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A PRIMER OF SIMPLE THEORIES

RAMI GROSSBERG, JOSE IOVINO, AND OLIVIER LESSMANN

ABSTRACT. We present a self-contained exposition of the basic aspects of simple theories
while developing the fundamentals of forking calculus. We expound most of the deeper
aspects of S. Shelah’s 1980 paper Simple unstable theories. The concept of weak dividing
has been replaced with that of forking. The exposition is from a contemporary perspective
and takes into account contributions due to E. Hrushovski, B. Kim, and A. Pillay.

INTRODUCTION

The question of how many models a complete theory can have has been at the heart
of some of the most fundamental developments in the history of model theory. The most
basic question that one may ask in this direction is whether a given first order theory has
only one model up to isomorphism. Erwin Engeler, Cestaw Ryll-Nardzewski, and Lars
Svenonius (all three independently) published in 1959 a complete characterization of the
countable theories that have a unique countable model (see Theorem 2.3.13 of [CK]). The
next landmark development occurred in 1962, when Michael Morley proved in his Ph.D.
thesis that if a countable theory has a unique model in some uncountable cardinality, then it
has a unique model in every uncountable cardinality. (See [Mo].) This answered positively
a question of Jerzy L.6s [Lo] for countable theories. The conjecture of L.6s in full generality
(including uncountable theories) was proved by Saharon Shelah in 1970. (See [Sh31].)

The problem of counting the number of uncountable models of a first order theory
led Shelah to develop an awesome body of mathematics which he called classification
theory. A fundamental distinction that emerges in this context is that between two classes
of theories: stable and unstable theories. For a cardinal A, a theory T is called stable in A
if whenever M is a model of T of cardinality A, the number of complete types over M is
also M. A theory is called stable if it is stable in some cardinal.

The stability spectrum of T is the class of cardinals A such that T is stable in A. In
his ground-breaking paper [Sh3], Shelah gave the first description to the stability spectrum
of T. He characterized the class of cardinalities A > 2171 such that T is stable in A. For
the combinatorial analysis of models involved, he devised an intricate tool which he called
strong splitting. Later, in order to describe the full stability spectrum (i.e., include the
cardinals A < 2!7! such that T is stable in 1), he refined the concept of strong splitting, and
developed the fundamental notion of forking.

Between the early 1970’s and 1978, Shelah concentrated his efforts in model theory to
the completion of his monumental treatise [Sha]. The complete description of the stability
spectrum of T is given in Section III-5. Shelah, however, realized quickly that the range
of applicability of the concept of forking extends well beyond the realm of the spectrum
problem.

Intuitively, if p is a type over a set 4, an extension ¢ 2 p is called nonforking if g
imposes no more dependency relations between its realizations and the elements of 4 than

Date: January 30, 1998.



2 RAMI GROSSBERG, JOSE IOVINO, AND OLIVIER LESSMANN

those already present in p. This yields a general concept of independence in model theory,
of which the concepts of linear independence in linear algebra and algebraic independence
in field theory are particular examples.

Shelah’s original presentation of the basics of forking appeared to be complicated and
required time for the reader to digest. This fact, combined with the rather unique exposition
style of the author, made [Sha] difficult to read, even by experts.

In 1977, Daniel Lascar and Bruno Poizat published [LaPo] an alternative approach to
forking which appeared more understandable than Shelah’s. They replaced the original
“combinatorial” definition with one closely related to Shelah’s notion of semidefinability
in Chapter VII of [Sha]. The approach of Lascar and Poizat had a remarkable impact on
the dissemination of the concept of forking in the logical community. Several influential
publications, such as the books of Anand Pillay [Pi] and Daniel Lascar [La3] and the
papers of Victor Harnik and Leo Harrington [HH] and Michael Makkai [Ma], adopted the
French approach and avoided Shelah’s definition of forking. Both of these approaches
were presented in John Baldwin’s book [Ba].

Parallel to these events, Shelah isolated an important class of theories which extends
that of stable theories, the class of simple theories. This concept originated in the study of
yet another combinatorial property of theories, namely,

(A,x) € SP(T): Every model of T of cardinality A has a x-saturated
extension of cardinality A.

For stable T, the class of pairs A, « such that (A, ) € SP(T') had been completely identi-
fied in Chapter VIII-4 of [Sha] (using the stability spectrum theorem and some combina-
torial set theory).

Shelah wondered whether there is a natural class of theories extending the class of stable
theories where a characterization of the class of pairs A, « such that (A, «) € SP(T) holds
is still possible. In order to prove a consistency result in this direction, he introduced
in [Sh93] the class of simple theories, and showed that a large part of the apparatus of
forking from stability theory could be developed in this weaker framework.

Some of the complexity of the paper is due to the fact that he did not realize that, for
simple theories, the notion of forking is equivalent to the simpler notion of dividing. (He
was aware in 1979, however, that these two concepts are equivalent when the underlying
theory is stable.)

It should be remarked that Shelah’s main goal in [Sh93] was not to extend the apparatus
of forking from stable to simple theories, but rather to prove the aforementioned consis-
tency result (Theorem 4.10 in [Sh93]). In fact, after the proof of the theorem, he adds

This theorem shows in some sense the distinction between simple and
not simple theories is significant.

In the early 1990’s, Ehud Hrushovski noticed that the fact that the first order theory
of an ultraproduct of finite fields is simple (and unstable) has far reaching consequences.
(See [Hr].) Hrushovski’s spectacular applications to Diophantine geometry, as well as his
collaboration with Anand Pillay [HP1], [HP2] and Zoe Chatzidakis [CH] attracted much
attention to the general theory of simple theories.

Anand Pillay consequently prompted his Ph.D. student Byunghan Kim to study in the
general context of simple theories a property that he and Hrushovski (see [HP1]) isolated
and called the /ndependence Property.

In a clever two-page argument, Kim proved that, for simple theories, the notions of
forking and dividing are equivalent. See [Ki]. From this equivalence, Kim and Pillay
derived easily the properties of Symmetry and Transitivity of forking for simple theories.
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For this work, Kim shared with Itay Neeman the 1997 Sacks Prize, which honors the best
dissertation in logic of the year.

The purpose of this paper is to present a self contained introduction to the basic proper-
ties of simple theories and forking, including the recent elegant contributions due to Kim,
some results of [KP1], as well as two recent unpublished simplifications due to Shelah.
The presentation should be accessible to a reader who has had a basic course in model
theory, for example, little more than the first three chapters of [CK] will suffice. We also
assume that the reader is accustomed to using the concept of monster model.

The first author would like to seize this opportunity to announce that much more is
included in [Gr].

At the end of the paper we have included historical notes.

The notation is standard. Throughout the paper, 7' denotes a complete first order theory.
without finite models. The language of T is denoted L (7). The monster model is denoted
by €. If 4 is a set and a is a (finite) tuple, 4a denotes the union of A with the terms of a.

The paper is organized as follows:

Section 1: We introduce dividing, forking and Morley sequences, and present the
main properties that hold when there is no assumption on the underlying theory:
Finite Character, Extension, Invariance, and Monotonicity.

Section 2: We introduce the main rank and define simple theories. We also present
several equivalent characterizations of simple theories. Among other things, it is
shown that the rank is bounded if and only if it is finite. We also study Shelah’s
original rank, which includes a fourth parameter.

Section 3: We continue the treatment of forking, but now under the assumption that
the underlying theory is simple. We prove the property of Existence and the char-
acterization that he theory T is simple if and only if «(T) < |T|. We then prove
Symmetry, Transitivity, and the Independence Theorem.

Section 4: We introduce a distance between sequences of indiscernibles which yields
a notion of equivalence among them. The main result is that in any theory, a Mor-
ley sequence over a set A has a bounded number of nonequivalent 4-automorphic
images.

Section 5: We show that for simple theories, it is consistent to have a “nice” descrip-
tion of the class SP(T), namely, There is a model of set theory where there are
cardinalities A > & such that A<* > X and A"l = A. (Hence, it is not possible
to use cardinal arithmetic to show that (A, k) € SP(T).) It is shown that for some
A and « as above. (A, k) € SP(T). The model theoretic content of this section is
the fact that the set of nonforking extensions of a type (up to logical equivalence)
forms a semi-upper lattice, satisfying the (2!7!)*-chain condition. This partial order
is embedded into a natural complete boolean algebra. We then use a set-theoretic
property of boolean algebras, namely, satisfying a chain condition, to construct «-
saturated extensions of cardinality A.

Appendix A: We present an improvement of Theorem 1.11. The theorem is a is a
revision of a Theorem of Morley within the more modern setting of Hanf numbers
(following Barwise and Kunen). The result has been included here because we
could not find the precise statement needed in the literature.

Appendix B: Here we have included several historical remarks, as well as a list of
credits.

In the last week of 1997 we sent a final draft of this paper to John Baldwin and Saharon
Shelah. We are grateful for several comments we received and incorporated in the text.
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1. FORKING

In this section we make no particular assumptions on the theory T (besides complete-
ness).

Recall that a sequence / in € is indiscernible over a set A4 if any two finite subsequences
of I of the same length have the same type over 4. We always assume that the index set
does not have a last element.

For k < w, we will say that a set of formulas ¢ (x) is k-contradictory if every subset of
g of k elements is inconsistent. Note that if (a; | i < w) is an indiscernible sequence and
the set { ¢(x, a;) | i < w]} is inconsistent, then it is k-contradictory for some k < w.

We begin by introducing the fundamental notion of dividing.

Definition 1.1.

(1) A formula ¢ (%, b) divides over A if there exist { b; | i < w} and k < w such that
(a) tp(b;i/A4) = tp(b/A) forevery i < w;
(b) The set { p(x, 13,-) | i < w} is k-contradictory.

(2) A type p divides over A if there exists a formula ¢(%, b) such that p - ¢(x, b) and
o(x, b) divides over A.

Lemma 1.2. 4 formula ¢(x, b) divides over A if and only if there exist k < w and an
sequence (b; | i < w) indiscernible over A such that by = b and {¢(x,b;) | i < w}is
k-contradictory.

Proof. Necessity is clear. We prove sufficiency. Assume that ¢(x, b) divides over 4 and
take k < wand I = {b; | i < w} such that tp(l;,-/A) = tp(l;/A) for every i < w and
{@(x,b;) | i < w}is k-contradictory. Expand the language with names for the elements
of 4 and let { ¢, | n < w} be constants not in the language of 7. Consider the union of the
following sets of sentences:

. T’
- —3Ix [e(x, Cig) A--- Ap(x, Ci,_,)], whenever ip < - -+ < i)—| < w;
- ¥(Co,...,Cn,d) < ¥(Ci,...,Ci,,d), wheneverip < --- < i, < w,d € 4, and

¥ is in the language of T';
- ¥ (Go, d), for every ¥ (%, d) € tp(bo/A).
An application of Ramsey’s Theorem shows that our set of sentences is consistent.
Let N be a model for it and let d,, be the interpretation of ¢, in the model N. Then, (dn |
n < w) is a sequence indiscernible over 4 and { ¢(x, by) | n < w})is k-contradictory.
Furthermore, there exists an A-automorphism f such that f (do) = b. Therefore, the
sequence ( f (dn) | n < ) satisfies the requirements of the lemma. —

The next lemma is crucial to analyze forking and dividing. It will be used in the proof
of the Concatenation Lemma 1.13, in the characterization of forking through the rank
(Theorem 3.11), and the Independence Theorem (Theorem 3.12).

Lemma 1.3. The following conditions are equivalent.
(1) tp(a/Ab) does not divide over A;
(2) For every infinite sequence I indiscernible over A with b € I there exists a’ realiz-
ing tp(a/ Ab) such that I is indiscernible over Aa’;
(3) For every infinite sequence I indiscernible over A with b € I there exists an A-
automorphism f such that f(I) is indiscernible over Aa.

Proof. The equivalence between (2) and (3) is a consequence of the homogeneity of €.
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(2) = (1): By contradiction, suppose tp(a/ Ab) divides over 4 and take (%, ¢, b) €
tp(a/ Ab) with ¢ € A4 such that ¢(, &, b) divides over 4. Lemma 1.2 provides a sequence
I = (b; | i < w) indiscernible over 4 such that by = b and {o(x,c, b)) |i < w}is
k-contradictory. By (2) there exists a’ realizing tp(a/Ab) such that I is indiscernible over
Aa’. But then = ¢[@’, ¢, bo), and = ¢[a’, ¢, b;] for every i < w by indiscernibility. This
contradicts the fact that { p(x, ¢, b;) | i < w}is k-contradictory.

