex set. Let i/1, u2 6 GMP(A),
A G]0,1[. Let fii, O2 be disjoint open subsets of Q such that meas (dQi) =
meas ( ^ 2 ) = 0 and meas fii = A meas ft, meas f22 = (1 — A) meas ft.
By Proposition 4.4 there exiut sequences u\ E I A + Co°(^i;Rm)> v% G
IA+CQ°(H2\ Rm) generating v1 and v2 as gradient p-Young measures respec-
tively. Hence the measure, which equals vx on fti, v2 on ft2, is a gradient
p-Young measure. By Theorem 4.2 its average, which is Ai/1 + (1 — A)*/2, is
also a gradient p-Young measure. This proves convexity of GMP{A).

Let $ 0 = (1 + I • \p). To prove the inclusion v E GMP(A) it is enough to
prove existence of a sequence vy. E GMP(A) such that

) + |<*o; fk) - <*o; ")\ -> 0, k -> 00. (4.1)
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In fact, the convergence of the first term to zero means that v^ generates
v. Then, by Proposition 4.5 convergence of the second term to zero implies
v e GMP{A).

We will prove (4.1) by contradiction. Recall that

OO

where the sequence {${} is dense in Cb(Rnm).
If (4.1) does not hold, then for a sufficiently large I and an e > 0 we have

' • ( 4 2 )

Then, the subset of R/+1 given by the vectors

is convex in view of convexity of GMP(A), and the vector generated by v
does not belong to its closure. Hence, there exists a vector c G R'+1 such
that

Then

inf (L; //) > (L; i/> + 6, with L = ]T c ^ . (4.3)

Note that the coefficient Co can not be negative - otherwise the value at
the left-hand side is —oo. In the case CQ = 0 we can replace L by L-hr/3>o and
(4.3) still holds for rj > 0 sufficiently small. Note now that this integrand
L satisfies conditions of Theorem 4.6 and that the left-hand side in (4.3)
is equal to Lqc(A). Since L > Lqc everywhere we infer that Lqc(A) >
(Lqc; v) + 5, that contradicts the assumption (ii) of the theorem.

The above contradiction proves that v £ GMP(A). Hence the theorem
is proved in the homogeneous case.

Let v be a homogeneous gradient p-Young measure with the center of
mass at A and let (l be an open subset of U such that meas (d(l) = 0. The
Young measure (^oVuo(x))a.6^

 ls a^so a gradient p-Young measure. Indeed,
if v is generated by w% € / A + Co°(n;Rm) as a gradient p-Young measure
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then (vo VUO(X))XGQ is generated by gradients of the sequence W{ — I A + UQ.

Because W{ — I A £ Co°(£2;Rm) the measure, which equals v o VUQ(X) for
x G £2 and £vuo(z) f° r other x G £2, is gradient p-Young one.

By Proposition 2.3 we can prove also that if £2i,. . . , Hi are disjoint mea-
surable subsets of £2,1/1,..., i// are homogeneous p-Young measures with the
centers of mass at Ai,...,Ai respectively then the measure (vx)xen> which
equals Vi<>Vuo(x) for x G ££* (i = 1 , . . . , /), ^vt/0(x) f° r other x G (£2\U*=1£2i),
is also a gradient p-Young measure. To prove this notice first that if il{ are
open sets with meas (dili) = 0 then the claim follows from the result of
the previous paragraph. If il{ are compact sets then the claim follows from
Proposition 2.3 and Lemma 2.2. In the general case the same arguments let
us prove the claim by approximating Hi with compact subsets.

Consider now the general case of nonhomogeneous measure (vx)xen- For
each k G N there exists a compact subset ilk of il such that meas (il \ilk) <
1/fc, the restrictions of uo, Vuo and f^nm (1 + |v|p)efo/(.) to £2* are continuous,
the restriction of v : il -> (K\, p) to fi* is continuous, and for each x G fi*
the measure vx satisfies the condition (ii) of the theorem.

