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THE CONDITION IN THE TRICHOTOMY THEOREM
IS OPTIMAL

MENACHEM KOJMAN AND SAHARON SHELAH

ABSTRACT. We show that the assumption A > AC+ in the Tri-
chotomy Theorem cannot be relaxed to A > K.

1. INTRODUCTION

The Trichotomy Theorem specifies three alternatives for the struc-
ture of an increasing sequence of ordinal functions modulo an ideal on
an infinite cardinal K — provided the sequence has regular length A
and A is at least K + + .

The natural context of the Trichotomy Theorem is, of course, pcf
theory, where a sequence of ordinal functions on K usually has length
which is larger than «+lc. However, the trichotomy theorem has already
been applied in several proofs to sequences of length «+n, (n > 2) (see
[4], [1] and [3]).

Therefore, a natural question to ask is, whether the Trichotomy The-
orem is valid also for sequences of length K+, namely, whether the con-
dition on the minimum length of the sequence can be lowered by one

cardinal.
Below we show that the assumption A > K + + in the Trichotomy

Theorem is tight. For every infinite AC, we construct a n ideal / over K
and </-increasing sequence / C On* so that all three alternatives in
the Trichotomy theorem are violated by / .

2. THE COUNTER-EXAMPLE

Let K be an infinite cardinal. Denote by On* the class of all functions
from K to the ordinal numbers.

Let / be an ideal over K. We write / </ p, for f,g£ On*, if {i <
K : f(i) > g{j)} € / and we write / </ g if {% < K : f(i) > g(i)} e I.
A sequence / = {fa : a < A) C On* is <j-increasing if a < ft < A
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implies that fa<iff3 and is <j-decreasing if a < /3 < A implies that
b <i /a-
__ A function / € 0nfc is a least upper bound mod / of a sequence
/ = (fa : a < A) C On" if / a <7 / for all a < A and whenever fa <7 p
for all a then / <7 g. A function / 6 On* is an exaci upper bound of /
if fa < / for all a < A, and whenever g </ / , there exists a < A such
that g </ / a . For subsets £, 5 of /c, write £ C7 s if s — £ E J.

The dual filter 7* of an ideal I over K is the set of all complements
of members of I. The relations <7, <j and C7 will also be written as
^/*5 <i* and Q7*.

Let us quote the theorem under discussion:

Theorem 1. (The Trichotomy Theorem)
Suppose A > K++ is regular, I is an ideal over k and f = lngfa :

a < A) is a <j-increasing sequence of ordinal functions on k. Then f
satisfies one of the following conditions:

1. / has an exact upper bound f with df(i) > K for all i < K;
2. there are sets S(i) for i < K satisfying \S{i)\ < K and an ultra-

filter U over k extending the dual of I so that for all a < A there
exists ha e n»<« ̂ (0 and P < ^ suc^ ^ a * fa <u ha <u fp.

3. there is a function g : K —> On such that the sequence t = (£a : a <
A) does not stabilize modulo I, where ta = {% < K : fa(i) > g(i)}.

Proofs of the Trichotomy Theorem are found in [5], 11,1.2, in [3] or
in the future version of [2].

Theorem 2. For every infinite K there exists an ultrafilter U over K
and a <u-increasing sequence f = (fa : a < K+) C OnK such

conditions 1, 2 and 3 in the Trichotomy Theorem fail for / .

Proof, Let A = K".
Let us establish some notation.
We recall that every ordinal has an expansion in base A, namely can

be written as a unique finite sum Ylk<i ^l(Xi s o that fik+i < Pk and
Qfc < A. We limit ourselves from now on to ordinalz £ < A". For such
ordinals, the expansion in base K contains only finite powers of A (that
is, every fik is a natural number).

We agree to write an ordinal £ = Xlat + Ai~1a^i -\ \- a0 simply
as a finite sequence a/ai_i...a0 . We identify an expansion with A
digits with one with n > I digits by adding zeroes on the left. If
£ = aiai-i... ao, we call o^, for fc < /, the k-th digit in the expansion
ofC

For a < A and an integer Z, define:
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Al
a = {a/a/_i . . . a0 : ak < a for all k < 1} (1)

Al
a is the set of all ordinals below A^ whose expansion in base A

contains I + 1 or fewer digits from a.

Fact 3. For all a < A and I < u,

2. The ordinal Y^k=o ^ = aa • • • a ^s ^ e maximal element in

3. if £ = ctiai-i.. .cto € Al is not ma ximal in Al
a+ly then the im-

mediate successor of £ in A%+1 is obtained from £ as follows: let
k be the first k < I for which ak < a. Replace ak by ak + 1 and

replace am by 0 for all m < k

Fix a partition {Xn : n < u} of K with \Xn\ = K for all n. Let n(i),
for i < K, be the unique n for which i E Xn.

