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Abstract. Inspired by the popularity of anytime algorithms in solving
complex real world problems, we define a class of scheduling problems. In
addition to the normal resource constrained project scheduling assump-
tions, each activity in a project has a quality profile with an anytime
property, which means that it can be stopped at any time and the qual-
ity of the output is proportional to its duration. Instead of finishing
all activities as fast as possible, the goal of scheduling is to maximize
the sum of qualities given a hard project due date. We formulate this
quality maximization problem as a constraint-based optimization prob-
lem, analyze its complexity and present a precedence constraint posting
procedure for generating a schedule with a good quality sum. Different
constraint posting heuristics are evaluated based on the solution they
can produce, CPU time and the number of posted constraints.

1 Introduction

In the past few years, constraint satisfaction problem solving(CSP) techniques
have been applied to several classes of scheduling problems [1-7]. Most work aims
at generating feasible schedules or optimizing the objective of the make-span
or weighted sum of tardiness. Another important, but often ignored measure
is the quality of the final product from a process. This quality maximization
scheduling problem is motivated by the knowledge intensive production process
widely existing in news agencies, hospitals, government agencies, research and
development departments.

Let us consider the process of creating a knowledge product (a news story,
a new product design, or a solution for a series of complex decision problems
etc.) as a project, where activities represent steps that must be performed to



2 Xiaofang Wang, Stephen F. Smith

achieve completion of the project. Those activities are subject to precedence
constraints. And each activity's productivity is measured by an any-time per-
formance profile, which means it can be stopped at any time and the quality of
the output is proportional to its duration. In a knowledge intensive production
process, most activities have this property, for example, information retrieval,
heuristic search, data analysis and some tasks performed by humans. When raw
materials(a news event, input data, etc.) go through different activities, quality
is increased according to the corresponding activity's performance profile which
is an increasing function of time. The final product's quality is determined by
the accumulated quality gains from all activities in the network.

Similar with resource constrained project scheduling problems, we require the
final schedule should be subject to and satisfy both precedence constraints and
resource constraints. Can we solve this new problem by using traditional con-
straint satisfaction strategy, for example, Precedence-Constraint-Posting Proce-
dure? To achieve high quality, we prefer long duration for each activity, but that
may conflict with the available resource and the hard due date. How can we fac-
tor the quality and efficiency trade-ofT consideration into our PCP strategy to
find a good schedule measured by both quality and computational cost? Those
interesting problems will be investigated in this paper.

From real-world point of view, which activities are worth spending more
time? Should we allocate most time to the most valuable task? From the results
in this paper, we can see this isn't always true. Many knowledge product creat-
ing processes lack guidance about how to allocate resources including people and
time to maximize quality with anytime property. This may be because there are
no consistent definitions about the quality at each knowledge-processing activity
or the performance interdependence among the knowledge-processing activities.
Traditional scheduling models, no matter project scheduling or job shop schedul-
ing, haven't defined or solved this problem well. Attempting to fill this gap, we
formulate and investigate this quality maximization problem, propose a heuris-
tic based approach within a Precedence-Constraint-Posting framework. We hope
the results can help knowledge intensive production managers to evaluate its
productivity given the current employees and make correct decisions.

In the following section, we review related research. In section 3, we for-
mulate the quality maximization problem, give the optimization procedure for
single capacity resource case and the complexity analysis for multiple capacity
resource case. In section 4, we present the precedence constraint posting algo-
rithm and heuristics. In section 5 we report the experimental results. Conclusions
and discussions are in the section 6.

2 Literature Review

We first review the constraint satisfaction problem solving (CSP) based schedul-
ing research which provides the context and basis of our solution framework.
Then we summarize the related operations research literature, especially the
continuous time/cost tradeoff problem, whose solution procedure serves as our
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basic optimization subroutine. In the end we briefly summarize related deliber-
ation scheduling research where the concept of anytime algorithm originates.

In the CSP literature, there are two main approaches to formulate a schedul-
ing problem as a constraint satisfaction/optimization problem. In start time as-
signment model[5, 8], decision variables are the start times of various activities.
And in precedence constraint posting(PCP) model[9,1], decision variables are
the ordering decisions that need to be made between sets of activities that are
competing for the same resources. [10] gives a good comparison of the two for-
mulations. In our paper, we use the second formulation. Recently, generating
flexible schedules received more and more attention. [7,11] use PCP to generate
partial order schedules, schedules that retain temporal flexibility. Similar with
their paper, the solution schedule in our paper is presented by the temporal con-
straints defined in the problem and those added to reach resource feasibility. But
a further optimization procedure is used to determine the specific start time and
end time for each activity. In other words, the resulting schedule in our paper is
a resource and temporal feasible fixed time schedule optimizing the total quality
outcome.

