
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Textureless Layers

CMU-RI-TR-04-17

Qifa Ke, Simon Baker, and Takeo Kanade

The Robotics Institute

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213

Abstract

Layers are one of the most well studied ways of representing a 3D scene. Although man-

made scenes often contain constant intensity planar regions (textureless layers), it is almost

always assumed that there is enough texture in each layer to compute the motion of the layer

using image alignment and to base layer assignment on pixel-wise differencing. Since (the

interior of) any textureless region is consistent with the motion of any layer, most existing

algorithms assign constant intensity regions to the dominant layer, or to a random nearby layer.

The one source of information that could be used to resolve the inherent ambiguity, namely

the lines separating the constant intensity regions, is instead often treated as an outlier. In this

paper we study the question of what can and cannot be computed in a 3D world consisting

of a set of constant intensity planar regions (textureless layers). We derive an algorithm to

determine when the shape of the scene is unique, when it is inherently ambiguous, and if so,

what the set of possible scene shapes is.

Keywords: Layers, constant intensity regions, inherent ambiguities, Origami Theory.

Lifcrarfet

1 Introduction

Layers are one of the most well studied ways of representing a 3D scene [Bergen et aL, 1992,

Wang and Adelson, 1993, Hsu et al, 1994, Darrell and Pentland, 1995, Sawhney and Ayer, 1996,

Weiss and Adelson, 1996]. In such papers, it is usually assumed that there is enough texture in

each layer to compute a homography or affine warp for that layer using image alignment [Lucas

and Kanade, 1981, Bergen et ah, 1992]. In man-made scenes, however, there are often many

textureless regions (layers.) Walls and ceilings are usually painted a single color. The tops of

tables, and the sides of cabinets, are also usually textureless.

(The interior of) any textureless region is consistent with the motion of any layer. Most algo-

rithms therefore tend to group textureless regions with the dominant layer, or with a large nearby

layer. A good example is contained in Figure 13 in Sawhney and Ayer's seminal paper [Sawhney

and Ayer, 1996]. This figure contains a person bouncing a table-tennis ball on their bat. Also

visible is a large background plane. In the bottom of the figure part of the table-tennis table can

also be seen. Conceptually, the scene consists of three layers, the dominant background layer, the

layer of the table-tennis table, and the layer of the bat, ball, and arm. The dominant layer estima-

tion algorithm in [Sawhney and Ayer, 1996], however, groups the (mostly) textureless table-tennis

table with the dominant background layer. In the 2D video coding domain of [Sawhney and Ayer,

1996], this interpretation of the scene is valid. The textureless table-tennis table is consistent with

the motion of the background plane. As a 3D interpretation of the scene it is not correct. The

background and the table-tennis table lie in distinct 3D planes, one horizontal, the other vertical.

In this example the only visual information that could be used to determine that there are

two layers rather than one is the line that separates them; i.e. the edge of the table-tennis table.

When image alignment is used to compute the motion of layers, and pixel-wise differencing the

consistency of pixels with layers, the information in the lines between constant intensity regions is

given little very weight. As a result, the line between the table-tennis table and the background is

treated as an outlier in [Sawhney and Ayer, 1996] rather than an important source of information.

In this paper we abstract the above problem and study the question of what can and cannot be

computed in a 3D world consisting of a set of constant intensity (textureless) polygonal, planar re-

gions (layers). In particular, we ask when the 3D shape of such as scene (the layer plane equations)

can be recovered uniquely, and when the 3D shape is inherently ambiguous. Note that our ideal

world of constant intensity, polygonal planar regions is similar to the "Origami World" of [Kanade,

1980]. Our analysis, however, is an analysis of what can be computed from multiple images using

3D vision, rather than a 2D analysis of junction labeling.

We assume that the constant intensity regions have been segmented, their polygonal boundaries

have been detected, and the correspondences between the lines bounding the regions, and the

regions themselves, have been computed. We derive an algorithm to compute the 3D shape of the

scene, and the assignment of the lines to the layers. These two tasks correspond to the traditional

layers tasks of layer motion estimation and pixel assignment to layers. In general, there are multiple

solutions for the shape estimate and line assignment that are consistent with the input images. In

such cases, our algorithm outputs every possible consistent interpretation of the images.

