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STABLE MODELS AND REFLEXIVE BANACH SPACES

JOSE IOVINO

ABSTRACT. We show that a formula y(x,y) is stable if and only if cp is the pairing map
on the unit ball ofExE*, where £ is a reflexive Banach space. The result remains true if
the formula <p is replaced by a set of formulas p(x,y).

1. INTRODUCTION

In areas of mathematics where the object of study is a class of mathematical structures,
one wishes to classify the structures in the class by drawing dividing lines between the
simpler and the more complex structures of the class. The purpose of this paper is to point
out a rather striking analogy between classification programs in two fields of mathematics
which one does not normally regard as being closely related: model theory and Banach
space theory.

In model theory, a clear dividing line is recognized between two kinds of models: stable
and unstable models. A natural measure of the complexity of a model is given by its space
of types, and a stable model is one whose space of types is not much larger than the model
itself.

A similar distinction exists in Banach space geometry between reflexive and nonre-
flexive spaces. A Banach space is reflexive if it equals its double dual. An equivalent
formulation is that Banach space is reflexive if and only if its unit ball is weakly compact.
Intuitively, this can be taken to mean that the unit ball of dual of the space is not much
larger than the unit ball of the space itself.

In 1964, R. C. James proved the following criterion for reflexivity [7].

Theorem (James Condition for Reflexivity). The following conditions are equivalent for
a Banach space E.

1. E is not reflexive;
2. For every 0 € R with 0 < 0 < 1 there exists a sequence (am) with \\am \\ = 1 for every

m and a sequence (/„) of linear functionals with \\fn\\ = \for every n, such that

Jo ifm<n
m (0 ifm>n.

Such a characterization must capture the attention of a model theorist, for it bears strik-
ing resemblance to the most familiar characterization of model theoretical stability, due
to S. Shelah [12]: a model M is unstable if and only if there exists a formula q>(.x,j>) and
sequences (dm) and (bm) such that

M \= <p(dm,bn) if and only if m<n.

The formula (p is said to have the order property.
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During the 1970's, further classifying properties were identified, independently and in
a parallel manner, in Banach space theory and in model theory. (For short essays on each
of these programs, see [6] and [2]). Here we concentrate only on stability and reflexivity.

The similarity between (1) and (2) did not go unnoticed. In the early 1980's, J. L. Kriv-
ine and B. Maurey introduced the notion of stable Banach space in [9], and proved that
every stable Banach space contains some £p almost isometrically, generalizing a result of
D. Aldous [1] about subspaces of L\. A key fact in the Krivine-Maurey proof was noticing
the analogy between the role played by random measures in Aldous' proof and that played
by types in model theoretical stability.

Stable Banach spaces have now become objects of intense study.
Every occurrence of (2) is a particular case of (1): if £ is nonreflexive, the formula

cp(jt,>>): "JC € BE and;; € BE* andy{x) = 0"

(where BE and BE* denote the unit balls of E and E* respectively) has the order property
in an appropriate structure.

In this paper we show the converse. Let us identify formulas with {0, l}-valued func-
tions.

Theorem. Suppose that M is a model and cp(jc,j>) is a formula which does not have the
order property on M. Then there exists a reflexive Banach space E and a map (w, v): M x
M —• BE x BE* such that the diagram

MxM •"•••'• >-BE x B E *

Evaluation map
[0,1]

commutes.

The theorem is also true, and the proof is the same, if the formula <p(x,y) above is
replaced by a set of formulas p(x,y).

This result is actually a simple consequence of a lemma of Y. Raynaud [11] (Proposi-
tion 1.1) which comes from his thesis [10]. The lemma in question is a generalization of
Theorem II. 1 of [9], where only separable spaces are considered, to nonseparable spaces.

The connection of the Krivine-Maurey-Raynaud result with model theoretical stability
is in fact simple, but we do not believe that it is known to the model theory community.
Here we present the complete proof. The presentation should be accessible to a reader
who has had a basic course in functional analysis. No knowledge of model theory will be
assumed, but the reader familiar with model theory will recognize several connections.