Related to our problem, resource constrained project scheduling problem(RCPSP),
is to decide start times for the activities of a project in order to satisfy temporal
and resource constraints. RCPSP has been widely studied in operations research
literature (see the survey paper[12]). Finding a feasible schedule for the resource
constrained project scheduling problem alone is NP-hard[13,14]. A variation of
RCPSP is to provide the option of speeding up an activity by spending more
on it, which is called time-cost tradeoff problem or project crashing. Its goal
is to meet the project's due date, while minimizing total crashing costs. The
time-cost tradeoff problem was formulated over forty years ago by Kelley and
Walker[15]. If the cost function for each activity is linear and continuous, the
problem can be solved in polynomial time by linear or network programming[16-
18]. But most time-cost tradeoff problems don't consider resource constraint,
which means there is no imposed upper limit for the number of concurrent ac-
tivities. There are some papers from operations research literature trying to
bridge the gap between time-cost tradeoff and scheduling under resource con-
straints. But they are either non-preemptive case with discrete cost function [19,
20], or preemptive case[21, 22]. To our knowledge, there is no work dealing with
resource constrained non-preemptive time-cost tradeoff problem with linear and
continuous cost function.

We realize the similarity between time-cost tradeoff problem and our quality
maximization problem. In both of them, the duration of each activity should be
decided and the durations are linearly related to the objective. We know the un-
capacitated time-cost tradeoff problem is solvable. This motivates us to exploit
the results and methodology from time-cost tradeoff problem in the design of
our precedence constraint posting procedure.

The problem of deliberation scheduling is to allocate the computation time
to decision-making procedures based on the expected effect of those allocations
on the systems' behavior[23]. The decision-making procedures are anytime algo-
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rithms that can be interrupted at any point to provide an answer whose quality is
an increasing function of computation time[24,25]. The function is called perfor-
mance profile. Because the time spent on computation has a cost, there exists a
tradeoff between the decision quality and computation time. Recently Schwarz-
fischer [26] introduced a new idea of combining deliberation anytime schedul-
ing and deadline scheduling. He called it quality/utility scheduling. Schwarzfis-
cher[27]starts with acyclic task networks on single processor and extended his
work into the situation with precedence constraints[28]. Similarly in our paper,
we assume each activity has an any-time performance profile. But different from
the previous deliberation scheduling research, we focus on multiple capacitated
resource (multiple processors) and want to look at the relations between level-
ling resource and the quality from the schedule. Even with the simplified linear,
continuous profile assumption, we will show the precedence and resource inter-
dependence among activities can make the quality-time tradeoff problem very
hard.

3 The Quality Maximization Scheduling Problem

Given a set of activities V = {a i , . . . , a n }, a set of precedence constraints, a set
of quality profiles and resource with limited capacity, the scheduling problem is
to decide the start time and the end time of each activity so as to maximize the
sum of qualities of all the activities. We use notations and make assumptions as
follows:

— each activity â  has a release date r*,
— all the activities have a common deadline D,
— activities are non-preemptive,
— each activity i has an anytime quality profile which is non-decreasing linear

and continuous function of its duration with slope hi,
— each activity i has a minimum duration d{?
— the schedule must satisfy the precedence constraints, E is the set of edges in

the precedence graph, if (i,j) G E, activity j should start after activity i is
completed,

— each activity requires one unit of resource4 and the capacity of the resource
is a constant C over the entire horizon,

— sf. decision variable, the start time of activity i,
— ef. decision variable, the end time of activity i,

3 This assumption makes sense in reality because we are required to invest at least
some amount of time to each knowledge processing activity in order to guarantee
basic quality.

4 In traditional multiple capacitated scheduling problems, each activity or task can
require more than on unit of resource, but this assumption here still makes sense
in knowledge intensive settings, where humans or some decision supporting tools
are major resources. If we consider the task using more than one unit of resources,
more complicated productivity models are needed in stead of a curve, which is out
of current interests of this paper.
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— t: current time.