(1) = (2): Suppose that (2) fails, and choose an indiscernible sequence I = (I;,~ i <
w) and b € I which witness this failure, i.e.,

* I is not indiscernible over Aa’, for every @’ realizing tp(a/ Ab).

Denote p(x, b) := tp(a/Ab) and let g := U,;iE 1 P(x, b;). We claim that g is consistent.
If ¢ is inconsistent, there exist a finite /* C [ and a formula ¢(x, ¢, b) e tp(a /AE)
such that {¢(x, c, bi) | b; € I*} is inconsistent. By the indiscernibility of I over 4,
{px,c, bi) | b e I} is |I*|-inconsistent, so tp(c'z/AE) divides over A. But this is a
contradiction.
Now let I'(x) be the union of the following formulas:
- q(x); B _ ) ~ )
- Y(x,bo,...,bp_1,d) & ¥(x,biy, ..., bi,_,,d), wheneverip < -+ <in_| < w,
n<w,¥elandde A.
We show that I"(x) is consistent, which contradicts (*). The proof is by induction on the

cardinality of the finite subsets of I'(x). For the induction step, it is sufficient to show that
foranyd € A,ip < --- <inand ¢(x, bo, b1, ..., b;,_,,d) € g(x) we have

(**) 3% [ o, bo, by, ..., bi,_,, d) A
[v&, bo, ..., a1, d) & Y&, big, ..., by, D] ]
Fix @’ realizing g. By Ramsey’s Theorem there is an infinite subsequence / " of I which is
¢-indiscernible over 4a’. Take by, ... b, _,, bl’.o, ... b,’."_I e I’. Then,
= old’, by, by, ..., b dIA[y(d, by, ....b,_,d) o y[a@,bj,....b _.d]].
Therefore,

3% [ o&, by, by, ... b ) A[Y(E, By, ... By d) o Y(E b, ..., b d)] ],

» Yig_ye

which implies (**) by the indiscernibility of I over 4. =

Lemma 14. If tp(&o_/ AE) does not divide over A and tp(a,/ Abay) does not divide over
Aay, then tp(apa) / Ab) does not divide over A.

Proof. Let I be a sequence indiscernible over 4 such that b € I. By Lemma 1.3, showing
that tp(apa, / Ab) does not divide over 4 is equivalent to finding ¢yc) realizing tp(@oa; / Ab)
such that 7 is indiscernible over Acoc;. By Lemma 1.3, since tp(ap/ Ab) does not divide
over A, we can find ¢y realizing tp(ap/ Ab) such that I is indiscernible over A¢. Take an
Ab-automorphism f such that f(@) = . Since tp(a/A4bay) does not divide over 4ao,
the type tp(f(ay)/ Abéy) does not divide over A&. Since [ is indiscernible over Aco, By
Lemma 1.3 we can choose ¢| realizing tp(f (51)/A550) such that I is indiscernible over
AGo¢1. We have tp(Goé1/Ab) = tp(f(ao) f(@1)/ Ab) = tp(aoa)/Ab), so we are done.

We now introduce one of the main concepts of this paper.

Definition 1.5.
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(1) A formula (%, b) forks over A if there exist n < w and { ¢;(X,b") | i < n}, such
that
@) ¢i(x, _l;i ) divides over A for every i < n;
(b) q)(i,b)}_vl’<”¢i(i,b’). _ _

(2) A type p forks over A if there exists a formula ¢(x, b) such that p F ¢(x, b) and
¢(x, b) forks over 4.

Remark 1.6.

(1) If p(x, b) divides over 4, then ¢(x, b) forks over A4;

Q) If p(x,b) + Vi<n @i (%, b"), and <pi(i,13i) forks over A for every i < n, then
o(x, b) forks over 4;

(3) (Finite Character of Forking) If p € S(B) forks over 4, then there exists ¢(%, b) €
p such that ¢(x, b) forks over A.

The following is also a fundamental property of forking. The proof is immediate.

Remark 1.7 (Invariance). Let p be a type and A4 a set. The following conditions are equiv-
alent:

(1) The type p does not divide (fork) over 4;

(2) For every A-automorphism f, the type f(p) does not divide (respectively, fork)
over A;

(3) There exists an 4-automorphism f such that the type f(p) does not divide (respec-
tively, fork) over 4.

The reader can observe that the advantage of forking over dividing is exactly that argu-
ment below can be carried out.

Theorem 1.8 (Extension). If p does not fork over A and dom(p) C B, then there exists
q € S(B) extending p such that q does not fork over A.

Proof. Consider
[ :={-y (&, b)|be B, y(x,b) forks over 4}.

Let us show that pUTis consistent. If pUT is inconsistent, then there exists { —=; (x, b_i) |
i < n} € T such that p U {=¢;(x, bi) | i < n} is inconsistent. But then, p F
Vien Vi(%, b;) and every v;(x, b;) forks over A. Hence, p forks over 4, which is a
contradiction.

Choose a complete extension ¢ € S(B) of p UT. If g forks over 4, there exists
¥ (%, b) € g such that ¥ (%, b) forks over 4. By the definition of T', we have =y (%, b) €
I" C g, which is a contradiction. Hence, g does not fork over A. -

Definition 1.9. Let 4 € B and p be a type over B. Then, (a, | n < w) is a Morley
sequence for p over A if

(1) Forevery n < w, a, realizes p;
(2) For every n < w, the type tp(a,/B U {am | m < n}) does not fork over 4;
(3) (a, | n < w) is indiscernible over B.

Remark 1.10.

(1) Any subsequence of a Morley sequence is a Morley sequence (for the same type).
(2) An A-automorphic image of a Morley sequence for p is a Morley sequence for the
image of p under the automorphism.
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3) If (Gnbp | n < @) isa Morley sequence for tp(&qu/ B) over A4, then (a, | n < w)
is a Morley sequence for tp(ag/B) over 4 and (b, | n < w) is a Morley sequence
for tp(bo/B) over 4.

The following theorem is used to produce Morley sequences much in the same way that
Ramsey’s Theorem is used to produce indiscernibles. A better upper bound for the length
the initial sequence is given in Appendix A.

Theorem 1.11. For every sequence (a; | i < 3(2m)+) there exists an indiscernible
sequence (b, | n < w) with the following property: for every n < w there exist
igp < --- < inp—) Such that

tp(bo, - .., bu—1/9) = tp(ai,, - - -, @i,_, /D).

Proof. Fix (a; | i < Jriy+ ) in order to find an indiscernible sequence as in the statement
of the theorem. Consider

I ={peS®)|Thereexist ij <--- <ip < (2!Tl)+ such that = p(a;,,....a;,)}
Let {c, | n < w} be constants not in the language of T. We will find a sequence of
types
™ (pn(X1,..., %) | n < o), pn €y
such that the union of the following sets of sentences is consistent:
- pn(Ci), ..., Ci,), Wwheneveri; < --- <ip < w.
This will clearly prove the proposition.

To prove the consistency of above sentences, we will construct, by induction on n, a
sequence of cofinal subsets of (2!71)*,

(Fn I n< w)v
a family of subsets of J,iri)+,
{XE,n | & € Fy, n <w},

and a sequence of types (*) such that the following conditions hold:

(1) Fat1 € Fs
(2) |Xe.nl > 30(2'T1), where £ is the Ath element of Fy;
3) E pntai,,...,ai,), wheneveriy < --- < i, arein Xg p.

We let Fp = (2'T)*, and X;,0 = Jgn, for every £ € Fy. Then, (1)«3) are obvious.
Assume, then, that F,, and the Xg ,’s have been defined, and let us define F1 and the
Xg nt1’s.

Let « be the order type of F,, and let g: « — F,, be the unique order isomorphism.
Define

Gp={gh+n|rA<al.
Then G, is also cofinal in (2!T1)*. Furthermore, if € = g(A + n),
(**) 1 Xe .l > a7
The map
@iy, .-, ai,) > tp@i, ..., a,/9)
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is a partition of [ X¢ ]" into 2!/ !-many classes. Hence, by (**) and the Erdés-Rado theorem
(see, for example, [CK] Theorem 7.2.1), there exist Xg p4+1 S X¢ n with

| Xe na1l > 7T

and a type pe ny1 € Inyy such that (3) holds with pg n41 in place of p,4i. Now the
pigeonhole principle allows us to find a cofinal F,+; € G, and a type pn+1 such that
Pe.nt1 = pny1 forevery & € Fpy). Renumbering the X¢ ,41’s with respect to the ordering
of F,41 preserves (2). This concludes the construction. -

Theorem 1.12. Let A C B. Suppose that p is over B and does not fork over A. Then there
exists a Morley sequence for p over A. Moreover, if p = tp(b/B), the Morley sequence
can be chosen with b as its first element.

Proof. Let us first expand the language with constants for the elements of B and call 7*
the resulting expansion 7. Now we use Theorem 1.8 to construct by induction a sequence
(a; i < 3(2|r*|)+ ) such that a; = p and tp(a; /B U {a; | j < i}) does not fork over 4.

By Theorem 1.11, there exists a sequence / = (b, | n < w) indiscernible over B (since
L(T*) has names for the elements of B) such that for every n < w thereare ip < --- <
in_1 < 3(2|r*|)+ satisfying

tp(bo, ..., bu_1/B) = tp(ai, - - ., @i,_,/ B).

We claim that / is a Morley sequence for p over 4. First, I is a indiscernible over B,
and every b, realizes p. Now suppose, by contradiction, that tp(b,/B U {by | m < n})
forks over A for some n < w. Then there is ¢(x, c, 50, e 13,,_1) € tp(l;,,/B U {5,,, |
m < n}), such that ¢(x, c, bo, ..., bn_1) forks over 4. Choose iy < --- < i, such that
tp(bo, ..., bn/B) = tp(ajy, ..., a;,/B). Then, o(x,c, a;,,...,ai,,) € tp(a;,/BU{a; |
J <in),and @(x,c, a;y, ..., a;,_,) forks over A. Thus, tp(a;,/B U{a; | j < i,}) forks
over A, which is a contradiction.

The last sentence follows by taking a B-automorphism mapping by to b. -

The following lemma will be used in the characterization of dividing in terms of Morley
sequences (Theorem 3.7, which in turn will be the main tool to prove the equivalence
between forking and dividing in simple theories) and in the proof of the main result of
Section 4 (Theorem 4.11).

Lemma 1.13 (Concatenation). Let (b, | n < w) be a Morley sequence for tp(Eo/ A).
Suppose that

*) (agay”... @k |k <o)
is indiscernible over A and every term of (*) realizes tp(bg, by, ..., b i/ A). Then there

exists a sequence (C, | n < w) indiscernible over A with £(C,) = €(bo) such that for
every k < w, the following equalities hold:
tp(ag, @y, ..., @5, G, &y, ... /A)
= tp(l-)(), l;l, ey Ej, Ej+lf Ej+2, L ]A)
= tp(E(), Cly-vvs Ej, Ej+|, 5j+2, .. /A)

Proof. Let I = (b, | n < w). For each m < w we construct ¢, by induction on m such
that:
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(1) Foreveryk < o,
tp(@y, @, ..., @5, €0, €1, ..., Em1/A) =tp(bo, b, ..., bj, bjs1, ..., bjim/A);
(2) For every k < w, the sequence
&) (ag..."ak"e"..."¢n-1 | k < w) is indiscernible over 4

and every term of (}) realizes tp(Eo, . l_)j, 5j+1, ey Ej.,_,,,_l/A).
Condition (1) and the indiscernibility of / imply the conclusion of the lemma. Condition
(2) helps in carrying out the induction.
When m = 0, conditions (1) and (2) hold by assumption. Having already defined ¢, for
n < m, consider

PG b0, bjem) = pBjme1 /AU (Bo, ..., Bjm ).

Since I is a Morley sequence, the type p(%, bo, ..., b i+m) does not fork over 4, and hence
does not divide over 4. By the induction hypothesis (1), we have in particular that

tp(@y, ..., @, 0., ém-1/4) =tp(bo, ..., bjim/A).