We will prove that the measure (i^x)xeQ defined as vx for x G £2*5 and
as ^vuo(x) f° r £ € (fi \ fijO, is a gradient p-Young measure. By the second
part of Proposition 4.5 this result will be enough to complete the proof of
the theorem. Indeed, in this case (^)xen -1* {yx)xen in Lw(fy K\) and
(ux)xen satisfies conditions of the second assertion of Proposition 4.5.

Fix k G N. Suppose that C = [—a,a[n contains ft^ and let Cj (j —
1 , . . . , 2n) be quadrants of C. For each i > 1 decompose C) (j = 1 , . . . , 2m)
in 2n cubes of equal size in the similar way. Let Bj = Cj 0 ft* (i G N; j G
{ 1 , . . . , 2m}). Fix i G N. Let XJ G £ j , let i£* be equal to U(XJ) o Vuo{x)
for x G -Bj, j G { l , . . . , 2 m } , and to ^vuo(x) otherwise. Then (vx'

k)xen is a
gradient p-Young measure by the claim proved above.

Because the restriction of vk : Q, -* (Ki, p) to £2* is continuous in p metric
we obtain that {yx>

k)xen —"* {^x)xen as i -> cx> (cf. Lemma 3.4). Moreover,
the sequence (^fc)jr€n? t G N, satisfies the requirements of the second claim
of Proposition 4.5 - tightness with the integrand 1 +1 • |p. To prove this notice
that because of continuity of the restrictions of Vt/o, fnnm(l + \v\p)du^ to
ilk the family of homogeneous measures fiXiV := vx o Vuo(y), where x, y G
£2fc> satisfies the tightness requirement: fnnm\B(oyM)^ "*" lvlP)c'/i^)2/ -> 0 as
M —>• oo uniformly with respect to x, y G fi^- Actually, the family \yx :
x G ilk} satisfies this requirement in view of continuity of the restriction of
/Rnm(l + \v\p)dv(.) to ilk and Theorem 3.7. Because supy6nfc |Vtio(y)| < oo
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we obtain that the whole family /xx>y satisfies this requirement.
By the second assertion of Proposition 4.5 (^)X€H is a gradient p-Young

measure for each k G N.
This completes the proof of the theorem. QED

5 Optimal results on relaxation and convergence
in energy

In this section we prove Theorems 1.2 and 1.4 stated in the introduction.
Before proving these theorems we will first prove a version of lower semicon-
tinuity theorem from [AF] for completeness. The proof follows arguments
from [KP3], [Kr], [P].

Theorem 5.1 LetLiQxRm xR n m -> R be a Caratheodory integrand
such that \L{x,u,v)\ < A\v\p + B, u0 e W1'p(fi;Rm), pE [l,oo[.

1) If the function L(x,uo(x),-) is quasiconvex at Vuo(x) for a.a. x G ft
then liminffc^oo J(tZfc) > I{uo) for any sequence Uk -^ uo in WljP(f2;Rm)
such that the negative parts o/L(a:,Ufc(x), Viifc(x)) are equi-integrable.

2) Conversely, i/liminffc_KX) J(ufc) > I(uo)foranyuk —̂  no in Wrl>p(Q;Rm)
such that the sequence |Vujt|p is equi-integrable then for a.e. x £ Q the func-
tion L(x,uo(x), •) is quasiconvex at

Proof
Without loss of generality we may assume that Vuk generates a gradient

p-Young measure {vx)xen &nd (wfc, Vi^) generates Young measure (5Uo(x) ®
By Theorem 3.7

liminf/(ufc) > / /
fc->oo JQ JKn

By Proposition 4.4 and the Localization principle (see Theorem 4.2) for al-
most all x G ft the measure vx is a homogeneous gradient p-Young measure.
In view of quasiconvexity at appropriate points we have

L(X)UQ(X),-)dvx > L(x,uo(x), Vuo(x))
TO

for a.e. x G ft (cf. Corollary to Theorem 4.2). This proves the first part of
the theorem.