2 Problem Scenario

We assume that there is a single camera moving through a static scene. Equivalently, the scene

could be moving rigidly, there could be multiple cameras, or a non-rigidly moving scene could be

imaged simultaneously by multiple (stereo) cameras. How to extend the algorithm described in

this paper to scenes where each layer is moving independently, but rigidly, is left as future work.

We assume that the scene under consideration consists of a collection of polygonal, constant

intensity (and color), planar regions. The scene is imaged by a moving camera that captures the

m images J1, J 2 , . . . , Im. See Figure 1 for an illustration. We assume the input images have

been processed, the constant intensity regions have been segmented, 2D lines have been fit to

the polygonal boundaries of the constant intensity regions, and the correspondences between the

regions and the correspondences between the lines bordering the regions have been determined.

Denote the constant intensity regions in the j t h image r{, r{,..., rJ
n. Knowing the correspon-

Multiple Polygonal
Constant Intensity
Planar Regions

Image I1 Image I3

Image I2

Figure 1: Problem Scenario. We assume that the scene under consideration consists of a collection of
polygonal, constant intensity (and color), planar regions i?i, i?2, • • •, Rn- The scene is imaged by a moving
camera that captures the images J 1 , 7 2 , . . . , Im.

dence between the regions means that r{ and r* correspond to the same planar region in the scene

for all j and k. Denote this 3D region Ri. Denote the ith line in the j t h image l\ = (f/, s;-) where

f/ is a column vector containing the 2D image coordinates of the first vertex, and s;? is a column

vector containing the 2D image coordinates of the second vertex. Knowing the correspondence

between the detected lines means that l\ and If are projections of the same 3D line in the scene for

all j and k. Denote this 3D line L,-. Note, however, that because of occlusions, the points, f/ and

f̂ , and the points, s:- and sf, do not necessarily correspond to the same 3D points in the scene for

j jz k. Also note that we assume that the lines are broken at all junctions, including t-junctions.

Each line borders two regions. While the regions and lines are being extracted, the two 3D

regions bordering each 3D line are recorded in the following data-structure:

Bordering(Li) = 0)

i.e. the 3D regions bordering the 3D line L{ are Rj and i?*.

Implicit in the above is the assumption that the motion of the camera is small enough so that

the topology of the lines and regions does not change across the input images; i.e. no lines or

regions appear or disappear in J1, J 2 , . . . , Jm . We also assume that the depth ordering of the regions

remains the same across the images. This is hardly an additional assumption since the ordering

would only change if the camera moved from "in front o f to "behind" some of the planar regions,

in which case the topology would likely change.

3 3D Line and Camera Matrix Recovery

Given enough corresponding 2D lines it is possible to reconstruct the 3D projective structure of

the lines and the motion of the camera [Faugeras et al, 1987, Weng et ah, 1993, Hartley, 1994,

Taylor and Kriegman, 1995]. In particular, if 6 lines (in general position) are visible in 3 images it

is possible to recover the 3D projective line equations and camera matrices [Faugeras et ah, 1987,

Taylor and Kriegman, 1995]. If 13 lines are visible, there is even a linear algorithm to recover the

scene structure and motion [Weng et a/., 1993, Hartley, 1994].

We assume that the 3D lines and the motion of the camera have been recovered, either using one

of the above algorithms or some other technique. Denote the projective camera matrix for image

P by Pj. Denote the ith 3D line, the one that corresponds to the 2D lines l{, by U = (F i7 S*)

where Fz and S* are (column vectors containing) the 3D projective coordinates of two points on

the line. Note that there is no correspondence between the 3D points F , and S* used to denote the

3D line and the 2D points f/ and sf.

4 Layer Estimation

The traditional approach to layer estimation consists of two tasks: (1) assign the pixels to the layers,

(2) estimate the motion (affine warp or homography) [Bergen et al, 1992] or plane equation [Baker

et al, 1998] of each layer. These two tasks are coupled. To estimate the motion of the layers, we

need to know which pixels belong to each layer. To assign the pixels to the layers, we need know

the motion of the layers. Layer estimation can be formulated in the Expectation-Maximization

(EM) framework and is usually performed by iterating the two tasks [Sawhney and Ayer, 1996].

4

With textureless layers there are two corresponding tasks. In the first we assign 3D lines to

layers (instead of assigning pixels to layers.) In the second task we compute the motion or plane

equation of each layer. In the static scene scenario of this paper the situation is constrained enough

to compute the plane equation of each layer. (If the scene is moving non-rigidly, the situation is

less constrained and instead we would need to compute the motion of each layer as a homography.)