Therefore, the type p(x, &8 Sy &?, €0, . - -, Cm—1) does not divide over 4. By Lemma 1.3
applied to the induction hypothesis (2) (with b = 58“. .. '&9‘50' ...Cm—1 and @’ = ¢p), we
find ¢, such that

em = p(%, @y, ...,aj?,c‘o, ooy Cme1)

and

(6'(;‘...‘55%0‘. .."Cm—1| k < w) is indiscernible over 4 U ¢,,.

Then, (&'5‘. .. *af‘ao‘ ...tm | k < w) is indiscernible over A4, and (2) is satisfied.

To see that (1) holds, notice that by the induction hypothesis (2) we must have
tp(@g, ..., @5, €0, ..., Eém/A) =1p(@], ..., a%, 0, ..., Cm/ A), for every k < w
= tp(bo, ...,5j+m+|/A) ( by the choice of ¢p).
_|

2. RANKS AND SIMPLE THEORIES
The concept of simplicity is defined in terms of a rank.

Definition 2.1. Let p(x) be a set of formulas, possibly with parameters. Let A be a set of
formulas and let & < w. We define the rank D[p, A, k]. The rank D[p, A, k] is either an
ordinal, or —1, or co. The relation D[p, A, k] > «, is defined by induction on «.
(1) D[p, A, k] = 0if p is consistent;
(2) D[p, A,k] > 5 when § is a limit if D[p, A, k] > B forevery B < §;
(3) D[p, A, k] = a+1if for every finite r C p, there exist a formula ¢(x, y) € A and
aset{a; |i < w} with £(a;) = £(») such that:
(@ DlrUe(x,a;), A, k] > aforeveryi < w;
(b) The set {p(x,a;) | i < w} is k-contradictory.
We write
D[p, A, k] = —1 if p is not consistent;
D[p, A, k] =awhen D[p, A, k] =abut D[p, A k] Za+1;
D[p, A, k] = co when D[p, A, k] > « for every ordinal «.
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The next propositions establish some of the most basic properties of the rank. The
proofs are rather easy exercises. However,we include them here for completeness.

Proposition 2.2.

(1) (Monotonicity) If pi & p2, Ay € Ay, and ki < kj, then D[p;, A1, k] <
D[p2, A2, k2);

(2) (Finite Character) For every type p there exists a finiter < p such that D[p, A, k] =
Dir, A, k]

(3) (Invariance) If f is an automorphism, then D[p, A, k] = D[ f(p), A, k].

Proof. (1) We prove by induction on the ordinal «, that
D[p1, A1, k1] >« implies D[py, A2, k2] > a.

If D[p1, A1, k1] = 0, then p) is consistent, so p; is consistent since p; F p, and hence
D[p>, Az, k2] = 0.

When « is a limit ordinal, the implication is immediate from the induction hypothesis.

Suppose D[py, Ay, k1] = « + 1 and let r, C p, be finite. Since p; + pj, thereis a
finite r; € p; such that r; F r;. By the definition of the rank, there exist ¢(x, y) € A
and {a; | i < w} with £(a;) = £(») such that D[ry U ¢(x, a;) A1, k1] > « for every
i < wand {¢(x,a;) |i < w} is kj-contradictory. Now, r; U ¢(x, a;) - rp U ¢(x, a;), so
D[ry U e(x,a;), As, k2] > « for every i < w by induction hypothesis. But ¢(x, y) € A3
(since Ay € Aj), and {¢(x,a;) | i < w} is ky-contradictory (since k2 > k;). Hence,
D[ p2, Az, k2] = o + 1, by definition of the rank.

(2) If D[ p, A, k] = —1, then p is inconsistent and by the compactness theorem there
is an inconsistent finite » € p. Then, D[r, A, k] = —1.

If D[ p, A, k] = o0, then for every finite r C p, D[r, A, k] = oo by Monotonicity.

If D[ p, A, k] = a, then D[ p, A, k] = a and D[ p, A, k] # a + 1, so there exists a
finite » € p with D[r, A, k] > « such that there are no ¢(x,y) € Aand {a; | i < w}
such that {@(x,a;) | i < w} is k-contradictory and D[r U ¢(x, a;) A, k] > « for every
i < w. But this demonstrates that D[r, A, k] # a + 1. Thus, D[r, A, k] = c.

(3) Immediate. —

Lemma 2.3 (Ultrametric Property). Forevery p, A, k,n < w and formulas { y;(%, b)) | I <
n}, we have

D[pU\/ Vi br), A k] = max D[ p U (%, br) , A, k).
l<n l<n
Proof. By Monotonicity, for every / < n we have
DlpU (%, b), Akl < D[ pU\/ Wi b)), A, k).
I<n

Hence,

max D[ p Uy(%,B1), &,k] < D[pU\/ W&, b)), A, k).

I<n I<n
To prove the reverse inequality, we show by induction that for every ordinal « and every

type p,
D[pU\/i/f](i,B;),A,k]za implies r[naxD[pU1/f](i,51),A,k]_>_a.
<n

I<n
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When o = 0 or « is a limit ordinal, the implication is easy. For the successor stage suppose,
by contradiction, that

™
DlpU\/ v, br), Akl > a+1, but rlnaxD[pUd//(f,El),A,k] Fa+1.
<n

l<n

Then, for every ! < n we have D[ p U ¥(x, b, A, k] < a. Choose a finite r; C p such
that

D[riUy(%, by), A k] <«

and let 7 := | J,_, ;- Thenr C p is finite, so, by (*) and the definition of the rank, there
exist (x,y) € Aand {a; | i < w} with £(a;) = £€(y) such that {¢(x,a;) | i < w}is
k-contradictory and for every i < w

Dru\/ v b)Ue(%, @), Akl > e

I<n

By induction hypothesis, for every i < w
max D[r Uy1(F, b) Up(%, &) A, k] = o,
so there exists /; < n such that
D[r Uy (%, b)) Uo(x,a), A, k] > a.
By the pigeonhole principle, we may assume that /; = I* < n is fixed and
Dlr Uy, bi) Vo, ai), A k] > e,
for every i < w. By definition of the rank,
DlrUyp (%, b)), Akl > a+1,
and by Monotonicity,
Dlrp U (%, bie), A K] > @ + 1.
But this contradicts the choice of 7;+. Therefore,
max D[ p U yi(%, b, A k] > a+1.

The proof of the following lemma is similar to that of Theorem 1.8.

Lemma 2.4. Let p be a type, A and P be sets of formulas and k < w. Suppose that
D[ p, A, k] < oco. Then, for every set B there exists a type q € S¢(B) such that

D[p,A,Kl=D[pUq, A,K].

Proof. We may assume that ® is closed under conjunction. Suppose that D[p, A, k] = c.
Consider
[:={(-y(b)|be B, Y& )€ DpUY(F,b),A k] <a)
Let us show that pUT is consistent. If pUI_“ were inconsistent, there would be { ~y; (x, b)) |
i < n} € T suchthat pU{—¢;(x,b) | i < n } is inconsistent. But then, p +
Vi <n ¥i(%, b;). By Monotonicity and Lemma 2.3, we have
a = D[p, A, k] < D[pU\/ ¥i(%,5:), A, k] =max D[ pU ¥i(%, i), A, k] < @,
. r<n
<n

which is, of course, a contradiction.
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Choose g € So(B) extending I'. If D[pUgq, A, k] < a, then by Finite Character, there
exists Y (x,b) € q such that D[p U ¥ (x, b), A, k] < . Hence, by definition of I", we
must have ~y(x, b) € I" C ¢, which is a contradiction. -

Definition 2.5. A first order theory T is simple, if D[x = x, A, k] < oo for every finite
A and every k < w.

As we will see in Theorem 2.8, any stable theory is simple. However, there are important
examples of simple unstable theories. Historically, the motivating example was the theory
of the random graph.

There are several equivalent formulations of model theoretical stability. One of them is
via the following rank. Recall that the types p and g are explicitly contradictory if there
exists ¢ (x, b) such that o(x, b) € p and —p(x, b) e q (or vice versa).

Definition 2.6. Let p(x) be a set of formulas, possibly with parameters. Let A be a set of
formulas. We define the rank R[p, A, Ro]. The rank R[p, A, Ro] is either an ordinal, or
—1, or oco. The relation R[p, A, Ro] > «, is defined by induction on «.
(1) R[p, A, Rp] > 0if p is consistent;
(2) R[p, A,Ro] > 8 when § is a limit if R[p, A, Rg] > B for every B < §;
(3) R[p, A,Ry] > a + 1 if for every finite r C p there exists a set of A-types {g; |
i < w) such that:
(@) R[rUgi, A,Rp] > a foreveryi < w;
(b) The types g; and g; are explicitly contradictory if i # j < w.
We write
Rip, A, Rp] = —1if p is not consistent;
R[p, A, Ro] = @ when R[p, A,Ro] > abut R[p, A, Ro] Za + 1;
R[p, A, Ro] = co when R[p, A, Ro] > « for every ordinal «.

The following fact follows from Theorems 2.2 and 2.13 of Chapter II in [Sha].

Fact 2.7. T is stable if and only if R[x = x, A, Ro] < w for every finite set of formulas
A.

Theorem 2.8. Let T be a (complete) first order theory. If T is stable, then T is simple.
Proof. Using Fact 2.7 it suffices to show that for every finite A and every k < w,
D[x =x,A,k] < R[x =x, A, Ro].

We shall show by induction on the ordinal « that for every type p, every finite set of
formulas A, and every k < o

Dip, A, k] > a implies R[p, A,Rp]> c.

When o = 0 or « is a limit ordinal, the implication is obvious. Suppose D[p, A, k] >
a + 1. Let r € p be finite subtype. Then there exist a formulagp € Aand {a; | i < w}
such that the set { ¢(x, a;) | i < w} is k-contradictory, and D[r U ¢(x, a;), A, k] > « for
everyi < w. Let 4 := |J{a; | i < w}. By Lemma 2.4, for every i < w there exists
gi € Sa(A) such that

D[rUe(x,a;)VUgq;, A k] > a, foreveryi < w.
Therefore, by the induction hypothesis,

R[rUe(x,a;i)VUgq;, A, Ro] > a, forevery i < w.
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Now, since { ¢(x, a;) | i < w} is k-contradictory and ¢(x, a;) € g;, any k-element subset
of {¢; | i < w} contains two types that are explicitly contradictory. Hence, there exists an
infinite § C w such that for any i # j in S the A-types g; and g; are explicitly contradic-
tory. By definition, we must have R[r, A, Ro] > « + 1, which finishes the induction. -

We now provide various charaterizations of simplicity.

Lemma 2.9. Let ¢(x, y) be a formula, k < w and o be an ordinal. The following condi-
tions are equivalent:
(1) D[x=x,¢,k] > a;
(2) There exists {ay | n € *” w) such that
(a) Foreveryn € “w, the set {¢(x,ayp) | B < a} is consistent;
(b) Foreveryn € *”w, the set {@¢(X, ayn) | n < w) is k-contradictory.

Proof. By induction on «. —

The preceding lemma is generalized in Proposition 2.14

Definition 2.10. A theory T had the tree property if there exist a formula ¢(x, y), an
integer k < w, and {a, | n € “w} such that

(1) Forevery n € “w, the set {¢(x,ayy) | | < w} is consistent;
(2) Forevery n € “w, the set { ¢(X, ayn) | n < w} is k-contradictory.

Corollary 2.11. The following conditions are equivalent:
(1) T is simple;
(2) D[x =x, A, k] < w, for every finite A and k < w;
(3) T does not have the tree property.

Proof. By the compactness theorem and the previous lemma (and coding finite sets of
formulas by a single formula) -

Shelah’s original definition of the rank in [Sh93] is more general than that in Definition
2.1. We now compare both definitions and derive a few simple facts which we will need
in Section 3. The reader interested mainly in the basics of forking may skip the rest of this
section, and return to it only as needed.

Definition 2.12. Let p(x) be a set of formulas, possibly with parameters. Let A be a set
of formulas, ¥ < w and A a cardinality (not necessarily infinite). We define the rank
D[p, A, k,)\]). The rank D[p, A, k, A] is either an ordinal, or —1, or co. The relation
D[p, A, k, A] > a, is defined by induction on c.