2. STABLE FORMULAS AND STABLE FUNCTIONS

We identify formulas with {0, l}-valued functions defined on models. Thus, a formula
9 : M x M —* {0,1} has the order property if there exist sequences (am) and (bn) in M such
that

q>(am,bn) = 1 if and only if m<n.

Definition 2.1. We will say that a formula <p(x,y) unstable if either 9 or ->9 has the order
property. We will call 9 stable if 9 is not unstable.
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Now we recall the notion of convergence relative to ultrafilters. Let X be a topological
space and let (tf,-)/e/ be an indexed family in X. If a is a limit point in X and IX is an
ultrafilter on /, we write

(1)

if for every neighborhood O of a there exists U G It such that a/ G O for every i G U. If
4̂ is a subset of X, then a E ̂ 4 if and only if here exists («/)/<=/ in A and an ultrafilter IX on

/ such that (1) holds. The space X is compact if and only if lima/ exists for every family
iU

in X. In particular, every bounded family of real numbers has a limit with respect
to any ultrafilter.

Proposition 2.2. Let M be a model and let (p(x,y) be a formula on M. The following
conditions are equivalent

1. cp is stable on M;
2. If{am) and (bn) are sequences in M and IX, V are ultrafilters on N, we have

lim \\mq>(am,bn) = lim limq>(am A ) -
m,VL n,v n , V m,VL

Proof (1) =^ (2) is trivial. (2) => (1) follows from Proposition 2.4 below. H

The preceding result motivates the following definition.

Definition 2.3. We will say that a bounded function cp: A x B —> E is stable if the following
condition holds. Whenever (am) is a sequence in A and (&„) is a sequence in 5 , and IX, V
are ultrafilters on N,

lim limy(am,bn) = li im

The following proposition shows that the sequences (am) and (bn) in the preceding
definition can be replaced by arbitrary families.

Proposition 2.4. Let q>: A x 5 —> [0,1]. Z,e/ (fl/)/€/ ^ a family in A and {bj)jej be a family
in B. Suppose that

lim limcp(a/,6/) = a, lim limq>(a/,6/) = p.
i,u y,v y,v i,u

then there exist sequences (a,-M) a/id (£/„) SWC/J that

Hm cp(a,m, bJn) = a, lim (p(a,M,bJn) = p.

By definition, for every 8 > 0 there exist t/e G IX and F6GV such that

/ G £/e implies | lim(p(a/,Z?y) — a| < e,

j G FE implies |\im(p(ahbj) - P| < 8.

Also, for every i G /, every j eJ and every 8 > 0 there exist Vl
z G V and U( G IX such that

j£Ve
l implies \q>(apl|cp(fl/»*y) j

i G t// implies |q>(fl/,*;) - lim<p(a/,6^)1 < s.



JOSE IOVINO

To construct the desired subsequences, take z'o, i\ < ... and jo < j \ < ... such that

k<N

j\r aV *, H Pi V'k

JN t ^1/2* I > I I Ki/2^*

*<#

It is easy to see that

m <n implies W(aim->bjn) — a\ < \/2m~l,

n<m implies |(p(a/m,^yfl) — P| < 1/2""1.
H

Definition 2.5. Let ( p : ^ x 5 - > [ 0 , l ] . If a e A, the fe/? <p-type of a, denoted ltp^a) is
the functiony t-+ q>(a,y). Similarly, if b e B> the right (p-type ofb, denoted rtp(p(^) is the
function JC *-+ cp(x, b).

The space of left (p-types9 denoted LS(cp), is the closure of

in [0, \]AxB with respect to the product topology. The space RS(cp) of right (p-types is the
closure of

{rtp9(b)\beB}

in [0, l]AxB. The spaces LS(cp) and RS((p) are, of course, compact.