Given a schedule S = (si, e ^ g y , let

A{S,t):={ieV \Si <t<ei}(t>0)

be the set of activities in progress at time t, also called the active set at time t.
Let

R(S,t):= J2 l

ieA(s.t)
be the amount of resource used at time t. So the resource constraint is

R(S, t)<C

Then the problem can be formulated as follows:
maximize

subject to

ei<Sj,(i,J)eE, (2)

R(S,t)<C, (3)

ei-Si>di,ieV, (4)

Si>ri,ieV, (5)

ei < D, i e V, (6)

(2), (3), (4) (5) and (6) are precedence, resource, minimum duration, release
date, due date constraints separately.

3.1 Polynomial Algorithm for Single Capacity (C = 1) Problem

The main idea is to greedily schedule all activities assuming their minimum
duration and expand some of the activities in the best way to fill in all the idle
periods.5

The complexity of this algorithm is O(n2). Please refer to appendix for the
proof of correctness and complexity analysis.
5 an idle period is the period of time in which no activities are running; oppositely, the

period of time in which one activity is running is called a busy period. So idle period
is the time between the end time of a busy period and the start time of next busy
period, or between the end time of the last busy period and the project deadline.
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Algorithm for Single Capacity Problem
Input:A set of activities and the constraints.
Output: An optimal schedule.
1. Output:use a greedy approach to schedule all activities assuming their minimum duration:
2. start at earliest release date
3. schedule an activity from a set of "eligible" activities at current time t: i.e.

(1) the activity whose release date is reached
(2) all of its predecessors have been finished

4. while there are some idle periods in the current schedule, start backward from the due-date
5. for each idle period:
6. find the activity who has the maximum quality slope and is before the idle period
7. increase its duration until this idle period shrinks to zero
8. Return current schedule

Fig. 1. Algorithm for Single Capacity Problem

3.2 Complexity Analysis for Multiple Capacity (C > 1) Resource
Case

Theorem 1. Multiple Capacity Single Resource Quality Maximization Schedul-
ing Problem with Linear Quality Profile is NP-complete.

Proof. : refer to appendix. D

Actually, we can see from the mathematical formulation, the resource con-
straint is the only constraint that is not easily implemented in a linear program-
ming solver. This is because before we determine the schedule, we don't know
which of the activities will be concurrent. Thus we are not able to use inequali-
ties to represent this constraint as input of LP solver. The choices of concurrent
activities exponentially increase with the increasing number of activities, which
makes this problem very hard.

4 The Precedence Constraint Posting Framework

If we take away the resource constraint, we are left with essentially the time-
cost tradeoff problem which can be solved by linear programming. Based on
this infinite capacity solution, we detect resource "contention peaks" (see defini-
tion 1). Posting sequential constraints between competing activities is used to
reduce demand and eliminate resource peaks. After posting a new constraint,
linear programming solver is called again to modify some activities' durations in
order to optimize quality. Those two sub-procedures alternate until a resource
feasible solution is reached or failure is reported, which means given current
precedence constraints, no temporal feasible solution exits. The performance of
this algorithm depends greatly on the heuristic of choosing conflict and posting
new constraints. The procedure is described as follows:
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4.1 Heuristic-Based Algorithm for Multiple Capacity Problem

Heuristic-Based Algorithm for Multiple Capacity Problem
Input: A set of activities with constraints.
Output: A solution or indicating it is unable to solve(we have to do backtracking)
1. loop
2. apply linear programming solver to find infinite capacity optimal solution
3. if there is no temporal feasible solution
4. then return unable to solve the problem
5. else begin
6. detect resource conflicts
7. if there is no conflict
8. then return solution
9. else resource levelling: sequence a pair of activities in some peak
10. end
11. end-loop

Fig. 2. Heuristic-Based Algorithm for Multiple Capacity Problem

Definition 1. Given a schedule, a contention peak(or simply a peak) is a set
of activities, each of which simultaneously requires one unit of resource and
whose total resource requirement exceeds the resource capacity in the time window
[^1,̂ 2]; the length of a peak is fa — t\).

4.2 Resource levelling heuristics

There is a traditional resource levelling method which involves selecting the
next contention peak to resolve and determining how to resolve it(i.e.,which
precedence constraints to post in the peak). Following this tradition, we propose
three simple heuristics:

— Random-low. Randomly choose the peak and post constraints between the
two activities with lowest quality slopes in this peak. Sequence them by
Earliest-Start-Time first rule.