(1) D[p, A, k,A] = 0if p is consistent;
(2) D[p, A,k,A] > 8 whend is a limit if D[p, A, k, A] > B forevery 8 < §;
(3) D[p, A, k,A] = a + 1 if for every finite r C p and every u < A there exist a
formula ¢(x, y) € A andaset{a; | i < p} with £(a;) = £(y) such that:
(@) D[rUe(x,a;), A, k,A] >« foreveryi < u;
(b) The set { ¢(x, a;) | i < p} is k-contradictory.
As usual, we write

Dip, A, k,A] = —1if p is not consistent;
D[p, A,k,\] = a when D[p, A,k,A] = abut D[p, A, k,A\] Z a+1;
D[p, A, k, )] = oo when D[p, A, k, 1] > «a for every ordinal «.
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Remark 2.13. Clearly, the function D[p, A, k, -]is nonincreasing and D[p, A, k] = D[p, A, k, ¥].
The statements Proposition 2.2 are also true for this new definition. The Ultrametric Prop-
erty (Lemma 2.3) holds for D[p, A, k, A], when A is uncountable.

Proposition 2.14. Let p be finite, ¢ be a formula, k < w, n < wand A = u* (or u + 1
when p is finite). Then D[p, ¢, k, )] > « if and only if the union of the following sets of
formulas is consistent:

~ApGy) Ine uk
AP Niew 9E i) | w S, lwl =k, ne “Tp)
“A{oGn ypra+n) In€ "ul <}

Proof. Immediate from Definition 2.12. -

Corollary 2.15. Let p be a type, A be a finite set of formulas and k < w. The following
conditions are equivalent:

(1) D{p, Ak} =n;
(2) Dlp, A, k,m] > nforeverym < w.

Proof. When p is finite, the statement follows from from Proposition 2.14. The general
case follows immediately by compactness. —

Corollary 2.16. Let p be a type, A be a finite set of formulas, and k < w.Then,
Dip, Ak, A1 = D[p, A, k], forevery > Ry.

Proof. We may assume that A = {p}. Clearly D[p, A, k,A] < D[p, A, k]. The reverse
inequality follows by Finite Character and Proposition 2.14. —

Remark 2.17. Corollary 2.16 implies that if A, A, and « are finite, then for every ¥ (x; y)
the set

{61 DIy (; b)), Ak, Al =)
is first order definable in €.
Corollary 2.18. In Definition 2.1 we can add at the successor stage the condition
() (aili < w)isindiscernible over dom(p).

Proof. We wish to prove that if D[p, A, k] > « + 1, then for every finite » C p there exist
¢ € A and a sequence (a; | I < w) indiscernible over dom(p) such that { (x,a;) | i <
w} is k-contradictory and

1) DlrUe(x,a;), A, k] > a, foreveryi < w.

Let A4 := dom(p) and fix k < w. Let x := 21T+ and A := (J,)*. By Corollary
2.16, we have

D[p, A, k,A\)=D[p, A k] > a + 1.

Hence, for every finite » C p there exist a formula @ € A andaset {b; | i < 3y } such
that { (x, b;) | i < 3, } is k-contradictory and

™) DlrU e, b)), Ak, 2] > a, for every i < .

Theorem 1.11 provides a sequence (a; | i < w) indiscemible over 4 such that for every
n < wthere existi) < --- < i, < 3, satisfying

(**) tp(@o, ..., adn—1/4) = tpdj,, ..., bj,/ A).
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Clearly, (x*) guarantees that { ¢(x,a;) | i < w} is k-contradictory. Now, (x), (¥x), and
Invariance imply

DlrUe(x,a;), A k] > o, foreveryi < w.

3. FORKING IN SIMPLE THEORIES

In this section we study the connections between forking and the rank D, and establish
the main properties of forking which hold when the theory T is simple.

Lemma 3.1. Let T be simple. Suppose that p is a type over A and that ¢(x, a) forks over
A. Then there are A finite and ky < w such that

D[pUg(x,a), A k] < D[p, A, k],
Jfor every A D Ay finite and every k > ky.

Proof- Suppose first that ¢(x, a) divides over 4. By lemma 1.2 there exista set {a; | i <
w}and k < wsuch that ag = a, tp(a/A4) = tp(a; /4) foreveryi < w,and {¢(x,a;) |i <
w} is k-contradictory. Let Ag := {¢@(x, y) } and k¢ := k. Suppose that there exist a finite
A D Ay finite and / > kg such that

D[pUep(x,a),A,I] £ D[ p, A, 1]
By Monotonicity,
D[pUg(x,a),A,l]= D[p, Al

Since T is simple, there is an ordinal « such that D[ p, A, /] = a. By Finite Character,
there is a finite » C p such that D{r, A, /] = D[p,A,l]=a. SincepkrUe¢F r, we
have

™ D[rU¢,a), A,l]=a.

Since tp(a; / A) = tp(a/A), there exists an A-automorphism f such that f;(@) = a;. By
Invariance of the rank,

** D[ fi(r Ve, fi(@a).All=aq, for every i < w.
Since f; fixes 4 pointwise and dom(r) € A4, from (**) we obtain
D[rUe(x,a),A,l]l=a, for every i < w,

but ¢(x,5) € A and {¢(x,a;) | i < w} is [-contradictory (since / > k). Hence,
D[r, A,1] > a + 1, which is a contradiction.

The lemma is therefore true if ¢(x, @) divides over 4. If ¢(x, a) forks over 4, there
exist n < w and @; (%, a@") fori < n, such that p(x,a) - \/,;_, ¢i(x,a") and ¢; (x, a’)
divides over A, for every i < n. By the preceding argument, for every i/ < n there exist a
finite A’ and & < w such that

() D[pUgi(x,a'),A 1] <D[p,A,I], forevery A D Affiniteandk’ </ < .

Let Ag := U;, A', ko := max; <, k*. We prove that these Ag and ko satisfy the conclu-
sion of the lemma.
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Suppose A D Ay is finite and kg </ < w. We have
DpUe @), AN <DpU\/ ¢ a), A0  Gincep(%,a) + \/ ¢i(%,a)

i<n i<n
= maxD[pU(pi(i,&i),A,l] (by Lemma 2.3)
I<n
<D[p,4,1] (by (1)),
which is what we sought to prove. =

Theorem 3.2 (Existence). Suppose that T is simple. Then no type forks over its domain.

Proof. Suppose that p is over A and forks over 4. Then there exists a formula ¢(x, a)
such that p - ¢(x, a), and ¢(x, a) forks over 4. Butsince p pUg I p,

D[p,Akl=D[pVUe(x,a), A, k], for every A and k < o,

which contradicts Lemma 3.1. -

Corollary 3.3. Let T be simple. Then for every p over A there exists a Morley sequence
for p over A.

Proof. By Theorem 3.2 the type p does not fork over 4, so a Morley sequence for p over
A exists by Theorem 1.12. -

Theorem 3.4. Suppose that T is simple. If p is over A, there exists B € A with |B| < |T|
such that p does not fork over B.

Proof. Since T is simple, D[ p, A, k] < oo for every A finite and k¥ < w. Fix A finite,
k < w, and a finite type ga x € p, such that

* D[p, A, k] = D[ga.x, &, k].
Let
g:=|Jlgak | ACL(T), Afinite, k<w})CSp and B :=dom(g).

Then |B| < |T|, and since p I g - ga , by (*) we have
(**) D[p,A,k]l=D[q, A, k], for every finite A and k < w.
We will show that p does not fork over B.

Suppose p forks over B. Then there exists ¢(x, a) such that p - ¢(x, a), and ¢(x, a)
forks over B. Since p - q U ¢(x,a) + g,

D[p,A k] < D[qUep(x,a),A,k] < D[q,A,k], foreveryfinite A and k¥ < w.
Therefore, by (**),

D[qUe(x,a), Akl = D[q, A, k], forevery finite A and k < w.

This contradicts Lemma 3.1 since ¢ is over B. -

Definition 3.5. We call «(T') the least cardinal « such that every type does not fork over a
subset of its domain of cardinality «.

Theorem 3.4 says that «(T') < |T|t if T is simple. We now show that a rather strong
converse of Theorem 3.4 also holds. If «(T) < oo, then «(T) < |T|* and T is simple.
Therefore, T is simple if and only if «(7) < |T|*. This equivalence is sometimes used
as the definition of simplicity. A complete first order theory T is called supersimple if
k(T) = Ro. See [Kil].
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Theorem 3.6. Suppose that T is not simple. Then, for every any cardinal k there exists a
type p such that p forks over all subsets of cardinality k of its domain.

Proof. Let « be given and let u = (2“*!IT1)y*. Since T is not simple, T has the tree
property by Corollary 2.11. Let ¢ and ¥ < @ witness this. By compactness, we can find
{ap | n € “ >} such that

(1) Foreveryn € "+p,, the set { ¢(x, ay;8) | B < w} is consistent;

(2) Foreveryne “ > w, the set { ¢(x, ap~) | i < p} is k-contradictory.
By the pigeonhole principle and compactness, there exist { E,, |ne "+>u } such that

(3) Foreveryn € «* 1, the set {@(%, by1p) | B < Kt} is consistent;
(4) Foreveryn € >, the set {@(%, byn) | n < w} is k-contradictory;
(5) Foreveryn € «*>4 and every n < w,

tp(bro/ | Jiby 1 v <)) = tpyn/ by I v <0}

Letn € **w and consider the set p = (e, 5,,“3) | B < «™T} (which is a type by
(1)). For every subset 4 of dom(p) of cardinality at most « there is @« < «* such that

plACS{eK,byp) | B <a). By(4)and (5), p divides, and hence forks over 4. -

Theorem 3.7. Let T be simple. The following conditions are equivalent:
(1) The formula ¢(x, b) divides over A;
(2) For every Morley sequence (b, | n < w) for tp(b/ A), the set {¢(X,b,) | n < w}
is inconsistent;
(3) For some Morley sequence (b, | n < w) for tp(b/ A), the set {¢(X,b,) | n < w}
is inconsistent.

Proof. (3) = (1) is obvious and (2) = (3) is given by Corollary 3.3.
(1) = (2): Let (b, | n < w) be a Morley sequence for tp(b/A). Assume for the sake
of contradiction that

@) {@(%, by) | n < w} is consistent.

Since ¢ (%, b) divides over 4, there exist a sequence (a, | n < ) indiscernible over 4 and
k < w such that ag = b and

** {@(x,an) | n < w} is k-contradictory.

By the Concatenation Lemma (Lemma 1.13), there exists (¢, | # < w) such that for every
n < w the following equalities hold:

(***) tp(@n, éo, €1, . .. /A) = tp(o, €1, C2s - . . | A) = tp(bo, b1, b2, ... [ A).

Let p := {@(x,Cy) | n < w}. The second equality of (***) and (*) imply that p is
consistent. Hence, since T is simple, there is an ordinal « such that D[p, ¢(x, y), k] = c.
By the first equality of (***), for every n < w there exists an 4-automorphism f, such
that f,,(a,) = ¢o and f,(Cm+1) = Cm for every m < w. By Invariance of the rank,

Dlo(x,an) U p,e(x, ), k]l = D[ fu(ep(x,an) U p),e(x,y), k]l = D[ p,o(x,y), k] =«,

for every n < w. Now (**) and the definition of the rank imply that D[ p, ¢(x, ), k] =
« + 1, which is a contradiction. -

The proof of the next result was kindly communicated to us by Shelah. It is considerably
simpler than Kim’s original proof in [Ki]
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Theorem 3.8. Let T be simple. The following conditions are equivalent:
(1) e(x, é) divides over A;
(2) @(x, b) forks over A.

Proof. (1) = (2) ig obvious. We prove (2) = (1): Since ¢ (%, b) forks over 4, there exist
m < w and ¥;(x, a') such that ; (x, a') divides over 4 fori < m and
*) o, b+ \/ v, a).
i<m
Leta := (&0, Lam! ). By Corollary 3.3 we can fix a Morley sequence for tp(&l;/A),
(Gnbn | n < @), with ap=a,by=>b.

Let us write a, = (@, ...,ar") forevery n < . )

Since (b, | n < w) is indiscernible over A, to show that ¢(x, b) divides over 4, it

suffices to show that the set { 9 (%, b,) | n < w} is inconsistent. Assume that it is consistent
and let ¢ realize it. By the definition of Morley sequence,

tp(&g/A) = tp(&,,[),,/A), for every n < w.
Hence, using an 4-automorphism and (*), we conclude that
(**) oG, by) - \/ ¥i(%,a)), foreveryn < w.
<m
By the choice of ¢, we have = ¢[¢, b,] for every n < . Therefore, (**) implies that

for every n < w there exists i(n) < m such that = ¥;(m[c, 55,(”)]. By the pigeonhole
principle, there exist an infinite S € w and a fixed k < m such that

M = yi[é,ak), foreveryn e S.