We will prove the second one by contradiction. Let ft* C ft be an
increasing sequence of compact sets such that meas (ft \ ftfc) < 1/fc, the

30



restrictions of uo, Vuo to ft* and the restrictions of L to ft* x Rm x Rn m

are continuous. Suppose that for a Lebesgue point xo of Qk the function
L(#o, ̂ o(#o)> •) is not quasiconvex at VUQ(XO)- By Corollary to Theorem 4.2
there exists a i /E GMp(Vuo{xo)) and e > 0 such that

The same is true for all x € Q,k sufficiently close to XQ and vx obtained
from v by exchanging the center of mass from Vt*o(#o) to Vuo(x). A Young
measure, which equals vx for such x and 6vuo(x) f°r other 2; E fi, is a
gradient p-Young measure due to Theorem 4.3. By the last inequality lower
semicontinuity fails along a sequence associated with this Young measure.

The proof of the theorem is completed. QED

Proof of the Theorem 1.2

Let Q,k C £2 be a sequence of compact sets such that meas (£2 \ Qk) -> 0
as k —> 00, and the restrictions of L to ttk x Rm x R-nm are continuous. By
Theorem 4.6 for each (x, u) G fi* x Rm the function

J L{x,u,v)dv{v).

is continuous and quasiconvex. Moreover it satisfies the estimates

(x,u,v) <B2 + A2\v\p

and is the greatest function among quasiconvex functions minorizing the
original one.

Let V(x, u, A) be the set of all solutions to the problem

L(x,u,-)dv -> min.

By Theorem 3.7 and the first assertion of Proposition 4.5 V(x,u, A) is a
nonempty compact set in the metric space (K\,p) (see §3). We will prove
continuity of the restriction of Lqc to fJ* x Rm x Rnm by arguments from
the proof of Theorem 4.6.

Let (xh,uh,vh) -> (xo,uo,vo) as h -> oo, vh e V(xh,uh,vh). Then

\uh) = \\mmi Lqc(xh,uh,vh).
h-¥OO
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Moreover, for a subsequence UJ of Vh we have

luninf(L(xh,uA,-);^ii) = Km (L(xj,tXj,-);^>,^ -»•* ̂ o in Cb(Rnm)'.

By the first assertion of Proposition 4.5 UQ G GMP(VQ). By Theorem 3.7

This proves lower semicontinuity of the restriction of Lqc to £2̂  x Rm x Rn m

at (xo,uo^o)-
In order to prove upper semicontinuity notice that if VQ G V(XO,V>O,VQ)

then I / O ^ / J E GMp(vh) and (1 + | • |p; i/0 o vh) -+ (1 + | • |p; i/0) as h -> oo.
By Theorem 3.7 this implies convergence

n m

Therefore

limswpLqc{xh,uh,vh) <

This proves upper semicontinuity of the restriction of Lqc at
Thus, we have proved continuity of the restriction of Lqc to Q* x Rm x Rn

for every fc.
Fix u G W l jP(ri;Rm) and consider compact sets &k C 0* such that

meas (Qk \ &k) ̂  1/* and the restrictions of u,Vti to Clk are continuous.
Consider the multivalued mapping W : x G £2 —>• V(x,uo(x), Vuo(x)).

Let x be such that the function L(x,uo(x),-) : Rn m —> R is continuous.
Then V(Vuo{x)) is a nonempty compact set in the metric p introduced
in §3 in view of Theorem 3.7 and the first part of Proposition 4.5. Thus
W{x) is closed for a.e. x G ft. Because of continuity of the restriction of
L9C(-, i*o(*)> Viio(*)) t° ft* the:3Striction of W to £2̂  is upper semicontinuous:
if Vk G W(:rfc), Zfc —>> x and p(^? ^) —> 0 (this is the same as v^ -^* v) then
v €W(x). Thus, W is measurable in £2.