Before we discuss each of the two tasks in turn, we first introduce some terminology for: (1) the

assignment of lines to regions and (2) the layer plane equations.

4.1 Layer Assignment

Suppose that Bordering(L?) = {Rj, Rk}, as in Figure 2(a). There are three possible physical

causes of the line Lf (1) the region Rj is in front of and occluding the region Rk in which case Rj

contains Li but Rk does not, (2) the region Rk is in front of and occluding the region Rj in which

case Rk contains Lz but Rj does not, and (3) the two regions Rj and Rk meet at and both contain

the line L,. There are therefore three ways to assign the 3D line L*:

Assign (L^) =

{Rj} if only Rj contains L{

{Rk} if only Rk contains L{ (2)

{Rj, Rk} if Rj & Rk meet at L{.

In Section 4.3 we describe how Assign(Z^) can be computed once the plane equations are known.

4.2 Layer Plane Equations

Ideally we would like to estimate a plane equation for each region i?,. Unfortunately this is not

always possible. To compute a plane equation we need at least two lines assigned to i22. If less than

2 lines are assigned to Ri we cannot uniquely compute the plane equation. If one line is assigned

to Ri we can only constrain the plane of Ri by that line. If no lines are assigned to Ri the plane is

R.w w
M r

(a) Line Assignment (b) Plane Equation Estimation

Figure 2: (a) Line assignment. There are three possibilities. (1) Rj is occluding R^ in which case Li is
assigned Rj. (2) R^ is occluding Rj in which case L{ is assigned R^. (3) jfy and Rk meet at the line Li in
which case L; is assigned both Rj and i?*.. (b) Plane equation estimation. If two or more lines are assigned
to R{ the plane equation of Ri can be estimated. See Section 4.4 for the details.

essentially unconstrained. Let TT̂ denote the plane equation of Ri where:

(iii, di)T if two lines assigned to Ri

Lj if one line Lj assigned to

0 if 0 lines assigned to Ri .

(3)

In this definition n^ is a (column) vector normal to the plane and di is the distance to the plane

(both defined up to scale); i.e. the fully constrained plane equation is defined by:

(xy zl) = 0. (4)

In Section 4.4 we describe how TT* can be computed once the layer assignment is known.

4.3 Assigning Lines to Layers

Suppose that Bordering(Li) = {Rj, Rk}, as in Figure 2(a). As in the traditional layers formu-

lation, if the plane equations of the two layers Rj and Rk are known, it is possible to estimate

Assign(Li). If Li lies in the plane of Rj, then Rj G Assign(Li), and similarly for R^. If Li doesn't

lie in either plane, there is an inconsistency. The estimate of one of the plane equations must be

wrong. See Section 4.5 for more details. If TTJ is fully defined and equals (iij,dj)T, the layer

assignment Assign(Lj) can be computed:

(Fj 1 ^ (n, .
if = ° t h e n Ri € Assign(Li) (5)

\SJ 1) [d

where L2 = (Fj, Sj). If the plane TZJ is just defined by one line and equals Lj., the assignment

can be computed:

if Li = Lj{ then Rj 6 Assign(Lt-). (6)

If the plane TT, is unconstrained and equals 0, the assignment can be computed:

if TT, = 0 then i2j £ Assign(L^). (7)

The equivalent of the rules in Equations (5)-(7) can also be applied for Rk to compute whether

Rk G Assign(Li).

4.4 Computing the Layer Plane Equations

Consider the region Ri in Figure 2(b) and the set of lines L^,..., LJp assigned to R^:

Ri G Assign(Lifc) for & = 1, . . .p. (8)

The plane equation TT; of i?, can then be computed. First it is checked whether p = 0. If p = 0 then

TTi = 0. Second it is checked if all of the lines Lj. are the same line; i.e. co-linear. If all of the lines

Lj. are the same then ?rt = Ljt. Finally, if there are more than two distinct lines, 7rt = (n2, di)T

is computed as follows. The p lines Ljt,..., Ljp are defined by the 2 x p points, F ^ , S ; i , . . . , F J p ,

Sjp. Since all of these points must lie in TT* it follows that:

= A^i = 0. (9)

FT l

The plane equation TT* can therefore be computed by performing a Singular Value Decomposition

(SVD) on Az. If there is no solution to Equation (9), the lines Ljk are not co-planar. The assignment

of lines to regions is therefore (locally) inconsistent. See Section 4.5 for more details.