— Long-low. Choose the longest peak and post constraints between the two
activities with lowest quality slopes in this peak. Sequence them by Earliest-
Start-Time first rule.

— Short-low. Choose the shortest peak and post constraints between the two
activities with lowest quality slopes in this peak. Sequence them by Earliest-
Start-Time first rule.

The reason for us to choose peaks according to their length follows from the
observation that an activity's length is closely related to the quality contribution
from itself and the other activities running in parallel with it.
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4.3 One Step Quality Loss Estimation

When we start with an infinite capacity solution, we actually set an upper bound
for the final solution. A good resource levelling heuristic transforming an initial
infinite capacity solution into a conflict-free solution should achieve minimum
quality loss from that upper bound by posting as few as possible constraints.
Myopically, we try to post a constraint which can lead to minimum quality loss
in one step. To predict the quality loss, the accurate method is to run linear
programming solver(LP) on the problem twice, with and without this constraint
separately. The one step quality loss is the difference of the two quality values.
But it is very costly in computation time, as shown in our following experiments.
If we can predict the quality loss and make a choice without running LP on the
new problem, it will save a large amount of time and such a heuristic can be
more applicable in reality. So we designed the following estimation methods.

Quality Loss Estimation Method 1 - Loss Only Suppose we choose the
partially overlapped activity pair < a, b >. They have slopes ka > kb, start
times sa and sb, end times ea and eb, minimum durations da and db. Based on
the relative position of a and 6, we can either sequence a before b or b before
a, and then shrink a or b or both to eliminate the overlapping. If we assume
the other activities' start times and end times are fixed in the solution with the
newly posted constraint, then the minimum quality loss can be estimated from
resolving the resource conflict locally. For different relative positions of a and 6,
we use a general form to compute the estimated minimum quality loss.

If sb — sa > ea — eb, then sequence a before b,

Aioss = K * [max{ea -f db, eb} - eb]

BLOSS = h * [min{eb - db, ea) - sb]

If sb — sa < ea — eb, then sequence b before a

AioSS = ka * [max{sb + db, sa} - sa]

BLOSS = h * [eb - max{sa, sb + db}]

QualityLoss = Aioss + BLOSS

As shown in the example of figure 1, the best quality solution is to sequence
b before a, shrink 6's duration to minimum duration, and shrink a's duration
a little bit to leave enough space for b. Let Aioss be the quality loss due to a's
duration, BLOSS be the quality loss due to 6's duration. Therefore,

= K * [sb + db - sa]

BLOSS = kb * [eb — sb — db]

QualityLoss = Aioss + BLos
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If just as we assumed, the other activities stay unchanged after re-optimization
on the new problem with new precedence constraint, the above quality loss es-
timation will be the accurate quality loss. But from the experiments, we see in
some cases, if we post a new constraint, the other activities will change, too. So
we sav this method is an estimation.

Quality Loss Estimation Method 2 - Loss and Gain Actually, in the above
quality loss function, we ignored some quality gain from a and 6's predecessors or
successors. If a shrinks by Aa and b shrinks by Ab, 6's predecessors or successors
will grow longer up to Aa, similarly, a's predecessors or successors will grow
longer up to Ab. So we should subtract the quality gain from the above quality
loss function. The set of activities which are likely to grow longer are called ^ e ^
and Sett. For example, in figure 1, Seta is the set of activity A's predecessors,
and Setb is the set of activity 5's successors. The modified quality loss estimation
function are as follows:

Quality Loss = ka * Aa + kb * Ab V^ hi * Aa — VJ kj * Ab
ieSeta i£Setb

We notice the computation of quality gain is over optimistic because the activ-
ities growing longer are usually stuck by their other successors or predecessors
so that they probably can not grow Ab or Aa that much.

a

b

Fig. 3. One Step Quality Loss Estimation

4.4 Heuristic Based on One Step Quality Loss Estimation

— Step-ratio First choose globally an activity with largest ratio of duration
to slope. Then try to find the other one. Try all possible activities which
compete with it for the resource in some peak, predict the quality loss for each
of them, choose the one with minimum quality loss, and post the constraint
that achieves this minimum quality loss.