Proposition 2.6. The following conditions are equivalent for any bounded function <p: Ax
B - [ 0 , 1 ] .

1. q> is stable;
2. There is a separately continuous function <p: LS(cp) x RS((p) —• [0,1] such that

for(a,b)EAxB.

Condition (2) can be represented schematically by the following commutative diagram.

LS(cp) x RS(cp) MO, 1] ((p stable => <p separately continuous)

(Itp^rtp,,)

AxB
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Proof (1) => (2): Take types p G LS(cp) and q G RS(q>).
Then there exists families (a,-)/e/ in A and {bj)jej in 5, and ultrafilters U on / and V on

J such that

P = lim Itp9(fli)i ? = ljm rtp9(6y).

By Proposition 2.4,

lim lim<p(a,-,6y) = lim lim (p (a/, 6/).

Define <p(p,q) as the above common value. If we show that this definition is independent
of the choice of (0,-), (67) and IX, V, the above equality will prove that <p is separately
continuous.

Suppose that

P = */m ltP(p(*/) = j.™ Itp9(aj), tf = lim rtp(p(^) = lim rtp(p(Z>}).

Then,

Therefore,

limq)(jc,b;) = q(x) = limcp(jc,b'A , for every x G A,

lim(p(a/,>>) = p(y) — limcp(^,>>), for every y G B.

lim lim(p(fl/,6y) = lim lim(p(fl/,&.) = lim lim(p(0/,^>.) = lim lim(p(^pZ>.).

(2) =4> (1): Take sequences (an) in ̂ 4 and (bj) in 5, and ultrafilters U and V on N. Let

P = 1™ltp9(flIB), ? = ljmrtp(p(^).

Then (/?,^) G LS(9) x RS(cp) and

lim lim(p(am,6n) = y{p,q) = lim li

H

In Section 3, we will use the following lemma from real analysis. The proof is taken
from [9].

Lemma 2.7. Every separately continuous function real-valued function on a product of
compact metrizable spaces is a pointwise limit of a sequence of continuous functions.

Proof Let f.KxL—>Ebea separately continuous function, where K and L are compact
metrizable spaces. We construct a sequence (/„) of continuous functions which converges
to / pointwise. Let d be a metric compatible with the topology of K. For n £ N and a e K9

define a function un
a on K by

aK ' \0 otherwise.

For each n G N, fix a finite sequence {a")i€l^ in £ such that every x G K is within 1/n of
some a". Define a function vj* on £ by
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Then, v? is continuous, |vj,| < 1, and Z/E/(n) vj1 = 1. Now define fn on K x L by

We now show that (fn) converges to / pointwise. Fix (x,y) £K x L. For each «GN, find
i(x,n) G In such that rf(x, «,•(,,„)) < l//i. Take W G N such that

\f(x,y) -f(aiM,y)\ < e, for /i > N.

Then, for n > N, we have

''€/(»)

3. LINEARIZATION OF STABLE FUNCTIONS

Let E be a Banach space and let E* be its dual. If x G E and ye is*, it is customary to
write (x,y) for >>(*). The weak topology on E is the smallest topology on E for which the
all the maps x H-» (*,j>) are continuous. In other words, if (x,-)/€/ is a family in E and IX is an
ultrafilter on /, we have x = lim,-^*/ in the weak topology if and only if (x,y) = lim/?<u (*,-,y)
for every ̂  G is*. The weak* topology on E* is the smallest topology on E* for which all
the maps j> •-> (x,>>) are continuous. Thus, (y,-)/e/ is a family in is* and IX is an ultrafilter on
7, we have >> = lim^ixjv in the weak* topology if and only if (x,y) = lim/^ (xt^y) for every
x eE. Alaoglu's theorem states that the unit ball of E* is weak*-compact. The weak and
weak* topologies are denoted o(E,E*) and o(E*,E), respectively.