4.5 Layer Consistency

Layer estimation is usually posed as optimizing a notion of layer consistency. Suppose the assign-

ment of pixels to layers and the motion (or plane equations) of the layers are given. The layer

consistency is a function that specifies how good a solution this is. With textured layers, the layer

consistency is usually a measure of how well the layers regenerate the input images. With tex-

tureless layers, layer consistency is boolean valued. Either the layers are consistent with the input

images or they are not. Suppose that Assign(Z^) has been computed for each line Li and the plane

equation TT* for each region R^. There are then two components to the layer consistency: (1) local

consistency, i.e. for each region, is the plane equation consistent with the assignment of lines to that

region, and (2) depth ordering, i.e. is the depth ordering implied by the plane equations consistent

with the occlusion ordering implied by the assignment of lines to regions.

4.5.1 Local Consistency

Local consistency means that the plane equation for each region Ri is consistent with the 3D line

equations of the all of the lines Lj that are assigned to Ri, Ri G Assign(Lj). We also check that

Assign(Lj) is well defined. Local consistency consists of checking the following conditions:

8

r . p

R. W^

(a) Depth Ordering Two Lines" (b) Depth Ordering 'One Line"

Figure 3: Depth ordering consistency checks for planes defi ned by (a) two lines and (b) one line.

• For all j , Assign(LJ) ^ 0.

• For all j , Assign(Lj) C Bordering(Lj).

• For all i, j , Ri G Assign(L i), Lj = (F j , S j) :

- If Tzi =. (ni? di)T is defined by two lines then:

- 0. (10)

- If 7Tt = Lj{ is defined by 1 line then Lj{ = Lj.

- If TTJ = 0 is defined by 0 lines then inconsistent.

4.5.2 Depth Ordering

If the depth ordering is correct, then for every line L, assigned to Rj where Bordering(Lj) =

{Rj;, Rk}, the plane of Rj must be "in front o f the plane of Rk along the line L{. In this definition,

"in front o f means closer to or at the same distance from the camera center of projection. Because

checking this condition for planes just defined by one line is tricky, it is easiest to check this

condition for each region Rj in turn (rather than each line Li). Depending on whether Rj is

defined by 2, 1, or 0 lines, there is a different condition to be checked. We now describe each of

these conditions in turn for the region Rj with plane equation TTJ.

Planes Defined by Two Lines

Suppose that the plane equation TTJ = (nJ7 dj)T of Rj is defined by two lines. We then consider

each line Li for which Rj G Bordering(Li). If Rk G Bordering(L2) is the other region that borders

Li the situation is as in Figure 3(a). The two points ff and s? are the end points of the 2D line if in

image Ip that corresponds to the 3D line L^. Although there are three possibilities for Assign(Li),

we only need to consider:

1. Rj; € Assign(Lt): We need to check that the plane of Rj lies in front of the plane of Rk

along Li.

2. Rk € Assign(Lj): We need to check that the plane of Rk lies in front of the plane of Rj

along Li.

The case that both Rj, Rk € Assign(Li) is then taken care of by checking both conditions. The

way in which these conditions are checked depends on how many lines 7T&, the plane equation of

Rj, is defined by:

1. If 7Tfc = (n&, c4)T is defined by two lines, the depth ordering of the planes is checked by

checking the depth ordering along the rays defined by the two points ff and sf. See Ap-

pendix A for a description of how to do this.

2. Suppose TTfc = Ljk is defined by one line. If ff lies on i? the projection of Ljk into Ip

we check the depth ordering of the plane TTJ and the line Ljk along the ray defined by ff.

Similarly if sf lies on l?fc we check the depth ordering of the plane TSJ and the line Ljk along

the ray defined by sf. If Ljk equals Li then both of these conditions are satisfied and so the

depth must be checked for both ff and s?. Again, see Appendix A for a description of how

to check the depth along a given ray. Figure 3(a) illustrates the case that only s? lies on the

projection of Ljk into P.

3. If TTfc = 0 is defined by 0 lines, then assuming local consistency has been checked, it must

be the case that Rj € Assign(L2) and Rk £ Assign(Li). There is then nothing to do to check

10

that Rj lies in front of Rk.