The reason of choosing the activity with the largest ratio of duration to
slope is to balance the two factors influencing the quality loss: quality slope and
reducibility. Reducibility means how much the chosen activity's duration can be
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decreased when it conflicts with the other activities. Obviously, an activity with
minimum duration doesn't have any reducibility. From this choice, we actually
bias on choosing the activity with small slope and long duration.

5 Experimental Evaluation

The test data are based on benchmark single mode resource constraint project
scheduling problem set with precedence constraint.6 There are 498 problems in
the file jSO.sm and each has 32 activities. We use the precedence constraints
defined by this file. 32 uniformly distributed random integers in the range [1, 50]
are generated to represent the slopes for each problem. By running experiments,
we find the first 200 problems are more resource constrained than the second
200 problems. So we test them separately in order to compare the heuristics'
performance for the problems at different levels of hardness. We call the first
200 problems as the hard problem set and the second 200 problems as the easy
problem set. The algorithms are implemented in Visual C++ 6.0 and the CPU
time presented in the following tables are obtained on a Pentium IV-2.40 Ghz
processor under Window XP. We set capacity = 5, due date = 20, minimum
duration = 1. Uniformly distributed random integers in the range [0,5] are gen-
erated to represent the release date for each problem7. In the following tables,
we compare the performance of heuristics based on following measures:

1. quality(%). The average percentage quality normalized to the infinite capac-
ity solution. Infinite capacity solution gives us the upper bound for capaci-
tated problem.

2. runtime (sec). The average CPU runtime to reach a solution for one problem.
3. constraints. The average number of posted constraints to reach a solution

for one problem.
4. solved(%). The average percentage number of problems solved, which means

the heuristic can guide the search to a resource feasible solution without
backtracking.

In table 1 and table 2, we compare the three simple peak selection heuristics,
and four step-ratio heuristics which are different in the quality loss computation
methods.

- Step-ratio-accurate uses the accurate quality loss computation by running
the LP solver.

- Step-ratio-loss uses the quality loss estimation method 1 without the esti-
mation of quality gain.

- Step-ratio-loss-gain uses the quality loss estimation method 2 with the over-
estimated quality gain.

6 http://www.bwl.uni-kiel.de/Prod/psplib/data.html.
7 We choose this range for release dates in order not to make the temporal constraints

so tight and guarantee the feasible solution exists for all the problems.
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Table 1. Results for the easy problem set assuming capacity = 5

11

Long-low
Random-low
Short-low
Step-ratio-accurate
Step-ratio-loss
Step-ratio-loss-gain
Step-ratio-gain

Quality(%)

86.6099
85.7308
85.600
85.5323
85.4916
83.4344
82.4307

Runtime(sec)

1.01
1.14
0.96
37.01
1.75
1.11
1.03

Constraints

6.75
7.58
6.40
15.85
13.18
7.44
6.89

solved (%)

99
99.5
99
100
100
100
100

Table 2. Results for the hard problem set assuming capacity = 5

Long-low
Short-low
Random-low
Step-ratio-accurate
Step-ratio-loss
Step-ratio-loss-gain
Step-ratio-gain

Quality(%)

76.6273
74.478
75.3649
73.2177
72.3715
72.0478
70.5268

Runtime(sec)

1.69
2.08
1.44
83.15
3.77
2.01
1.80

Constraints

11.86
14.61
10.06
30.88
27.26
13.84
12.60

solved (%)

98.5
98.5
98.5
100
100
100
100

— Step-ratio-gain choose the second activity maximizing the following measure,
which is actually the quality gain in the modified quality loss estimation.

Connectivity = ki * Aa + k{ * Ab

ieSeta ieSetb

From them, we can make several observations:

Observation 1 With respect to the percentage number of problems solved, we
can see the slight difference among the heuristics. All the "Step-ratio" heuristics
achieve 100%, a little better than "Peak-selection" heuristics on the hard problem
set.

Does this happen by chance or the step-ratio heuristics have the advantage
to avoid infeasibility? To see the real performance in terms of the percentage
number of problems solved, we need to test the heuristics on harder problems.
In the future experiments, we decease the resource capacity from 5 to 3 to make
our problems more-severely constrained.