But (&,’f | n € S) is a Morley sequence for tp(a(',‘ /A). Furthermore, (1) shows that the set
{¥r(x,a*) | n € S} is consistent. Thus, ¥ (X, a*) does not divide over 4 by Theorem
3.7. This contradicts the choice of ¥ (¥, a%). +

Theorem 3.9 (Symmetry). Let T be simple. Then tp(a/ Ab) forks over A if and only if
tp(b/ Aa) forks over A.

Proof. 1t is, of course, sufficient to prove one direction. Suppose tp(a/A4b) forks over A
and take ¢(x, ¢, b) e tp(&/Al;) such that ¢ (%, ¢, b) forks over A. By Theorem 3.8, the
formula ¢(%, ¢, b) divides over 4. If tp(b/Aa) does not fork over 4, we can choose a
Morley sequence / = (by | n < w) for tp(l;/A&) over A such that by = b. We have
= o[a, ¢, b], so, by the indiscernibility of / over A4a, we also have = ¢[a, ¢, b,] for
every n < w. Thus, {@(%,¢,b,) | n < w) is consistent (as it is realized by a). But
(éb, | n < w) is a Morley sequence for tp(ébh/A), and hence { (%, ¢, b,) | n < w)
is inconsistent by Theorem 3.7. This contradiction shows that tp(b/4a) must fork over
A. -

Theorem 3.10 (Transitivity). Let T be simple and A € B C C. Iftp(a@/C) does not fork
over B and tp(a/B) does not fork over A, then tp(a/C) does not fork over A.

Proof. 1t suffices to show that tp(a/A¢) does not fork over A for any ¢ € C. By Symmetry,
this is equivalent to showing that tp(c/Aa) does not fork over 4 forany ¢ € C. Fixc e C
and suppose ¢(x, d, a) € tp(¢/Aa) forks over A. By Theorem 3.8,

™*) @(%, d, a) divides over 4.
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Since tp(a/C) does not fork over B, the type tp(a/Ac) does not fork over B, so by Sym-
metry and the fact that dividing implies forking,

**) tp(¢/ Aa) does not divide over B.

Now, since tp(a/B) does not fork over 4, by Corollary 3.3 we can choose a Morley se-
quence (a, | n < w) fortp(a/B) over A. Let I := (day |n < w), Then I is a Morley se-
quence for tp(da/B). By the definition of dividing and (**), the set { 9(%, d, an) | n < w}
must be consistent. Since [ is a Morley sequence for tp(ci& /A), the formula ¢(x, d,a)
does not divide over 4 by Theorem 3.7. This contradicts (*). Hence, tp(a/C) cannot fork
over A. -

We can now show the converse of Lemma 3.1.
Theorem 3.11. Let T be simple. Let p be a type over B and A C B. The following
conditions are equivalent:

(1) p does not fork over A;

(2) D[p, A, k}=D[p | A4, A, k), for every k < w and A finite.
Proof. (2) = (1) is Lemma 3.1. ~ _

(1) = (2). By Finite Character, we may assume that B = A4 U b for some tuple 5. We
show by induction on « that

D[p| A,A, k] >« implies D[p,A,k]=>a.
When o = 0 or « is a limit ordinal, the implication is easy. Suppose that
DiplA4,Ak]>a+ 1.

By Corollary 2.18, we can find a formula ¢ € A and a sequence (a; | i < w) indiscernible
over A4 such that { ¢(x, @;) | i < w} is k-contradictory and

*) D[(p | A)VUep(x,a;), A, k] > «a, foreveryi < w.

By the definition of the rank, it suffices to show that the sequence (a; | i < w) can be
chosen so that

**) D[pUe(x,a;), Akl >«a, foreveryi < w.

Using Lemma 2.4, we find ¢; for i < w realizing (p | 4) U ¢(x, a;) such that
Dltp(ci/AUa;), A, k] > a.

Now, using Theorem 1.11 (as in the proof of Corollary 2.18), we may assume that the

sequence (¢;a; | i < w) is indiscernible over A. By taking an 4-automorphism, we

may also assume that ¢y realizes p. Since, by hypothesis, tp(co/4b) does not fork over

A4, the type tp(b/ Acop) does not fork over 4 by Symmetry. Now, using Extension and an

Acp-automorphism, we may further assume that tp(b/ Acoap) does not fork over 4. Since

forking and dividing are equivalent for simple theories, we can use Lemma 1.3 and an

Acpap-automorphism to assume that

) (¢i"a; | i < w) is indiscernible over B.

Using now Extension and an Acpap-automorphism, we may further assume that

1) tp(b/A U (G, a; | i < w}) does not fork over 4.

From (1) and the fact that ¢ realizes p, we conclude that ¢; realizes p for every i < w. By

(1) and Symmetry, the type tp(c;/Ba;) does not fork over 4 for any i < w. Therefore,

by Monotonicity, p U ¢(x, a;) does not fork over 4, for any i < w. Thus, by induction
hypothesis, D[p, A, k] > a + 1. -
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When the theory is stable, the following theorem follows from Shelah’s the fact that
types over models are stationary. The theorem is due to Kim and Pillay and generalizes a
result of Hrushovski and Pillay in [HP1}).

The Independence Theorem will play a crucial role in the proof of the chain condition
(Theorem 5.8).

Theorem 3.12 (The Independence Theorem). Let T be simple and M be a model of T.
Let A and B be sets such that tp(A/M B) does not fork over M. Let p € S(M). Let q be
a nonforking extension of p over M A and r be nonforking extension of p over MB. Then,
q Ur is a nonforking extension of p over MAB.

Proof. Since p is complete, we know by Robinson’s Consistency Lemma that g U r is
consistent. By Finite Character, it is sufficient to prove that if a, b are such that tp(a/M b)
does not fork over M and q(x, y), r(x, z) are types with parameters from M such that
q(x,a), r(x, b) do not fork over, then the union qg(x,a)Ur(x, b) does not fork over M. By
Robinson’s Consistency Lemma, we may assume that g (x, a) Ur(x, l_)) is a type. Suppose,
by contradiction, that ¢ (x, a) Ur(x, 5) forks over M.

By Extension, we can find a realization ¢ of r(x, b) such that tp(c/M. b) does not fork
over M. By Existence, the type r(c,z) U tp(I; /M) does not fork over Mc, so by Extension
we can find a realization &’ of it such that

*) tp(b'/Mac) does not fork over Mc.
Now, tp(é/Mb) = tp(¢/Mb'), so, by Symmetry,
(**) tp(b’ /M) does not fork over M.

By (%), (*x) and Transitivity, tp(b’/ Ma¢) does not for over M, so tp(¢/Mab’) does not for
over M by Symmetry. By the choice of ¢ and b’, we conclude that g(x,a)Ur(x, b’) does
not fork over M.

We will eventually contradict the following claim.

Claim. There does not exist a sequence (a;'d; | i < w) indiscernible over M such that

- q(x,a0) Ur(x, czo) does not fork over M, and
- q(x,ap) Ur(x, d;) forks over M.

Proof of the claim. Suppose that there is (@;°d; | i < w) as above. By Lemma 1.3 and
Extension, there exists ¢ realizing g (x, ap) U r (x, dp) such that (@;d; | i < w) is indis-
cernible over M¢ and tp(c/M U {a;"d; | i <w}) does not fork over M. By Monotonicity,
q(x,ap) Ur(x, d) does not fork over M, a contradiction. =

Since M is a model, there exists an ultrafilter D over M such that tp(E/M )= tp(l;' /M) =
Av(D, M). Define (b; | i < w) such that by = b and b; realizes Av(D, M U {b; | j <
i}). Then (b; | i < w) is indiscernible over M. By Lemma 1.3, since forking is the
same as dividing, we may assume, by using an Mb-automorphism, that (b; | i < w) is
indiscernible over Ma. Similarly, we define (1_71’. | i < w) such that 156 = b and 5,’. realizes
Av(D, M U {I;} | j <1i}). Again, we may assume, that (5; | i < w) is indiscernible over
Ma. Now, let us construct a third indiscernible sequence (¢; | i < w), but now such that
¢; realizes
AVD, MU {b; |i <w}U{d] i <w}U{é|j<i)).

Then, both (b; | i < w)+ (& | i < w) and (5; |i <w)+ (¢ | i < w) are indiscernible
over M. Furthermore, by taking a longer sequence if necessary, we may assume that

tp(ac;/M) = tp(ac;/M), foreveryi,j <w.
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Suppose that for some (and hence all) i < w the type g(x, @) U r(x, ¢;) does not fork
over M. We will find (@; | i < w) and (b}, | m < w) fori < w such that for everym < w

tp(@;bl, /M) = tp(aco/ M),
tp(@; 115}, / M) = tp(aby/ M).
By Ramsey’s Theorem, we can assume that (&i‘l;f) | i < w) is indiscernible over M, and
the claim is contradicted.

We construct a; and (l;f,, | m < w) by induction on i. Let f be an M-automorphism
such that f(cm) = b), form < w. Weletap = a, bg, = ¢, for every m < w, and define

aiv1 = f(a),
Bl = f(bt), form<w
(so, in particular, b}, = b).
In case g(x, a) Ur(x, ¢;) forks over M, for some i < w, we use the b;s, rather than the

blf s, to derive a similar contradiction.
_l

4. INDISCERNIBLES BASED ON A SET

This section can be skipped without loss of continuity.

Corollary 4.13 assumes that 7 is simple. The rest of the section is valid for all first order
theories.

We start by defining a distance between indiscernible sequences. If / and J are se-
quences of indiscernibles, we denote by / + J the sequence that results from placing every
element of J above every element of /.

Definition 4.1. Let /; and I be two infinite sequences indiscernible over the set 4. We
define the distance between I, and I; over A, denoted d 4(1I), I,). We say thatd (1, ;) <
n for n < w, if there exists a sequence (Ji | k < 2n) satisfying the following conditions:
(1) every Ji is an infinite sequence, indiscernible over 4;
(2 I S Jpand I C Jpp;
(3) For every k < n the sequence Jy; + Jok+1 1s indiscernible over 4;
(4) For every k < n the sequence Jy+2 + J2x+1 is indiscernible over A4.
We write:

d4(I}, I) = oo if there is no n < w such that d4(1I;, ) < n;
d4(I1, ) = nifn < w is smallest such that d4(I;, I2) < n.

The following graph illustrates the case d4(/}, I2) < n. An arrow from / to J indicates
that I + J is indiscernible over 4.

JZn-—]

SN TN

1 CJ Jon-2 Jn 2D

Definition 4.2. Let I; and I, be indiscernible over the set 4. We say that I} is equivalent
to I, over A,denoted I) =~ 4 I, ifd4(1}, I) < oo.

Remark 4.3. When the theory is stable, indiscernible sequences are indiscernible sets, so
the relation ~¢ coincides with the equivalence relation defined in [Sha], Chapter III.
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We first state some easy lemmas.

Lemma 4.4. Let A be a given set.

(1) d4 is a metric on the class of sequences indiscernible over A;
(2) =4 is an equivalence relation on the class of sequences indiscernible over A.

Proof. (2) is immediate from (1) and (1) is proved easily from the definitions. -

Recall that a sequence is said to be (A, m)-indiscernible over a set 4, if any two increas-
ing subsequences of length m have the same A-type over 4. When A = L(T), we simply
say m-indiscernible over 4. The following Proposition is central to derive the Corollary
4.6, which states that being at distance £ is a first order property.

Proposition 4.5. Let A be a set and €, k < w. Suppose £ > 0. Let
= (&f, | n < w)
be indiscernible over A, for | = 1,2, such that with Z(é(')) = 8(6(2)) = £. The following
conditions are equivalent:
(1) dqa(h, I2) < k;
(2) For every m < w, for every finite A C L(T), every a € A, and every choice of
a(’) - < a inl;1=1,2), thereexlstsaset{bj | j <2k, i <m} such that
(a) Foreveryi < m we have b? = al and b?k = a, ;
(b) Forevery j < k, both of the sequences
(b 1i <m)+ (B i <m), (B2 i <m)+ (B i <m)
are (A, m)-indiscernible over a.
Proof. Immediate, by compactness. -

Corollary 4.6 (Type Definability of d4). Let A be a set, k,£ < w and suppose £ > 0.
Then there exists a type

k.t k€= - - =
ry =ry (x0, Yo, X1, Y1, ../ A)

with parameters from A, such that for any two sequences I = (5:, | n < w) indiscernible
over A such that £(@.) = € forl = 1,2,

da(, ) <k ifandonlyif ayayalar...  realizesr?t.