By Theorem 3.5 there exists a measurable selection of W. By theorems
3.3, 4.3 this selection is a gradient p-Young measure. For a sequence Uk
associated with {vx)x£U we have that the sequence (u*, Vuk) generates the
Young measure (Suo(x)®ux)xen and the functions |Vufc|p are equi-integrable.
Hence Theorem 3.7 yields

/Jn
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By the corollary of Theorem 4.2 the identity

{x, u, v) = inf L— / L(x, u,v + V<t>{y))dy
/€C°°(ftR™) meas ft Jn

holds for a.a. x G ft and all u G Rm.
By Theorem 5.1 the functional Iqc is lower semicontinuous: limk-+oolqc{uk)

J*c(u0) for uk -* u0 in WljP(ft;Rm). It is obvious also that I(u) > Iqc(u),
u € Wl*(Q).

This completes the proof. QED

Remark 1 The growth conditions from the theorem may be dropped if
one considers more special class of integrands. Let L : ft x Rnm ~> R be a
Caratheodory integrand such that 0 < L(x,v) < A\v\p + J5, p > 1. Then,
the sequential weak lower semicontinuous envelope of the functional I{u),
defined as

I(u) = inf{liminf/(tiib) : uk -* u in

is an integral functional with the integrand Lqc. This can be proved through
approximation of the original functional by ones satisfying standard growth
conditions.

Consider first the case of continuous L and compact il. As in the
proof of Theorem 4.6 consider a family of auxiliary integrands L^, where
L^{x,v) = L(x,v) + /i|v|2p, /x > 0, and their quasiconvexifications L£c, for
which all conclusions of Theorem 1.2 hold. Hence L^. (i G N) is a sequence
of continuous functions quasiconvex in v and decreasing to a function L such
that 0 < L(x, v) < A\v\p + B.

By the arguments from the proof of Theorem 4.6 (proposed for the case
p = 1) we obtain that L is quasiconvex and continuous in v and upper
semicontinuous in x. Then L is a Caratheodory integrand that implies
existence of a sequence of compact subsets Q>k of ft such that meas (ft\ft^) —>
0 as k —> oo and the restrictions of L to ft* x Rnm are continuous. Note that
by the Dini convergence theorem the sequence Lj^ converges to L locally
uniformly in each compact subset of ft* x Rnm.

For Caratheodory integrands L and general ft we may reduce the consid-
erations to the particular case treated above. This proves that L is always
of Caratheodory type. The rest is a straightforward consequence of the
construction.
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Remark 2 It follows from the proof of Theorem 1.2 that Lqc is contin-
uous for continuous and coercive L (here coercivity means Ai|v|p + B\ <
L < A2\v\p + I?2, A2 > A\ > 0). In the case of noncoercive L the function
Lqc can have discontinuities. To construct a desired example notice that
there exists a continuous integrand L(xyv) : [0,1] x R -» [0,00] such that
L(0,v) > v2 and L{x,v) = 0 for x €]0,l], \v\ > M{x) (here M(x) -> 00 as
x -> 0). Then L<*c{x,v) = 0 for |x| ^ 0, Lqc{0,v) > v2.

Proof of Theorem 1.4
Without loss of generality we may suppose that (t^, Vu/t) generates a

Young measure {SUQ(x)^iyx)xen and the sequence I{uk) converges as fc —> 00.
By Theorem 3.7

lim I(ufc) > L(xyuo{x),-)di>xdx.
k-¥OO Jft J-Rnm

Moreover, equality holds if and only if the functions L(x,Uk{x), Vuk{x)) are
equi-integrable. By the Localization principle vx is a gradient p-Young mea-
sure for a.a. x G fi. Because L(x,no(a;),-) is strictly closed p-quasiconvex
at Vuo{x) for a.e. xGH the inequality

L(x,uo(x), -)dvx > L(x,no(x), Vuo(x))

holds for all such x, where the equality holds if and only if vx = £vuo(x)-
Hence the convergence I{uk) -> /(n0) holds if u^ ->• no in W l f l(n;Rm) and
the functions Z/(-,tx^(-), Vu/t(-)) are equi-integrable, cf. Theorem 3.7 and
Proposition 3.8. This proves the first claim of the theorem.