Every x G E defines naturally a linear functional xonE*9 namely, (y, JC) = (x,y), fory G
E*. The map x •-> JC is an isometric embedding of is* into is**, and is called the canonical
embedding We say that E is reflexive if the canonical embedding is surjective. In general,
the canonical embedding is not surjective and E** is larger than E. However, the following
is always true.

Fact 3.1. The unit ball ofE is o(E**,E*)-dense in the unit ball ofE*\

The simplest example of a nonrefiexive space is the space CQ of all the zero-convergent
sequences with the supremum norm. The dual of CQ is t°, the space of all bounded se-
quences with the supremum norm; but the dual space of t° is much larger than CQ. In
general, for a set X let t°(X) the set of all bounded real-valued functions o n X £°°(X) with
the supremum norm is a Banach space. The dual off30 is the space M(X) of all finitely
additive set functions (or measures) of bounded variation, which we describe briefly below.

A finitely additive set function on X is a function //: y(X) —> R such that

=X, for A{ pairwise disjoint.

If ju is such a function, the variation V(JJ) of ju is defined
n n

V(ju) = sup { ]T \ju(Ai)\ | | J Ah Ag pairwise disjoint}.
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We say that JJ, is of bounded variation if V{fi) is finite.
We denote by M(X) the space of all finitely additive functions of bounded variation on

X with addition and scalar multiplication defined in the natural way, and the norm given
by V. The space M(X) is the dual of r(X). For a proof, see [8]. If / G f(X) and
// G M(X), (/,//) is also written

Jfdfi.

For each x 6 l , let 5* be the element of M(X) defined by

Jl

dx is called the Dirac measure concentrated at x.lffe i°°(X),

ffdSx=f(x).

is a family of nonnegative real numbers, the sum £ / € / £,- of (^/)/e/ is defined as
the supremum of all finite sums ZJb=i ̂ *> where i\,..., i^ G /. Notice that if Z/G/ £* is finite,
then (^/)/€/ must have countable support.

If X is any set, the Banach space £l (X) is defined as follows. The elements of X are the
functions / : X -> R such that £*€* |/(JC)| is finite. If / G £l (X), the norm o f / is given
by the above sum. The dual of il(X) is t°(X). The canonical embedding of il(X) in
e°{Xy = M(X) is given by

Notation. The unit ball of a Banach space E will be denoted BE.

Proposition 3.2. Let cp: ̂  x B —• [0,1] £>e a stable function. Then,

1. For every // G f°(,4)* and every v G f°(5)*, we have

JJ V(x,y) dt*(x) dv(y) = Jj <p{x,y) dv(y) dfi{x).

2. IfF{/Ji, v) denotes the above common value, then the function F is weakly*-continuous

Proof. First, we notice that the equality in (1) holds for ji£ £l(A) and every v G £l(B).
Indeed, if // = Z/Li S/8fl|. and v = £J= 1 r|;56y, we have

JJ <$>{x,y)dn(x)dv(y)= ]T $ir\j<p(ahbj) = JJ q>{x,y)dv(y)dfi(x).

Define F : ^ (^) x ^! (5) -> R by letting F(ju, v) be the above common value. We now
wish to extend F to £°°(^)* x e*(B)*.

Claim. The restriction of F to Be\tA^ x B^i^j is stable.

Proof of the claim. Let (jum) be a sequence in Be\^ and let (vw) be a sequence in
Let

S = | J supp(//m), r = U supp(vn).



8 JOSE IOVINO

Then S and T are countable. We now apply Proposition 2.6 to the restriction (p\S x T.
Let LS(cp|5 x T) and RS(cpj*Sr x T) be spaces of left and right cp-types, respectively (see
Definition 2.5). These spaces are compact and metrizable, so by Proposition 2.6, there
exists a separately continuous function cp: L S ^ ^ T * x RS^s*/- which "extends" (p in the
sense that for ( a , b ) e S x T ,

By Lemma 2.7, <p is a Borel function. This allows us to define a function F as follows.
If JX is a measure on LS^^ / - and v is a measure on R S ^ ^ ,

<p(p,q)dii(p)dv(q).