Proof. We will use Proposition 4.5. Let {x; | i < w} be new variables for the sequence
Ii,and {); | i < w} for I;. For every finite A C L(T), every finite a € 4, and every
m < w, let {2{ | i < m,j < 2k} be new variables (to play the role of 5{ in the previous
proposition). Let the formula YA m. a(Xo, Yo, - .- , Xm, ¥m) be the existential closure with

respect to the variables {2{ | i < m,j <2k} of the conjunction of the following formulas
(written informally for readability):

- X —E foreveryi <m;

- Yi _z forevery i < m;

A i sm) (T

- | _?JH [i<m)+(z | i < m)is (A, m)-indiscemible over a for every j < k.
This is possible since A and a € 4 and m are finite. Then, let

At = (Yama | A S L(T), Aisfinite,m < w,a € 4).

| i <m)is (A, m)-indiscernible over a for every j < k;
2/+l

Proposition 4.5 shows that r A‘ is as required. -
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Definition 4.7. Let / be a sequence indiscernible over the set 4 and let & C Aut,4(C).
(1) The orbit of I with respect to ® is
P3) == {FU)/ ~4| F € ®}.
When ¢ = Aut,4(C), we simply write I" 4(/).
(2) We say that I is based on A if [T 4(I)| < ||I€]|. !

Theorem 4.8. Let I be a sequence indiscernible over the set A. Then I is based on A if
and only if [T 4 ()] < 2171141

We first prove a combinatorial lemma. The method used in the proof is often used by
model theorists to prove the Erd6s-Rado Theorem.

Lemma 4.9 (End Homogeneity Lemma). Let A be an infinite cardinal, and let n < w.
Suppose that
G: [T - 2.
Then there exist a set S € (2*)*t of cardinality At and an ordinal * < (2*)* such that
Gty oyin, ing1) = GGy, ..., in, %), whenever iy < --- <ip <ipy) € S.

Proof. Let G be given as in the statement of the lemma above and form the following
model:

M=(2H", € G, a)yen-
Using the Downward-Lowenheim-Skolem Theorem, construct an increasing continu-
ous sequence of models { M; | i < A* ) such that
1) M < M;
Q) 1M =24
(3) M;4 realizes all the types over subsets of M; of cardinality A which are already
realized in M.

Let us see that this implies the conclusion of the lemma. Let M* := | J, _, M;. By (3),
we can choose an ordinal a* € M — M* such that «* > sup M*. Condition (2) allows us
to find @; € M; 1 — M; such that

tplai/{aj | j <i)) =tple*/{a; | j<i})), foreveryi <a™t.
It is easy to see that S = {; | i < AT } and &* are as required. -

Proof of Theorem 4.8. Necessity is trivial. To prove sufficiency, let A = |T'| + |4]| and
suppose that there exist I = (a, | n < w) and 4 as in the statement of the theorem such
that

[ {FU)/ ~4| FeAutg@)}|=@H*.

For each i < (2%)7, fix an 4-automorphism F; such that F; (/) %4 FijI)ifi # j. Let
&f, = F;(a,). By Corollary 4.6, for every k < wand i # j we can find

k = = = - . ik k,€(ap)
(pi'j(xo, Y05+« xnk(i.j)’ yn"(i,j)’ bi,j) € rA
such that

k (=i =J =i =J . Bk ; ;
= —.<pi’j[a0, s e Aok iy Gpi iy b,.'j], fori # j.

! This is equivalent to saying that the class I' 4 (/) is a set.
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The End Homogeneity Lemma provides a set S € A% of cardinality A™ and j* < (2%)*
such that if we let (pf‘ = <pi’ij, and n"(i) = n*@, Jj*), we have

= —pflah, @, ""5;"(1)’ &:k(i); bk, foreveryi € Sand k € w.

Without loss of generality, we may assume S = AY. By the pigeonhole principle, we
construct a sequence {Sx | ¥ < w) and iy < (2*)* such that if we let of = (pi’; and
nk = n"(i), we have

(1) Sk+1 S Sk and Sp = S;

@ ISd=25

3) E —wp"[&:)ﬁ{),...,&:,,‘,&zk;b"] foreveryi # j € S.

Let us now expand the language of T with names for the elements of 4. In addition,

for every n < w and every @ < ||€]|| let ¢ be new constants. Let 7* be the union of the
following sentences, written informally for readability:

- For every o the sequence I, = (C5 | n < w) is indiscernible over 4;
. wp"(Eg, Eg, E‘j’, Ef, ...; b*), whenever a < Band k < w.

Then T* is consistent by (1)~3). The conclusion of the theorem follows since the third
item guarantees that d4(ly, Ig) = oo fora < . -

Proposition 4.10. Let I be a sequence of indiscernibles over a set A and let k be an integer
greater than 1. T C Aut4(C) be such that

di(fD,gD) >k, for f(I)#g)inT.
Then |T'| < ||€|| implies |T'| < 2!TI+41,

Proof. Similar to the proof of Theorem 4.8, using a single application of the Erdés-Rado
theorem.

—

Theorem 4.11. Let A € B and p € S(B). Let I be a Morley sequence for p over A.
Then, for any ® C Aut4(€) of cardinality Q4 TY* there exist f # g in ® such that
da(f(D),g) <1

Proof. Let p(x) € S(B) not fork over 4. Let £ = £(x) andlet ] = (by | k < w) bea
Morley sequence for p over 4.Suppose, by contradiction, that there exists & C Aut4(€)
with |®| > 2!41H1T1 gych that

ds(f(D,g)) =2, forevery f,g € & with f # g.

Let A := 24+l By Proposition 4.10 for every & < 3+, we find an 4-automorphism
fo such that

*) dfalD), (1) 22,  fora <B <y

For convenience, let us write I, = f,(I) = (B,‘Z | Kk < w). By Corollary 4.6, there exists
a first order formula

a8 (0, 70, - - Kk B> Fia.pp; bap) € 75°
witnessing (¥), i.e.,

E —puplbg, B, ..., b . Ef(a‘ﬁ); bapl,  fora <p.
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By an application of the Erdés-Rado to the function

(@ B) ¥ 9a,8(X0, 30, - - - » Xk(a.B)> Tk(@.B) Dar.p)s
we may fix a formula ¢(xo, yo, ..., Xk, Y3 b) over A such that for everya < B < Jy+
@ (X0, 70, - - - » Xks k3 B) = P, (R0, 0, - - - » Xk, B> Ph(@,B)> bax,)-
Claim. For every n < w there exists a sequence J, = (@} | k < w) indiscernible over 4
such that
(1) tp(ag, ayf,.../4) = tp(bo, by, .../ A) forevery n < w;
(2) The sequence (a;"..."a; | n < w) is indiscernible over 4, for every k < w;
(3) For every m < n and every sufficiently large / there exists @ < B such that
tp(aray, aral, ..., ayay /) = tpbgbl bbb, ... bpbP  4).
Proof of the claim. We construct a sequence ( p,, | m < w) such that p,, is a consistent
set of formulas with free variables from { X | n, k < m } and parameters from 4, and
(1) pm € Pm+1;
(2) For every y < A7 there exists an increasing sequence
@ = (o) i <3Jy)
of ordinals less than 3, + satisfying
(a) For every m < o the sequence (&g"(y)‘ Las W i < Deyism o+ 1-
indiscernible over the set A4;
(b) Foreverym <wandipg < -+ < im < Jp+

pm=tp({ay" " | n,k <m}/A).

The construction is by induction on m. For m = 0, we let
po :=tp(ap/A4) and @ :=( | i <))
Now suppose m > 0 and that (a) and (b) hold for m. Given y < A ™, define
Yoi=y +m?-£@)+1+m+2.
By induction hypothesis, choose a?* satisfying (a) and (b) at stage m. The function

Bos -+ Bms1) > tpU@" [ n k <m+1}/4)

is a coloring from [@”°]"*? into S(4). Since |@"| = 3y, by the Erdés-Rado Theorem
there exist a type pm+1 € S(4) and a sequence S C a® of cardinality '_'ly+mz,,(‘—,0) s

satisfying (b) at stage m + 1. To see that (a) holds, consider the coloring on [S]"*? given
by

Bos - -» Bms1) = tp@k® .. ako, afr...abr, ..., abm ... abn/4).
By the Erd6s-Rado Theorem, there exists an increasing subsequence of S,
@’ = (ai(y) i <3y),

monochromatic with respect to the coloring. Thus, (a) holds at stage m + 1 and (b) still
holds for this subsequence.

This suffices to prove the claim. The consistency of every p,, and (1) imply that| J,, ., Pm
is a consistent type in the variables { X | k,n < w} over the set 4. Pick {5}" | k,n < w}
realizing | J,, ., Pm- Then, (1) of the claim follows from (b) at stage m; (2) follows from
the fact that (a) holds for every m < w, and (3) is implied by (b). -
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Condition (3) of the claim with / = & and the choice of ¢(xo, yo, - - - , Xk, Vk; b) yields
dq(Jo, J1) = 2.
We shall derive a contradiction by showing that

@) da(Jo, 1) < 1.

In order to prove (1), let {¢, | n < @} be a set of constants not in the language, and let I"
be the union of the following set of sentences, written informally for readability:

. T’
. (&8,&?,5‘2),...,50, ¢1, €2, ...) is indiscernible over 4;
. (&6,&},&2‘,...,50, ¢y, €2, ...) is indiscernible over A4.

We use the claim and the Concatenation Lemma (Lemma 1.13) to prove the consistency
of I'. By (1) of the claim, Jy is a Morley sequence for tp(c‘zg/A), since I is a Morley
sequence. By (1) and (2) of the Claim and the Concatenation Lemma, for every n < w
there exists an 4-automorphism g, such that

(&6‘, ey &,’f, 2n(bo), g,,(l;l), ...) is indiscernible over 4, forevery k < w.

Therefore,
(&8, A &,?, gn(bo), gn (&), ...) is indiscernible over 4
and also
(@}, ....a), gn(bo), ga(b1), . ..) is indiscernible over A.
Thus, I is finitely consistent. The proof is now complete. —

The next corollary is immediate.
Corollary 4.12. If I is a Morley sequence for p € S(B) over A, then I is based on A.

Corollary 4.13. Suppose that T is simple. Then for every set A and every type p € S(A)
there exists a sequence (a, | n < w) indiscernible over A such that every a, realizes p
and{a, | n < w) is based on A.

Proof. By Corollary 3.3 and the preceding theorem. -

5. SHELAH’S BOOLEAN ALGEBRA

The argument we present in this section differs from [Sh93] only in that we use a differ-
ent partial order. The partial order considered in [Sh93] is defined through weak dividing;
here we use forking. The proof of the chain condition was communicated to us by She-
lah in a recent correspondence. It uses the Hrushovski-Kim-Pillay Independence Theorem
(Theorem 3.12). We are grateful to Shelah for allowing us to include it here.

Recall that a pair of cardinals (A, ) is in SP(T) if every model of cardinality A has a
«-saturated elementary extension of the same cardinality. (See the introduction.)

Definition 5.1. Let p(x) be a type over C and 4 be a set containing C. We define
W(p, A) == {¢(x; a) | The formula ¢(x; a) does not fork over p, a € 4}.

We identify two formulas ¢(x; b) and ¥ (x; ¢) when ¢(C; by = ¥ (C; c).
The set W(p, A) is partially ordered by

o(x; b) < y(x;c) ifandonlyif ¥(x;¢)F ¢(x; 5).
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Proposition 5.2. Suppose C C A and p € S(A). Then the partially ordered set
(W(p, 4), <)

is a distributive semi-lower lattice.

Proof. 1t suffices to show that W (p, A) is closed under finite disjunctions, but this is an
obvious property of forking. -

We will say that two formulas ¢, ¥ € W(p, A) are incompatible if there is no p €
W(p, A) such that p > g and p > ¢.

Proposition 5.3. The formulas ¢(x; b), ¥(%; &) € W(p, A) are compatible if and only if
p(x; D) AY(x;¢) € W(p, A).