Planes Defined by One Line

Suppose that the plane equation TTJ = Ljl of Rj is defined by one line. We then consider each line

Li for which Rj € Bordering(Li). If Rk € Bordering(Lj) is the other region that borders L2 the

situation is as in Figure 3(b). The 2D lines Zf and Z? are then intersected to give the pixel x. If x

lies between the two end points ff and sf of the 2D line Zf the depth ordering check for "planes

defined by 2 lines" is performed for the point x rather than for ff and sf. The depth of x for Rj is

computed by intersecting with the line Ljr See Appendix A for the details. Otherwise the depth

ordering check is exactly as above for "planes defined by two lines." If L, = Ljl the depth ordering

check should be made for both ff and sf. If x exists, it usually, although not always, equals either

ff or sf. Figure 3(b) illustrates the case that x does not equal either of the end points of Zf.

The depth ordering check described above checks that every point on the line Ljx is correctly

ordered with respect to the neighboring planes. Since the plane TTJ = Ljx is just defined by this one

line, this is the main thing that we need to check about Rj. It is not the only thing, however. The

plane TTJ could be any plane "rotated" about the line Ljr Although we do not know the rotation

of this plane, we need to check that there is a "rotation" that is consistent with the depth ordering

implied by the layer assignment.

In particular, consider Figure 3(b) where the plane equation of Rj is defined by the one line

TTJ = Ljr Consider the point sf. Since Li ^ Ljx then Assign(L,-) = {Rk}- We therefore know that

the region Rk is in front of Rj at the point sf. This puts a constraint on the rotation of the plane of

Rj about 7Tj = Ljr We determine whether all of these constraints can be simultaneously satisfied

as follows.

Consider any fixed vertex y of Rj that does not lie on the 2D line Z? corresponding to Ljr We

then consider every line L, that borders Rj that does not equal Ljr as in Figure 3(b). We therefore

know that Assign(Lt-) = {Rk} where Rk is the other region bordering L,-. We then consider the

two points sf and ff. Since Assign(L,-) = {Rk} we can compute the 3D location of the points on

11

Rk that project to these two points. For each point in turn we compute the plane through the line

Ljt and the point on R^ corresponding to sf or ff. We then compute the depth of the intersection

of this plane with the ray through y. See Appendix A for a description of how. If ff (or sf) is

on the same side of Ljl as y this distance is a lower bound on the distance of the point y (which

implicitly constrains the "rotation"). Similarly, if ff (or s?) is on the other side of Ljt from y this

distance is an upper bound on the distance of the point y. If all of these constraints on the depth

of y (over ff and sf for each Li ^ Ljt) cannot be simultaneously satisfied then there is a depth

ordering inconsistency.

Note that if Rj is convex then all of the constraints on the depth of the point y are in the same

direction and so there is no way that the "valid rotation" depth ordering consistency check can

produce an inconsistency.

Planes Defined by 0 Lines

If the plane equation TTJ = 0 of Rj is defined by 0 lines there is nothing to check for the depth

ordering. Since the plane is defined by 0 lines, all of the lines Li that border Rj are assigned to

other planes. We therefore just need to check if it possible that this plane could be behind all of the

other planes. This condition can always be satisfied.

4.6 Finding Consistent Interpretations

In the traditional layers formulation the goal is to find the assignment of pixels to layers and

motions (or plane equations) of the layers that optimizes the layer consistency measure. With our

boolean valued consistency measure (see Section 4.5), we pose the textureless layers problem as

finding the set of consistent assignments of lines to layers (see Section 4.1) and plane equations (see

Section 4.2). In the traditional formulation the layer consistency measure is optimized using some

form of gradient descent such as the EM algorithm [Sawhney and Ayer, 1996]. In the textureless

case, the optimization is a combinatorial optimization. In both cases, we need to decide how to

initialize the algorithm. We could either initialize the assignment or the plane equations. For

12

textureless layers, this leads to two algorithms:

Algorithm 1

For every possible way to initialize Assign(L2) for every line L{\ i.e. for the three alternatives in

Equation (2):

1. Compute TTJ for every region Rj using Section 4.4. For each region, check that there is an

exact solution of Equation (9). If there is no exact solution, there is no consistent solution so

begin the next initialization of Assign (L;). In this way the local consistency is checked for

each region as we compute its plane equation. Hence, there is no need to check it separately.