Observation 2 With respect to the percentage quality, "Long-low" heuristic
outperforms all other heuristics in both problem sets. "Random-low" and "Short-
low" are slightly worse. Compared with the first three peak selection heuristics,
"Step-ratio"heuristics are relatively bad.
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Observation 3 "Step-ratio-accurate" achieves the best percentage quality among
the "Step-ratio"heuristics, but it takes a huge amount of running time compared
with others, which is not good for real applications. Compared to "Step-ratio-
loss", "Step-ratio-loss-gain" can achieve the comparable quality by posting much
less constraints and in a shorter amount of time. Compared to "Step-ratio-gain",
"Step-ratio-loss-gain" can post the comparably small number of constraints to
reach a better percentage quality.

Unexpectedly, "Step-ratio-accurate" doesn't have any advantage over the
simple "Peak-selection" heuristics, which indicates completely myopic decision
may not be a good choice. And because of the huge computational cost, "Step-
ratio-accurate" will be eliminated in the following experiments.

Among the "Step-ratio" heuristics, we want to choose the best quality loss
estimation method considering all the measures together: number of problems
solved, percentage quality, number of posted constraints, and running time.
Based on the above observations, "Step-ratio-loss-gain" is the winner . Actu-
ally, "Step-ratio-loss-gain" isn't a completely myopic decision. It overestimates
the quality gain, because in many cases, the activities in Seta can't grow as
much as Aa, and the activities in Sett can't grow as much as Ab, they will be
stuck by their other successors or predecessors. But the overestimation of qual-
ity gain turns out to be a good favor. It actually biases on the more connected
activity (the activity with more successors or predecessors). When the search is
completely guided by the connectivity (quality gain) just as the "Step-ratio-gain"
heuristic does, the solution isn't improved further. So we conclude that combin-
ing the information from both the activities which will be posted a constraint
between and their connectivity with other activities will achieve a good tradeoff
among all the performance measures.

Altogether, we set resource capacity as 3 and will compare the performances
of "Step-ratio-loss-gain" with peak-selection heuristics in the following experi-
ments.

Noticing that the above experiments are conducted without back tracking,
next we will test the performance when the basic search procedure is integrated
into an iterative sampling framework.

— Long(10 iter.) choose a peak with the probability in proportional to its
length, post a constraint just as "Long-low" heuristic do until a feasible
solution is reached, which is called one iteration. 10 iterations are performed,
and keep the current best solution.

— Ratio(10 iter.) choose the first activity with the probability in proportional
to its ratio, post a constraint just as "Step-ratio-loss-gain" do until a feasible
solution is reached. 10 iterations are performed, and keep the current best
solution.

Table 3 and table 4 show the results for the hard and easy problem sets
assuming capacity is 3, and quality percentage is based on the commonly solved
problems among the 200 problems. We can make the following several observa-
tions:
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Table 3. Results for easy problem set assuming capacity = 3

Quality(%) Runtime(sec) Constraints solved(%)

Long-low
Random-low
Short-low
Step-ratio-loss-gain
Long(10 iter.)
Ratio(10 iter.)

56.6671
55.2
55.6382
55.2353
57.5923
57.3044

2.72
2.96
2.25
3.49
27.85
32.11

19.87
21.40
16.43
26.06
20.91
24.17

58
40.5
49.5
100
81.5
100

Table 4. Results for hard problem set assuming capacity = 3

Quality {%) Runtime(sec) Constraints solved (%)

Long-low
Random-low
Short-low
Step-ratio-loss-gain
Long(10 iter.)
Ratio(10 iter.)

50.725
48.962
49.4034
48.9156
51.5624
51.1778

3.26
3.41
2.30
4.19
33.67
39.30

24.41
25.63
17.30
30.78
24.26
28.85

40
22
36
100
67.5
100

Observation 4 With respect to the percentage number of problems solved, there
is a big difference among the heuristics. The "Step-ratio" heuristic can solve
100%; while the fist three simple heuristics solve much fewer problems. When
problems become harder, the fist three simple heuristics perform worse, while
the "Step-ratio" heuristic is still good. Integrating the basic search in to itera-
tive sampling can improve the number of problems solved for the peak-selection
heuristic significantly.

Observation 5 With respect to the percentage quality, the first three heuristics
are slightly better. Integrating the basic search into iterative sampling can improve
the quality of a final solution, but not as obvious as the improvement on the
number of problems solved.