Proof. Sufficiency is trivial. To prove the converse, let p(X; d) be such that p > ¢ and
p > . By definition, ¢(x; b) + p(x;d) and ¥ (x; &) + p(x; d). Therefore, [o(x; b) A
Yx;o)] F p(x; d). Since p(%; d) does not fork over P, also ¢(x; b A ¥ (x; ¢) does not
fork over p. -

We will use some facts about the completion of partially ordered sets to boolean alge-
bras. In particular, we need to recall the following notion. A partially ordered set (P, <) is
separative if for every p, q € P such that p £ g there exists» € P withr £ gandg £ r.

Fact 5.4. If (P, <) is separative, there exists a unique complete boolean algebra B — {0}
containing P such that

(1) The order of B extends that of P;
(2) P is densein B.

For the proof, see Lemma 17.2 in Thomas Jech’s book [Je]

Notice that since the W (p, A) is in general not closed under propositional conjunctions,
the partially ordered set W(p, A) is not separative. However, the following fact (Lemma
17.3 of [Je]) allows us to circumvent this difficulty.

Fact 5.5. Let (P, <p) be an arbitrary partially ordered set. Then there exist a unique
separative partially ordered set (Q, <g) and a function h : P — Q such that

(1) If p <p q, then h(p) <p h(q);
(2) p and q are compatible in P if and only if h(p) and h(q) are compatible in Q.

From Facts 5.4 and 5.5 one gets:

Corollary 5.6. Let C C A be sets and p € S(C). Then there exist a unique complete
boolean algebra B, 4 and a function ep: W(p, A) — Bp 4 such that

(1) If(%:; b) - ¥ (%; C), then ep(¥) <g, , €p(¥);

(2) The formulas ¢(X; b) and V¥ (X; ¢) are compatible in W (p, A) if and only if in Bp 4

ep(p(E; b)) - ep(¥ (55 0) # 0;
(3) The image of W (p, A) under e, is dense in B, 4.
In [Sh 80], Shelah introduced a generalization of Martin’s Axiom that consistently holds

above the continuum. He denotes that principle by (Axou). The tradeoff is that the count-
able chain condition is replaced by stronger requirements, namely,

- The forcing notion is complete, and
- The forcing conditions are compatible essentially on a club.
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For a more complete description see [Sh 80]. The proof is a variant of the traditional finite
support iteration used to show that the consistency of ZFC+GCH implies the consistency
of ZFC+-CH + MA.

In [Sh93] Shelah claims that if the ground model satisfies GCH, then for a class of
regular cardinalities R (such that for every 4 € R the next element of R is much larger
than p) there exists a generic extension preserving cardinals and cofinalities such that

(1) (Axop) holds;

(2) 2* >> u* and u=* = p, for every cardinal u € R.

The construction is by class forcing.

Recall that a boolean algebra is said to have the w-chain condition if the size of every
antichain is less than u.

Rather than stating (Axou) specifically, we will quote as a fact the only consequence of
it that we will use. The enthusiastic reader can find a complete proof of the following in
Lemma 4.13 of [Sh93].

Fact 5.7. Suppose (Axop) and u<* = p holds. Let B be a boolean algebra of cardinality
less than 2* satisfying the p-chain condition. Then B — {0} is the union of w ultrafilters.

Corollary 5.6 will be used together with Fact 5.7 to find «-saturated elementary exten-
sions of models of a simple theory.

In order to apply Fact 5.7 we need to show that for C € 4 and p € S(C), the boolean
algebra B, 4 has the u* chain condition. Notice that, below, u is independent of 4 and
depends only on |C| + |T|.

Theorem 5.8. Let T be simple. For every C C A and every p € S(C) the partially
ordered set W(p, A) has the 2T\ HCYY*_chain condition.

Proof. Let A = (2QITHCh+ and fix {¢;(X;a;) | i < A} € W(p, A). We will show that
{@i(x;a;) | i <A} isnotan antichain by findingi < j < A such that
pY{i(x;a;), pj(x; a;)} does not fork over C.

To this end, choose (M; | i < A) an increasing, continuous chain of models such that:

(1) C < My;

(2) a; € My, fori < A;

(3) IM; ) =2'THIC fori < A;
Consider the following stationary subset of A.

S:={(8<A|cfs=|T|I"}.
Define a function f: § — A by
S(8) :=min{ j | tp(as/Ms) does not fork over M; }.

Since T is simple, for every § € S there exists B € Mj of cardinality at most | 7’| such that
tp(as/Ms) does not fork over B. Since ¢f8 = |T|*, thereis j < & suchthat B C M;. This
shows that f(8) < § for every § € S. Hence, by Fodor’s Lemma ([Je], Theorem 1.7.22),
there exists a stationary $* € S and a fixed j < A such that tp(as/Ms) does not fork over

M;, for every 8§ € S*. Without loss of generality, we may assume that S* = A and j = 0,
ie.,

tp(a; /M;) does not fork over M, foreveryi < A.

By simplicity (see Theorem 3.4), for every i < A there exists N; < My of cardinality
|C| + | T} such that N; contains C and tp(a; /M;) does not fork over N;. But, there are at
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most 2!C1HI71 subsets of My of cardinality |C| 4 |T|. Hence, by the pigeonhole principle,
there exists a subset S* C A of cardinality A and a model N < M) of cardinality |C| + |T|

such that N; = N for every i € S*. Without loss of generality, we may assume that
S*=A,lie,
™*) tp(a; / M;) does not fork over N, foreveryi < A.

Now, p U ¢;(x; a;) does not fork over C by definition. Hence, by Extension, we can find
q; € S(Na;) extending p U ¢; (x; a;) such that

(**) gi does not fork over C, foreveryi < A.

But, |S(N)| < 2/€HT1 50, by the pigeonhole principle again, there exists a subset $* C A
of cardinality A and a type ¢ € S(N) such that ¢; [ N = g for every i € S*. Without loss
of generality, we may assume that S* = A, i.e,

qi | N=gq, foreveryi <A.
Thus, by the choice of ¢;,
(***) q U @i (x; a;) is a nonforking extension of ¢ € S(N), forevery i < A.

Now, fix i < j < A. Recall that a; € M; (by (2)) and N < N;. Therefore, by (*) and
Monotonicity, we conclude that

M tp(a;/Na;) does not fork over N.
But now, the Independence Theorem (Theorem 3.12) applied to (***) and (1) shows that
(3] q U {gi(x; a;), pj(x; a;) } does not fork over N.
By (**), (1) and Transitivity,
q U {¢;(x;a;), ¢j(x; a;) } does not fork over C.
Thus, p U {¢:(x; a;), ¢;(x; a;) } does not fork over C by Monotonicity. -

Corollary 5.9. Let T be simple. Let C C A and p € S(C) the boolean algebra B, 4 has
the \THICY*_chain condition.

Proof. By Theorem 5.8 and Corollary 5.6. =

The following facts are fairly well-known (see, for example, [Sha]) and show that, for
T simple, the problem of characterizing the pairs (A, x) such that (A, ) € SP(T) is inter-
esting only when T is unstable and ¥k < A and A< > A > |D(T)|.

Fact 5.10.

(1) Let x > 2'T1 JfA<K = A, then (A, «) € SP(T).
(2) Let » > 2'T1 [fA<* > X,then (A, A) € SP(T) if and only if T is stable in X.

We now proceed to the proof of the main theorem. We will first prove three simple
propositions. The reader may want to skip to Theorem 5.15 below before reading the
proofs of Propositions 5.11, 5.13, and 5.14.

Proposition 5.11. Let & > «. Then (A,«) € SP(T) if and only if the following property
holds.

(#): For every set A of cardinality A there exists S C S(A) of cardinality

A such that every type over a subset of A of cardinality less than k has

an extension in S.
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Proof. Sufficiency is clear. To prove necessity, let M be a model of cardinality A and
construct an increasing and continuous sequence of models (M; | i < «™), such that

(1) Mo =M;

(2) IM;]| = A, foreveryi < «™;

(3) M, realizes every type over subsets of M; of cardinality less than «.
We let N = J; .+ Mi. Then N is a «-saturated extension of M of cardinality A. =

Remark 5.12. Proposition 5.11 can be regarded as a statement about the boolean algebras
B, 4 as follows. Let p € S(C) and suppose g € S(4) extends p and does not fork over
C. Then,q € W(p, A) C Bp, 4, and g has the finite intersection property. Conversely, if
F C B, 4 is an ultrafilter, then the set of formulas

qr = {@(x,a) € W(p, A) | There existse € F with ¢(x,a) < e}
1s a complete type extending p which does not fork over C.

Proposition 5.13. Suppose that T is simple, and let A > k > «(T), such that A<(T) =
A > |D(T)|. Then (X, k) € SP(T) if the following property holds.
(4#): For every set A of cardinality A and every complete type p over
a subset of A of cardinality less than «k(T) the boolean algebra B) 4
contains a family ® , 4 of cardinality X of ultrafilters of B, 4, such that
every subset of B, 4 of cardinality less than k with the finite intersection
property can be extended to an ultrafilter in® , 4.

Proof. We show that Condition (¢4) implies Condition (¢) of Proposition 5.11. Since
A<k(T) = ) there are only A subsets of 4 of cardinality « (T'). Since A > |D(T')|, there are
at most A complete types over every of these subsets. Therefore there are only A boolean
algebras of the formB, 4. Thus,

M) |UDpa| =2
p.A4

Now let S € S(A4) be the set of types of the form
gr = {@(x,a) € W(p, A) | There exists e € F with p(x,a) < e},

where F € | p.A Dp, 4. We claim that S satisfies Condition (). By (), S has cardinality
A. Now, let g be a type over a subset of 4 of cardinality less than «. Then, g does not fork
over a subset C of A of cardinality less than «(T). Let p = g | C. Thus, ¢ is a subset of
W (p, A) of cardinality less than « with the finite intersection property, so by (¢4), there
exists an ultrafilter ' in D, 4 extending q. This implies that g ¢ extends g, as required.

Proposition 5.14. Suppose that u = p=<*. Let B be a boolean algebra. Assume that there
exists a family § of cardinality p of ultrafilters of B such that B — {0} = | J §. Then, there
exists a family of ultrafilter ®© of B of cardinality u satisfying the following property.
(#49): Every subset of B of cardinality less than k with the finite inter-
section property can be extended to an ultrafilter in ®.

Proof. Let § be as in the hypothesis of the proposition. Write § = {F; | i < n}. To

construct D, let us consider for every x < « the family /, of finite subsets of x, and for

a < k let I, (@) be the set {¢ € I | @ € ¢t }. Notice that { I, («) | @ < k } is closed under

finite intersections, so we can pick an ultrafilter £, C P(/,) extending { I, (@) | @ < « }.
Given x < « and a function f : I, — u, define Dy C B as follows:

ae€ Dy ifandonlyif {tel,|ae Fry)eE,y.
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We prove that D is an ultrafilter of B.

Givena € B,let S, = (t € I, | a € Fy()}. We show that D is upwardly closed.
Suppose thata € Dy and b > a is in B. Since F () is a filter, a € Fy() and a < b, imply
b € Frqy. Thus, S; € Sp. But Ey is a filter, so S, € E,, implies S; € E,. Therefore,
be Dy.

Dy is also closed under A. Suppose a,b € Dy. Then S;, Sp € Ey,50 S, N Sp € E,
since E is a filter. But, a, b € Fy(,, implies a A b € Fy() since Fy is a filter. Hence,
Sa N Sp S Saab and Syap € Ey, since E, is afilter. Thus,a Ab € Dy.

Now we show that D s is maximal: Suppose a € B — D . By the definition of S, and
since E, is an ultrafilter, we have S, ¢ E,. Hence, (t € I, | a & Fy()} € E,. Since
Fr( is an ultrafilter, we must have S;_, € E,, thatis,1 —a € Dy.

Thus, Dy is an ultrafilter. Define

D:={Drlx<xk, f:I,—pn}

Notice that || < « - Zx < X = u=* = p. It remains to show that D satisfies (¢4 4).
Suppose that D := {a; | i < x < «} € B has the finite intersection property. For
every t € I, leta, := /\;c, aj. Thena, # 0. Let f: I,, - u be defined by

f@) :=min{i < pu|a € F; }.

(Our assumption on on ¥ guarantees that fis well-defined.) We now check that D € Dy.
Take a; € D. Then a; > a,, fort € I, (i). But a; € Fy() by the definition of f, so
a; € Fy() since Fy is a filter. We have shown that

L@y cl{telylai € Frpl
But I, (i) € Ey and E, is a filter, so

jet

{te IX | a; € Ff(,)} GEX.
Hence, a; € Dy. -
We can now prove the theorem.