2. Check the depth ordering for each region Rj. If any Rj fails, begin the next initialization of

Assign (Li).

3. Output the set of consistent assignments and the corresponding computed plane equations.

Algorithm 2

For every possible way to initialize the plane equations TTJ for every region RJ:

1. Compute the line assignment A s s i g n ^) for every line Li using the procedure in Section 4.3.

In the process check that L2 is assigned to at least one of the two regions in Border ing^) . If

not, there is no consistent solution so begin the next initialization of itj. In this way the local

consistency is checked for each line as we compute the line assignment. There is therefore

no need to check local consistency separately.

2. Check the depth ordering for each region Rj. If any Rj fails, begin with the next initialization

Of 7Tj.

3. Output the set of consistent plane equations and the corresponding computed line assign-

ments.

13

The set of possible initial plane equations can be generated in the following way. Given region -Re-

consider every line L^ that borders Rj. Each of these defines one possible plane equation TTJ = Lj{

defined by one line. Secondly, consider every pair of lines Ljx and LJ2 that border Rj. These lines

are checked to see whether they are coplanar (using Section 4.4). If they are coplanar, the plane

equation defined by those two lines is computed using Section 4.4 and added to the list of plane

equation candidates. Finally, the plane defined by 0 lines TTJ = 0 is added to the candidates.

4.6.1 Choosing the Algorithm to Use

To decide whether to use Algorithm 1 or 2, we count the number of initializations that will be

required and choose the smaller of the two. For Algorithm 1 the number will be:

3no lines

For Algorithm 2 the number of initializations will be:

n

JJcand^-) (12)
i=i

where cand(i?j) is the number of candidate plane equations for region Rj, Although theoretically

cand(Rj) can be as large as \{l2 + 1 + 2) where / is the number of lines bordering Rj, in practice is

it usually closer to the minimum possible which is l + l. Comparing the values in Equation (11) and

Equation (12) we can decide which algorithm to use. Almost always it is better to use Algorithm 2

because there are usually far more lines than regions; i.e. no lines ^> n.

14

(a) Input Image 1 (b) Input Image 2 (c) 3D Lines

XX

(d) Layer Assignment (e) Rendering 1 (f) Rendering 2

Figure 4: An example (a-c) with multiple globally consistent solutions (d-f). The 9 solutions can be
grouped into 5 types, each displayed in a separate row. (d) The layer assignment, (e-f) Renderings of the
planes. See h t t p : / /www.r i . c m u . e d u / p r o j e c t s / p r o j e c t - 5 2 8 .html for fly-by movies.

5 Experimental Results

5.1 Illustrative Examples

We first applied our algorithm to a variety of synthetic inputs to illustrate the various possible

scenarios. The most common case, illustrated in Figure 4, is that there are multiple globally

consistent solutions. Two input images and the 3D lines are shown in Figures 4(a), (b), and

(c). The scene consists of a single triangle in 3D space, with two textureless regions, one in-

15

(a) Input Image 1 (b) Input Image 2 (c) 3D Lines

\

(d) Layer Assignment (e) Rendering 1 (f) Rendering 2

Figure 5: An example (a-c) with a single globally consistent solution (d-f).

side and one outside the triangle. Our algorithm finds 9 globally consistent solutions. The so-

lutions can be grouped into 5 types. One solution of each type is shown in rows 2-6 of Fig-

ure 4. In the first column of each row we illustrate the layer assignment by drawing arrows

on one of the input images to show which region(s) each line is assigned to. In the other 2

columns we present renderings of the computed plane equations from 2 different viewpoints.

See h t t p : / / w w w . r i . c m u . e d u / p r o j e c t s / p r o j e c t - 5 2 8 .html for fly-by movies. In

the first type of solution (row 2,1 solution) there is a single plane with a triangular region "painted"

on it. In the second type of solution (row 3, 1 solution) the triangle is a plane "floating" in front

of a background plane (which is unconstrained.) In the third type of solution (row 4, 1 solution)

the triangle is a "hole" in a plane (with an unconstrained background plane.) In the fourth type of

solution (row 5, 3 solutions) the triangle is plane in front of a background plane which is joined to

the triangle along one edge. In the fifth type of solution (row 6, 3 solutions) the triangle is "hole"

in front of a background plane which is joined to the "hole" along one edge.