To prove the second claim consider an increasing sequence of compact
subsets Qk of the interior of Q, such that the restrictions of txo, Vuo to Clk
are continuous, the restrictions of L to Clk x Rm x Rn m a r e continuous and
meas (f2 \ fifc) —> 0 as A; -> 00. Let us establish first that either L(x, UQ(X)^ •)
or — L(x,uo{x),-) is quasiconvex at Vuo(x) for a.a. x G fi. Otherwise there
exists fc € N, Lebesgue points £1,2:2 of £2* and gradient p-Young measures
1/1, 1/2 with the centers of mass at Vtxo(xi), Vuo(z2) respectively such that

, Vuo(xi)) - 6,

€, € > 0.
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We can isolate neighborhoods Vi, V2 of x\, X2 in ftk such that

L(x,uo(x),-)d(i/1 o Vno(x)) < L(x,uo(x), VUQ(X)) — C, X G Vi,

V1UV2

L(x,uo(z), •)d(J /1°Vuo(^))}^+ / { / £(z, uo(z), ')d{v2oVuo(x))}dx.
JV2 ./Rnm

By Theorem 4.3 a Young measure (i/x)x€Qi which equals u1 o Vuo on Vi,
v2o Vuo on V2, and ^vuo(x) f° r other x G fi, is a nontrivial gradient p-Young
measure with the centers of mass at Vwo(x), x G ft. Moreover, the weak-
strong convergence property fails for a sequence associated with this measure
(cf. Proposition 4.4). This contradiction proves that either L(X,UQ(X), •) or
—L(rr,uo(x),«) is quasiconvex at VUQ(X) for a.a. x G ft.

Therefore we may assume without loss of generality that L(x,uo(x), •) is
quasiconvex at VUQ(X) for a.e. x G ft.

For a fixed k G N consider the set K\ (I is a natural number) consisting
of all x G ftk such that there exists a gradient p-Young measure v with the
center of mass at Vuo(a?), for which the following holds:

L (1 + I • f)d» < k, (5.1)
Rn m

foofr),) ( ,o (a ; ) , Vtio(a?)) + V> (5.2)
Rn m

i/({v G R n : 1/fc < |v - Vtto(aO| < *:}) > 1/*. (5.3)

We will prove that meas K\ -> 0 as / -> 00 by contradiction. This fact
is enough to establish the second claim of the theorem.

The sets K\ are open in ft*- Actually, if (5.1)-(5.3) hold for a measure
v G GMP(Vuo(xo)) and a point xo G K\ then the same holds for any z G f̂
sufficiently close to a?o with v o Vuo(z) instead of IA

Since we have assumed that lim^oo meas K\ > 2So > 0 and K1+1 C K\
we obtain meas(rvKj) > 260. Let if C f\iKi be a compact set such that
meas K > 60.

Fix / G N. Then for each x G K we can find a ball B with the center
at this point and such that for each point z G B C\K inequalities (5.1)-(5.3)
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hold with v o Vuo(z), where v G GMp{Vu0{x)). Let B{xu e*) (i = 1, . . . , /')
be a finite cover of K by such balls and let v{xi) G GMp{Vu$(xi)) be mea-
sures associated with the centeres of these balls. Let Q[ = £(xi,ei) n
K, Ql

2 = (B{x2,e2) \ B{xi,ei)) H K. For other i > 2 define ftj+1 as
(B(xt+i,€i+i) \ \Jj=lB(xj,ej)) fl JK\ Consider also compact subsets Cl\ of
J7j such that meas (Uffij) = SQ.