Theorem 5.15. Let T be simple. Let A = M| > k& > |D(T)| and suppose that there exists
w > 21TV such that (Axow) holds and . = u<* < A < 2*. Then (A, k) € SP(T).

Proof. By Theorem 3.4 k(T) < |T|*, so the assumption on A, guarantees that A<¥ I = ;.
Therefore, by Proposition 5.13 it suffices to show that given A of cardinality A, C € 4 of
cardinality x(7T) and p € S(C) there is a family of ultrafilters satisfying Condition (¢4)
of Proposition 5.13. By Proposition 5.14, it suffices to show that for any boolean algebra
B, 4 and any subalgebra B;J‘ 4 < Bp, 4 of cardinality A containing W (p, 4) there exists a
family of ultrafilters § of B;)‘ , of cardinality u such that B;, 44— 0} =US%.

Since T is simple, the boolean algebra B, 4 satisfies the (2!€1*1T1)*chain condition
by Corollary 5.6. Since |C| < |T|, |B), 4/ = A < 2* and p > 2IT1] the algebra B, 4
satisfies the p-chain condition. But, since |W(p, 4)| = A, Fact 5.7 implies the existence
of a family of ultrafilters § as desired. -

APPENDIX A. A BETTER BOUND FOR THEOREM 1.11

Theorem 1.11 had a crucial role in producing Morley sequences.In this Appendix we
improve the bound on the length of the sequence in the hypothesis of the theorem.

Given a first order complete theory T and a set I' of (not necessarily complete) types
over the empty set, we let

EC(T,T)={M =T | M omits every type inT" }.
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For a cardinal A, the ordinal 8(A) is defined as the least ordinal § such that for any T
and I’ and M, if
IT| <A,
T + (P, <) is a linear order,
M € EC(T,T'), and
(PM, <M) has order type at least &,

then there exists N € EC(T, I'), such that (PN, <¥) is not well-ordered.
The following lemma is well-known. We provide a proof at the end of this Appendix
for the sake of completeness.

Theorem A.1. Let P be a unary predicate and < a binary predicate in L(T) such that
T v+ “< s alinear order on P”.
Suppose M € EC(T, T') with PM = {a; : i < 2'TV)*}is such that
Ma; <a; ifandonlyif i <j < @'Th*+.
Then there exists N € EC(T, ') such that PN is not well-ordered by <"
Corollary A.2. 5(|T)) < 2!Th+.

We could not find a proof of the following theorem in the literature, so we have included
a complete proof here.

Theorem A.3. Let T be any theory. For every (a; | i < Jsr))) there exists an indis-
cernible sequence (b, | n < w) with the following property: for every n < w there are
ig < -+ < ip—) satisfying
tp(bo, ey by /0) = tp(a,-o, ceey a,'"_l/ﬂ).

Proof. Let I = (a; | i < Js(r)) ). We define the following functions:

- For every n < w, functions f,: [3s5qr)]* — D(T) given by f(Gio, ..., in—1) =

tp(aioa B &i,,_l/g);
- A bijection g: Js 7)) — I, defined by g(i) = a;;
- Abijection h: D(T) — «, where « = |D(T)|;
Let x be a regular cardinal large enough so that H(x) contains L(T), D(T), I, Jsqr)

and the functions f,, g and 4 as subsets. Assume in addition that H(x) “knows” the
Erd6-Rado Theorem; more precisely:

HGO) FE Q) > 3D Yaed(ThVn e w.

Next, choose new predicates J, D, A, u; new constants « and ¢ for every ¢ € L(T); and
new function symbols f, for every n € w, g,h, and b. Now form the following expansion
of H(x).

V = (H(X)7 Gv J, D! 1)‘1 Ilu K, fns gv hvb$(p)¢)€L(T),n€ws
where JV = I, DV = D(T), AV = Jsqrp, u¥ = @O*, £} = fo. 8" =g, h¥ =h,
b))’ =24,k =k, and ¢” = ¢ forp € L(T).

Let T* = Th(V). Then T* contains the following sentences (written informally for
readability):

- =2
1Dl =k < p;
- Va € publa+n+1) — (b(@)'*!, for every n € w;
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We define a set of types I' in the language of T* as follows:
™*) IN:={peSW]| noa e I realizes p }.

Then ¥ € EC(T*,T") and u¥ = 8(|T)), so by CorollaryA.2, there is V' € EC(T*, T")
such that uV/ is not well-ordered. Let {a, |n <w} C uY " witness this. We may assume
that V' =y > oy +n+ 1.

We now construct sets X, C LAY’ for n < w such that

(1) V' = |Xal = b(ay) forevery n < w;

(2) V' = fa(g0), ..., 8n-1)) = fa(€(o0), ..., 8Un-1)),forip < - - <in_j € X,

and jo < -+ < jn—1 € Xn.

The construction is by induction on n. Let Xy = AV and clearly V' = | Xo| > b(ap)
since V' = b(ag) € A.

Having constructed X}, notice the following.

(@) V' E | Xal = blan);

(i) V' | c: [Xp]"t! > D, with c(io, ..., in) := fay1(8G0), ..., g>n));
(iii) V' &= |D| =«;

(iv) V' blan) = (blans))iH!.

Then (4) applied to (1) and (2) implies that there is X,4+; € X, such that V' |=
| Xn+1| > b(an+1) monochromatic with respect to ¢, so X, is as required.

Since every ¢ € L has a name in L(T*), there are p, € D(T) for n € w such that
tp(g(i0), .- ., &(in)/B) = pa for diy = glio), ..., ai,_, = glin—1) € J¥ ,andig < -+ <
in—1 € X,.

Now let {c, | n < w} constants not in L(7T*) and let T} be the union of the following
set of sentences:

. T*,
- pn(co,.-.,cn-1), forevery n < m;
- glcn) < glem), forevery n < m;
- @(co, ... Cn-1) © @(Ciy,...,Ci,_,), Whenever ¢ € L(T), ip < ...in_1, and
n<w.
Then T is consistent: for every finite subset of T} use g(X}) to realize the ¢ ’s.

Let Ny =T) and b, = c,1,V ! for every n € w. Certainly {b, | n < w} is indiscernible
(in L(T)). Now we show that for every n < w there existip < - -+ <iy—1 < 3(2|r|)+ such
that

tp(@igs - - - » Qip_y /D) = pn.
But by construction, there are jo < --- < j,— such that
Gn = tpr(r+)(€U0), - - -, gUn-1)/9) = pn.
Hence, {x; € J} € q, for every i < n, and since { J, g, € } € L(T*), we have
{g(x0) < gx1),...,8(xn-2) <gxn-1)} S qn

But since ¥’ € EC(T*, I'), we must have g, ¢ I". Thus, by (*), there are a;,, . ..a;,_, in I
realizing g,. 4

Now to the proof of Theorem A.1:

Proof. Let T* be an expansion of T of the same cardinality with Skolem functions. We
construct sequences of sets (S, | n < w), types

Pn(x0, ..., Xn—1) € SZ(T‘)(Q) forn > 0,
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and ordinals
ai(n,0),...,0;(n,n—-1)€eS,, foriels,

such that

(1) So=QTh* and Spy1 S Sp;

) 1S,] = @'Th*;

3) @™M* > a;(n,0) > --- > a;(n,n — 1) > i forevery i € S,;

(4) pn S Pn+1;

(5) Foreveryn <m,i € S,,and j € Sp,

Pn = t]:)(a(x,-(n,O)» ceey aai(n,n—l)/ﬂa M) = tp(aaj(m,O)v cees aaj(m,n-l)/@v M).

The construction is by induction on n. For n = 0, we only need to define Sp and we let
So = 'Th*.

Having constructed S, for every i € S,, fix j € S, with j > i (which exists by (2)).
Define

ai(n+1,0): =a;(n,0)

ain+1l,n—1D:=ajn,n—-1)
ai(n+1,n):=j.
We also let
Pt = tP(a;(n+1.0)1 - - - » B (n-1,m) /D5 M).

Then pl,, € S"*'(@). Since |S;| = @TH* > |S[{h, (@), there exist S,q1 S S, of

cardinality (2!7)* and pn4; € S"+! (@) such that p. .| = pn4) foreveryi € S,qy. Itis
easy to see that all the requirements are satisfied.

Now let {c, | n < w} be new constants and let 7] be the union of the following set of
sentences:

. T*;
- Cp > Cn41, foreveryn < w;
- pnl(co, ..., cn-1), forevery n < w.

Then T is consistent: If I' is a finite subset of 7 and » maximal appearing in I', then
FCcT*U{ci>ciy1 i <n}Uppri(eo, ..., cn) is satisfied by interpreting ¢; as oy, i).

Let N\ = T and b, = c,’,V‘. Let N be the closure of {b, | n < w}) | L(T). under
the Skolem functions. Then N |= T and PV is not well-ordered. We claim that N €
EC(T, I'). Otherwise there exist d € N and p € I' such thatd = p.-and T € L(T*) such
thatd = T(by, ..., by—1). Hence,

p=tp@a/P) =tp(t(bo, ..., bs—1)/9) C pa.

By construction of p, and S,, there are (a;;, ..., a;,_,) € pPM realizing p,,so T(a;,, ..., ai,_,)
realizes p, which is a contradiction, since 7(ai,, ..., ai,_,) € M € EC(T,T').
__'

APPENDIX B. HISTORICAL NOTES

Introduction: Although Baldwin’s book [Ba] was published in 1988, early versions
of it circulated since 1980 and had significant influence on several publications with
earlier publication dates.
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We have learned from Baldwin that a preliminary version of [Sh93] was titled
“Treeless unstable theories”.

Section 1: The concept of Definition 1.9 was introduced in [Sha] and [Sh93], where
it is called indiscernible based on (A, B). However, since the name “Morley se-
quence” has become standard since the 1970°s (see[Sa] and [Po]), we have departed
from Shelah at this point.

The proof of the Concatenation Lemma (Lemma 1.13) appears on page 198
of [Sh93].

We do not know of any complete proof of Theorem 1.11 in print. It is stated as
Lemma 6.3 in [Sh93] and used heavily in the proof of Claim 6.4, the precursor of
Kim’s proof. The scant proof of Theorem 1.11 offered in [Sh93] contains the line
“by the method Morley proved his omitting types theorem”.

Section 2: Our D[p, A, k] is Shelah’s D™[p, A, ¥y, k] in [Sh93]. All the material
in this section is due to Shelah and is taken from [Sh93] and Chapter III of [Sha],
where the facts are often stated without proof. Occasionally, we have chosen more
modern language.

Section 3: The equivalence between forking and dividing for stable theories was dis-
covered by Baldwin and Shelah in 1979 while discussing a preliminary version
of [Sh93]. It appears in print for the first time in [Pi], and later in [Ba]. The fact
that Shelah did not include it in [Sha] leads us to speculate that he was not aware of
itin 1978.

The characterization of dividing through Morley sequences (Theorem 3.7) and
the equivalence between forking and dividing (Theorem 3.8) in simple theories is
due to Kim [Ki]. The proofs Symmetry and Transitivity as consequences of this
equivalence are from [Ki], where the credit is given to Pillay.

The proof of Theorem 3.8 included here is new, and was shown to us by Shelah.

The Symmetry property for strongly minimal sets was discovered by William
Marsh [Mar] and used by Baldwin and Lachlan in [BL]. Lascar discovered the
Symmetry property for superstable theories [Lal, La2]. Independently, Shelah gen-
eralized it to stable theories. The implication (1) = (2) of Theorem 3.11 is from
[KP1]. This theorem is an analog of Shelah’s characterization of non-forking ex-
tension via local rank for stable theories (see Theorem II1.4.1 of [Sha]). The impli-
cation (2) = (1) of Theorem 3.11 is due to Shelah.

The Independence Theorem 3.12 for simple theories is due to Kim and Pillay
in [KP1] and is a generalization of a result of Hrushovski and Pillay about Sj-
structures, namely, (i)=>(ii) in Lemma 5.22 of [HP1].

Section 4: All the material in this section is contained [Sh93].

Section 5: The boolean algebra introduced here is a variation of that in [Sh93]; we
have replaced weak dividing with forking. The proof that this boolean algebra
satisfies the chain condition was communicated to us by Shelah.
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