6 Conclusion and Extensions

In this paper, we have defined a quality maximization scheduling problem and in-
vestigated the use of precedence constraint posting strategy to schedule activities
with anytime property. The problem is proved to be NP-complete. The solution
procedure combines constraint-guided heuristic search and linear programming
optimization. The constraint posting CSP model iteratively transforms an infi-
nite capacity optimal solution into a resource feasible solution.

Several heuristics have been proposed and tested. The simple baseline "peak
selection" heuristics are found to yield fairly good quality performance for those



14 Xiaofang Wang, Stephen F. Smith

problem instances that they are able to solve. However, on harder (more-severely
constrained) problems, the percentage of problems that are solvable using these
simple heuristics degrades significantly. Instead, the step-ratio heuristics show
their big advantage in solving 100% problems no matter what level of hardness
the problem is on. This is a promising result in real-world scheduling because if
we can easily get a feasible schedule, many local search techniques can be applied
to improve this initial schedule and end up with a better one, which is confirmed
in our experiments.

Another interesting result is when we try to make a better one step look
ahead quality loss prediction, we find the prediction biased on the connectivity
of an activity can actually achieve comparable percentage of quality while posting
much less constraints and saving large amounts of time. So when there are some
resource conflicts in current schedule, it is better for us to sequence those more
connected activities, such that the new sequential relation will have more impact
on other activities, which reduces the effort to reach the resource feasibility.

From the above result, we also find some managerial insights. Intuitively, a
project manager prefer to allocate most time to the most valuable activity. But
this can be wrong in many cases. In the presence of concurrency of activities,
the decision of an activity's duration should not only be based its own value.
We should look at the activities running in parallel with it and its successors or
predecessors. So the most valuable activities may not last long and it may leave
space to a set of less valuable activities.

In the future, we will extend our research toward the following directions.

— Multiple projects. In this paper, we look at scheduling within one project,
say, creating one news story. But in a news company, there are many story
creating projects going on. Scheduling all the activities in different projects
will be a more realistic problem and the framework proposed in this work
can be extended to solve that problem.

— More complex quality dependencies. In our current model, the only depen-
dencies among activities are precedence relationships. Quality dependencies,
which mean one activity's output may influence it's successors' quality pro-
files, are more realistic. In that case, the objective won't be in summation
form.

— Activity Profiles. Linear profiles can be extended to non-linear concave pro-
files. Some activities may have fixed durations.

— Further optimization. In this paper, we find heuristics which can find a re-
source feasible solution easily. Based on that, we will use random-restarting
framework and local search procedure to further improve the solution.
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Appendix: Proof and Complexity for Single Capacity
Problem Algorithm

Proof. There are three cases for minimum duration schedules resulting from
greedy approach.

— Case 1. The end time of the last activity has passed deadline, then there is
no feasible solution. This is because in this single capacity problem, greedy
algorithm achieves minimum make-span schedule. If this schedule can't meet
the deadline, no schedules can meet it.

— Case 2. There is no idle period in the schedule, then stop, obviously, the
current quality sum is the optimal value.

— Case 3. There is some idle time in the schedule.

We only need to prove the algorithm can find an optimal solution in case 3.

Activities in this area can fill a, Activities in this area can NOT fill

- • time

Fig. 4. Example for Single Capacity Problem

Fig.4 is a schedule in case 3, in which there are several busy periods and
idle periods. As before, we denote the minimum duration of activity iasdj . We
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denote the length of an idle period j as a,j, and the deadline is D, the time
horizon starts at time zero. Then

It is clear that all the schedules assuming activities' minimum durations have
the same amount of total idle time Ylj aj ~ D ~ ]Ct ^i, an<^ the same amount
of quality^? h * ̂ i- Therefore, the key to maximize the final schedule's quality
is to allocate the idle time to the most valuable activity which is eligible. This
is just what we did in the while loop:

Due to the greedy approach, we can't allocate the idle time to the activities
after it(as shown in Fig.4), because they are ineligible at that time. So in the
while loop, we allocate the idle time period one by one from backward. The set
of activities before one idle period is a complete eligible candidate set including
all the extensible activities for this idle period. The activity chosen with the
maximum quality slope is the most valuable activity which is also eligible. So
we'll reach the optimal schedule in the end. •

Complexity Assume n is the number of activities in the problem. Without loss
of generality, we assume all the release dates have been propagated according
to the precedence constraints, which means: if activityz and activityj»'s release
dates are r\ and rj, and (i,j) £ E, we update j ' s release date as rnax{rj, ri +di}.
Then r% < rj, if (ij) G E.