By induction on a < Kf1", define /Q : « —•• On so that:

1. fa(i) e An
a® - ^

2. For all n,l < u and finite, strictly increasing, sequences (ak :
k < 0 C A it holds that for every seq uence (£* : A: < Z) which
satisfies ^ € -4aA+i "" ^jk? there are K many i € Xn for which

The first item above says that fa(i) is an ordinal below Â  whose
expansion in base A has < n(i) digits, at least one of which is a. The
second item says that every possible finite sequence of values (£* : k < I)
is realized K many times as (/Q#e {%) : k < A) for an arbitrary increasing
sequence (aK : k < I).

The induction required to define the sequence is straightforward.
Define now, for every a < K4" , a function ga : K, —+ On as follows:

ga(i) = min[(^+1(i) U {A+^+ 1}) - fa(i)] (2)

Since fa(i) < AnW+1 for i € Xny the definition is good. If fa(i) is
not maximal in -A +̂i> then ga(i) is the immediate successor of fa(i) in
-AQ+I- Let us make a note of that:

Fact 4. There are no members of A^+i between fa(i) and ga(i)

We have defined two sequences:
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7 = (/<>:*< A)
g = (ga : a < X)

Next we wish to find an ideal modulo which / is </-increasing and
p is a <j-decreasing sequence of upper bounds of / .

Claim 5. For every finite increasing sequence ao < OL\ < • • • < oti < X
there exists i < K such that for all k < I

fah (<) < faM (0 < 9ak^ (t) < ga)c (%) (3)

Proof. Suppose ao < &i < • •# < oti < X is given and choose n > I. Let

Co = oto&o • • • OCQ € A%0. Let £fc+i be obtained from Cfc by replacing the
first I + 1 — k digits of (^ by

. . . ak =

a o . . . a0 = Co

Thus Co < Ci < • • • < 0 and Cfc € Al
ajc C ASfc is

not maximal in -A£fc (because n > I). Let £* be the immediate
successor of Cfc in Apk.

By Fact 3 above, we have

o tf =

(aj-i + 1)0 = 6

Therefore Co < Ci < • • • Ci < 6 < &-i < . . . < & • To complete
the proof it remains to find some i € Xn for which fak(i) = C« f° r
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k < Z, and, consequently, by the definition (2) above, gak{i) = &. The
existence of such i € Xn is guaranteed by the second condition in the
definition of / . •

For a < P < A, let

C«,p = {Z<K: fa(i) < fp(i) < gp{%) < ga(i)} (4)

Claim 6. {Ca,p : ot < (3 < K+} has the finite intersection property

Proof. Suppose that c*o, ̂ o ^ i j A , . . . , ^ / , / ? / are given and ak < fik < A
for k < 1. Let {ym : m < ra(*)) be the increasing enumeration of
U/c<j{a*>^*}- To show that f]k<l Cakipk is not empty, it suffices to find
some i < K for which the sequence glrn (i) is decreasing in m and /7 m (i)
is increasing in m. The existence of such an i < K follows from Claim
5. •

Let U be any ultrafilter extending {Ca,j3 : ot < (5 < A}. Since for
every a < (3 it holds that fa <u fp <u Qp <u 9a-> we conclude that / is
<^/-increasing, that ~g is <£/-decreasing and that every ga is an upper
bound of / mod U.

Claim 7. There is no exact upper bound of f mod U.

Proof It suffices to check that there is no h € On* that satisfies fa <u
h <u ga for all a < KT1". Suppose, then, that h € On* satisfies this.
Since h <u #o> w e m a y assume that g(i) < AnW+1 for all i < K (by
changing h on a set outside of U).

Let i < K be arbitrary. Since U Q < A ^ ^ -
 = An^+ 1 , there is some

a(i) so that h(i) € A%(i). By regularity of A it follows that there is
some a(*) < A such that h(i) € A^l for all i < K. By our assumption
about h} /a(*) <u h <u 5ra(*). Thus, there is some i < K for which
fp{*){i) < h(i) < gp(*)(i). However, all three values belong to ^(*)+i>
while by Fact 4 there are no members of A^l+1 between fp(*)(i) and
flk(*)W — a contradiction. D

Claim 8. there are no sets S(i) C On for i < K which satisfy conditio
n 2 in the trichotomy for f and U.

Proof Suppose that 5(i), for i < K, and ha 6 Y[i<KS(i) satisfy 2. in

the Trichotomy Theorem. Find a < A such that S(i) C Al{i) for all i.
Thus fa <u ha <u ga — contradiction to 4. •

Claim 9. there is no g : K —> On such that g, f and the dual of U
satisfy condition 3. in the Trichotomy Theorem.
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Proof. Let g : K —> On be arbitrary, and let ta = {i < K : fa(i) > 9(i)}-
As / is <£/-increasing, fo r every a < (3 < A necessarily ta Qu tp. Since
U is an ultrafilter, every C^-increasing sequence of sets stabilizes . •

•
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