Now, F{

and we let

we get

"extends" F in the sense

0 0

that

l\A

. * :

if

) V =

v =

oo

oo

By Fubini's theorem,

and F is separately weakly*-continuous.
Take now measures // and v such that

, in a

Then, by (*),

(^ ,v r t) = lim limF(//m,vw) = Fiji,v) = lim lirnF(//m,vn) = Urn \imF(jumivn).
m,U n,V m,U n,V nyV m,U n,V m,U

Since (/im) and (vn) are arbitrary, the claim is proved. H

Now we use Fact 3.1 and the previous claim to extend F to t°(A)* x t°(B)*. Take
ju e Be»(Ay and v e Bp>(By. Take families (#)& in Bei{A) and (vy)y€y in Bei{B), and
ultrafilters IX on / and V on J such that

in u(r{A)\r(A));

= ljmvy,
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Then,

/ / V(x,y)dv(x)dji(y) = lim lim if <p(x,y)dfii(x)dvj(y)
J J i^u jy J J

= lim limyy ^{x,y)dvj{x)dfii(y)

= JJ <p(x,y)dv(y)dfii{x).

This proves the theorem. H

Now we prove the main result. Recall that an operator T: X —•> Y is weakly compact if
the image of the unit ball in X is relatively a(7, F*)-compact in Y. See [4].

Theorem 3.3. Lety: A x B —> [0,1]. 77ie/i the following conditions are equivalent.

1. cp is stable;
2. There exists a reflexive Banach space E and a map (u,v): A xB -+ BE x BE* such

Proof. (1) => (2): Define an operator T: r(v4)* -> r ( 5 ) by

and an operator T*: t°°(B)*

By the preceding proposition, if fi e ^{Af and ju G

i, v> =

We show that T is weakly compact, i.e., the image of the unit ball of t°{B)* under T is
relatively a(^(i?),^00^)*)-compact in e°(B). By the Eberlein-Smulian theorem (see, for
example, [3]), it suffices to prove that every sequence in T[B^Ay] has a a(t°(B),t°(B)*)-
convergent subsequence.

Let (gn) be a sequence in T[B^o^Ay]. Take (//„) in Bpa^y such that Tfin = gn. Then, if

(gn,nu) =

By Alaoglu's theorem, (//„) has a a(£00(i4)*,f°(^))-convergent sequence (jtnk)- The above
equation shows that then (gnk) is a(r°(£),f°(^)*)-convergent.

Now we apply a result of W. J. Davis, T. Figiel, W. B. Johnson, and A. Pelczynski [5]:
Every weakly compact operator factors through a reflexive Banach space. Hence, there
exists a reflexive Banach space E and operators U: ^(A)* —• E and V: E —> t°(B) such
that T — V o U. If for x E A and y£Bv/e let 5X and 8y be the corresponding Dirac measures,
we get

<p(*oO = (r5^5y) = (Foc/5^8,,) = {USx,V*8y).

The theorem now follows by defining, for (x,y) eAxB,

u{x) = l/8x, v(y) = K* Sy.

(2) =^ (1): First notice that if a space E is reflexive, then BE is a(E,E*)-compact,
since o(E,E*) = a(£**,£*) and #£•• is a(£**,£*)-compact by Alaoglu's theorem. (The
converse is also true, but we won't need it here.)
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Assume that E and (w,v) are as in (2). Take sequences (am) in A, {bn) in B, and
ultrafiltersU,VonN. Let

a = limw(flm), in o(E,E*)

Then,

= \imv(bn)1 in o(E\E).

lim lim(p(am,vn) = lim lim(u(am),v(bn)) = (a,*).

We obtain the same result if the order of the limits is reversed. Hence, q> is stable. H
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