An example with a single globally consistent solution is shown in Figure 5. (Note that there

16

(a) Input Image 1 (b) Input Image 2 (c) 3D Lines

(d) Layer Assignment (e) Rendering 1 (f) Rendering 2

Figure 6: An example (a-c) with 24 locally consistent solutions, none of which are globally consistent
solutions, (d-f) One of the locally consistent solutions.

are actually 24 locally consistent solutions.) This case is rare. There are almost always multi-

ple solutions. The scene consists of 3 layers, a quadrilateral and 2 triangles. Two input images

and the 3D lines are shown in Figures 5(a), (b), and (c), the assignment of lines to layers in Fig-

ure 5(d), and 2 renderings of the recovered planes in Figures 5(e) and (f). See the project webpage

h t t p : //www. r i . emu . e d u / p r o j e c t s / p r o j e c t _ 5 2 8 . html for a fly-by movie.

An example with 24 locally consistent solutions but no globally consistent solution is shown

in Figure 6. The scene consists of 3 regions, 2 neighboring rectangular regions "inside" a back-

ground region. The 3D lines consist of a rectangle with a line "floating" in front of it. One of

the 24 locally consistent solutions is shown in Figures 6(d-f). This solution consists of a 2 plane

"wedge" on top of the background plane. This "solution" is not consistent with the input im-

ages because the geometry of the solution in Figures 6(e-f) implies that the input images should

contain the edges of the wedge. However, the 3D lines in Figure 6(c) only contain the floating

edge and the edges of the background rectangle. Note that if the floating edge were "behind" the

rectangle in Figure 6(c) there would be a globally consistent solution. See the project webpage

h t t p : //www. r i .emu. e d u / p r o j e c t s / p r o j e c t _ 5 2 8 .html for a fly-by movie.

An example with no locally consistent solutions is shown in Figure 7. Although the input

images consist of a single triangle just like in Figure 4, no pair of 3D lines are co-planar. It is

therefore impossible to assign the 3 lines to the 2 regions and then compute a valid plane equation

17

(a) Input Image 1 (b) Input Image 2 (c) 3D Lines

Figure 7: An example with no locally consistent solutions. The inputs (a-b) consist of a single triangle
like in Figure 4. No pair of 3D lines (c) are co-planar, however, and so there is no solution.

for both regions. See also h t t p : / /www.r i . emu. e d u / p r o j e c t s / p r o j e c t _52 8 .h tml .

5.2 Results on Real Images

We also applied our algorithm to a set of images of a real scene of a "corner walkway". Two input

images, with the 2D lines overlayed on them, are included in Figures 8(a) and (b). The scene is

typical of many encountered in 3D reconstruction and robot navigation tasks. Because the scene

is largely man-made, there is little, if any, texture in any of the regions. The recovered 3D lines

are shown in Figure 8(c). Our algorithm finds 448 globally consistent solutions. The solution that

is "most plausible" to us as humans is shown in Figures 8(d-f). The line assignment is shown

in Figure 8(d). Figures 8(e) and (f) contain 2 renderings of the reconstructed 3D planes. See

h t t p : //www. r i . c m u . e d u / p r o j e c t s / p r o j e c t _ 5 2 8 .html for a fly-by movie.

Figures 8(g-i) show another solution. In this solution, the "door" is ajar; i.e. it is a plane

defined by the one line where the door is connected to the wall. This solution is also a valid

solution (assuming we cannot see the small "crack" at the top of the door if it is ajar.) The degree

to which the door is ajar is not uniquely computed by our algorithm (although there are constraints

on it.) We just know that the door is connected to the wall along the appropriate line. Also in this

solution, the "white-board" has becomes a hole (an opening into the room behind.) Although less

likely in practice, walls can have holes in the them and so this solution is a valid 3D interpretation.

Figures 8(j), (k) and (1) show the line assignments for three more solutions. In Figure 8(j), the

"floor" is a unconstrained plane (i.e., a hole). This is unlikely in practice, however, this reasoning is

based on the high-level knowledge that there is normally a ground plane. In Figure 8(k), the "wall"

is an unconstrained plane. This leaves the "white-board" floating in mid air. This interpretation is

18

(a) Input Image 1 (b) Input Image 2 (c) 3D Lines

(d) Layer Assignment (e) Rendering 1 (f) Rendering 2

(g) Layer Assignment (h) Rendering 1 (i) Rendering 2

(j) Another Solution (k) Another Solution (1) Another Solution

Figure 8: A real example (a-c) with 448 globally consistent solutions, (d) The layer assignment of the
'hiost plausible" solution, (e-f) Renderings of the planes, (g-i) Another solution, (j-1) The layer assignment
for three more solutions. See a l soh t tp : / /www.r i . c m u . e d u / p r o j e c t s / p r o j e c t J 5 2 8 .html.