In the step of building a minimum duration schedule, creating an increasing
order of release dates of all the activities takes time O(nlogn). Then we work with
the activities one by one in the increasing order of release dates. If it is eligible,
allocate it into the schedule, then update the eligibility of other activities, which
takes O(n). Continue to do this until all the activities have been scheduled. So
finding a greedy solution assuming activities run for their minimum duration
needs time O(n2).

In the step of filling the idle times, we need to create a decreasing order of
all the activities according to their slopes of quality functions, which takes time
O(nlogn). Before we fill in the first idle period, we search from the head of the
ordering, and stop until we find the activity which is positioned before this idle
period. At this moment, we already know the first n\ activities in that ordering
are positioned after this idle period. Because they won't be selected in the next
steps, we delete the n\ activities from the slope ordering and stretch the selected
activity to fill in the idle period. Then we do the same thing with the second
idle period and the n — n\ activities in the remaining slope ordering. After all
the idle periods are filled in, the total number of searched activities is at most
n. So this step takes O(n-f-nlogn).

Totally, the complexity will be O{n2).
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Appendix: Proof of NP-completeness for Quality
Maximization Scheduling Problem

Proof. We prove this by reducing a known A/P-completeness instance to this
problem.

Definition 2. Multiple Capacity Single Resource Quality Sum Problem
with Linear Quality Profile We are given a set A of activities, each activity
i having duration not shorter than di G Z + , number C E Z + units of resource,
partial order -< on A, for each activity i G A a release date ri G Z+ and common
deadline D e Z+. Can we decide the start time s[ and end time e\ for each
activity i to maximize the linear quality sum, obey the precedence constraints
and meets all the deadlines?

Definition 3. Multiprocessor Scheduling with individual Deadlines We
are given a set T of tasks, each task i having length li = 1, number m G Z"1" of
processors, partial order -< on T, for each task t G T a deadline Di G Z+ and
a common release date zero. Is there a m-processor schedule a for T that obeys
the precedence constraints and meet all the deadlines?

Multiprocessor Scheduling with individual Deadlines is known to be JVP-complete[29].
This optimization problem is harder than the problem of finding a feasible

solution satisfying all the constraints: precedence, minimum duration, resource
capacity, individual release dates and common deadline. We prove finding a
feasible solution is TVP-complete.

Finding a feasible solution is in NP because the following verifier for this
problem runs in polynomial time in the number of activities n. Given a set A
of activities, if we have the values for the start time s[ and the end time e\ of
activity i.

— Checking minimum duration constraint e\ — s\ > di needs C(n) time.
- Checking precedence constraint needs O(n2) time.
- Checking the common deadline constraint e\ < D needs O(n) time.
- Checking individual release date constraint sj > r[ needs O(n) time.

To show TVP-hardness, we reduce an arbitrary instance of multiprocessor
scheduling with individual Deadlines into the following instance of our problem.

Each activity in A corresponds to each task in T, the precedence direction in
A is the opposite direction of the partial order in T. Let di = 1, D = maXi{Di),
n = D- D^

Then if multiprocessor problem's instance has a feasible solution (s^, e )̂, we
get e'i = D — Si and sj = D — ei are feasible for the above instance of our problem.

— Check minimum duration constraint, e\ — sj = ê  — Si = 1 > df,
- Check precedence constraint, s\ — e'j = Sj — e» > 0, which is because for any

(i,i) € E{A), we have (t, j) G E{T);
— Check the common deadline constraint, e\ — D — si < D;
— Check individual release date constraint, s^ = D — e, > D — Di — rf.
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On the other hand, if the above instance of our problem has a feasible solution
(«^,e^), we change the solution into (s", ej-), where s^ is increased to s'{ in order
to make the duration equal to 1. (s", e[) is still feasible for our problem instance.
Then, we get e\ — D — s" and Sj = D — e\ are feasible for the multiprocessor
problem's instance.

— Check duration constraint, e; — S{ = e\ — s" = 1;
— Check partial order constraint, Sj — e* = s" — e'j > 0, which is because for

any (ij) G E(T), we have (j,i) e E(A);
— Check the individual deadline constraint, ex• = D — s" < D — ri = Dj]
— Check common release date constraint, 5, = D — e[ > 0.

•



 