The measure (^)XG^) which equals v(x{) o Vuo{x) for x G fi| (i =
1,•.. , /')> ^Vuo(x) " otherwise, is a gradient p-Young measure. Actually, if we
replace (l[ by disjoint open sets then the claim follows from Lemma 2.2 and
Proposition 4.4. By Proposition 2.3 we can approximate fi* by such open
sets, that leads to the desired result again through Lemma 2.2.

By the compactness theorem there exists a subsequence (vl
x)xen (not

relabeled) converging weakly* in Lw(£l\Ki) to (î x)x€n- Because (5.3) holds
for any x G UiCl[ (with vl

x instead of v) and meas (Ujf2|) > <So > 0 for each
/ € N the Young measure {vx)xen is not trivial.

For each / € N there exists a sequence u^ G u0 + C§°(ft;Rm), j € N,
generating (^)XG^ ^ a gradient p-Young measure (cf. Proposition 4.4). We
can isolate a sequence ul-ny I G N, such that

+ \Wj(l)(x)ndx < k (because of (5.1)),

- J(uo)| < 2meas Cl/l (because of (5.2)).

Then u1-^ —̂  UQ in WrljP(f2;Rm) and the weak-strong convergence prop-
erty fails along the sequence uL^ in view of nontriviality of {vx)xen (cf.
Proposition 3.8).

This contradiction proves that meas Ki -» 0 as I -> oo, and, as a con-
sequence, that the set of all x G ilk for which L(x,uo(x),-) is not strictly
p-quasiconvex at Vuo{x) has zero measure.

The proof of the theorem is completed. QED

Remark If the function L(rr,uo(x),«) is quasiconvex at Vuo(z) for a.e.
x G £1 and L is bounded from below a simpler proof for the second part of
the theorem is available (see [S2, §3]). Moreover, in this case it is enough to
restrict considerations to sequences Uk with equi-integrable |Vujt|p.

In this case we may consider the set flj^ consisting of all x G ftjfc, for
each of which there exists a gradient p-Young measure v with the center of
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mass at VUQ(X) and such that

L
Rn m

/ R n m

u(B(Vuo(x), 1/j)) < 1 - 1/j. (5.6)

This defines a multivalued mapping V : fy,* -> 2*M(Rnm), where F(-)
consists of elements of GMP(-) satisfying (5.4)-(5.6). Because of boundedness
of L from below it is not hard to prove that this mapping is closed and
upper semicontinuous in p metric (see §3 of [S2]). By Theorems 3.3 and
3.5 there exists a selection (/J.x)xenjk € Lw(toj,k\Ki)> which automatically
satisfies conditions (i)-(iii) of Theorem 4.3. Let vx = nx for x G ft^fc,
and vx = (Jvuo(a;) for # G fi \ ftj,*. Then {vx)X£Q, is a gradient p-Young
measure by Theorem 4.3. Hence, if meas Qj^ > 0 then the weak-strong
convergence property fails along the sequence of Sobolev functions associated
with (^x)xen- This proves that meas ttj^ = 0 for any j , k G N. Therefore
L(X)Uo(x),•) is strictly p-quasiconvex at Vuo(x) for a.e. x G £2.

In the situation of Theorem 1.4 one may consider analogous multi-valued
mapping V, but growth conditions do not suffice to prove closedness and
upper semicontinuity of V in p metric. These properties hold with respect
to convergence in the metric p{v,jj) := p(^,^) + |(1 + | • |p; v) — (1 + | • |p;/i)|,
but both V and GMP(A) are not complete in this metric. Probably more
subtle theorems on measurable selections (see e.g. [CV]) can be helpful here
in order to utilize selection arguments and, as a consequence, to restrict the
class of sequences uk to ones with equi-integrable |Vw*;|p.
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