19

also unlikely, however, this reasoning is based on the knowledge that objects rarely float in mid air.

As with all the solutions, the layers are a valid 3D interpretation of the images.

The results in Figure 8 are typical in the sense that there are generally a large number of globally

consistent solutions. The main cause is the large number of solutions with planes constrained by

1 line, which can explode combinatorially. Of the 448 solutions, 434 contain regions with one or

more plane equations constrained by a single line. Of the remaining 14 solutions, 13 solutions

contain layers with unconstrained plane equations. The final solution, where every layer is defined

by two or more lines, is the one shown in Figure 8(d-f), i.e. the "most plausible" one.

The development of heuristics (such as choosing the solution with the largest number of plane

equations defined by 2 or more lines, or the solution with the largest number of edge assignments)

and the use of prior knowledge (such as the knowledge that there is normally a ground plane and

that planes cannot float in mid air) is left as future work.

6 Conclusion

We have investigated the task of computing a layered representation of a scene when the scene

consists of a collection of constant intensity regions. Assuming the scene is static, or moving

rigidly, we have presented an algorithm to compute every set of layer plane equations and layer

assignments that are consistent with the inputs. Our world of "Textureless Layers" is very similar

to the "Origami World" of [Kanade, 1980]. Our algorithm is similar in that: (1) the only source

of information is a set of lines, and (2) it is a (brute force) combinatorial search for a consistent

solution. On the other hand, our algorithm considers the consistency of a set of 3D planes with

multiple input images rather than looking for a consistent 2D junction labeling in a single image.

This paper is a first attempt to study "Textureless Layers". Questions for further study include:

(1) how to extend our algorithm to non-rigid scenes where each layer is moving independently,

(2) how to combine our algorithm with traditional layers algorithms when the scene consists of both

textured and textureless regions, (3) how to extend our algorithm to cope with topology changes

in the input images, (4) whether it is possible to combine our algorithm with [Kanade, 1980], and

20

(5) how to choose the "most plausible" solution.

References

[Baker et al, 1998] S. Baker, R. Szeliski, and P. Anandan. A layered approach to stereo recon-

struction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 434-441, 1998.

[Bergen et al, 1992] J.R. Bergen, P. Anandan, K.J. Hanna, and R. Hingorani. Hierarchical model-

based motion estimation. In Proceedings of the European Conference on Computer Vision,

pages 237-252, 1992.

[Darrell andPentland, 1995] T. Darrell and A.P. Pentland. Cooperative robust estimation using

layers of support. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(5):474-

487, 1995.

[Faugeras et al, 1987] O.D. Faugeras, F. Lustman, and G. Toscani. Motion and structure from

point and line matches. In Proceedings of the IEEE International Conference on Computer

Vision, pages 25-33, June 1987.

[Hartley, 1994] R. Hartley. Projective reconstruction from line correspondences. Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages 903-907, 1994.

[Hsu et al, 1994] S. Hsu, P. Anandan, and S. Peleg. Accurate computation of optical flow by

using layered motion representations. In Proceedings of the International Conference on Pattern

Recognition, pages 743-746, 1994.

[Kanade, 1980] T Kanade. A theory of origami world. Artificial Intelligence, 13:279-311, 1980.

[Lucas and Kanade, 1981] B. Lucas and T. Kanade. An iterative image registration technique with

an application to stereo vision. In Proc. ofUCAI, pages 674-679, 1981.

[Sawhney and Ayer, 1996] H. Sawhney and S. Ayer. Compact representations of videos through

dominant and multiple motion estimation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 18(8):814-830, 1996.

21

[Taylor and Kriegman, 1995] C.J. Taylor and D.J. Kriegman. Structure and motion from line seg-

ments in multiple images. IEEE Transactions on Pattern Analysis and Machine Intelligence,

17(11):1021-1032, 1995.

[Wang and Adelson, 1993] J. Wang and E.H. Adelson. Layered representation for motion analy-

sis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

361-366,1993.

[Weiss and Adelson, 1996] Y. Weiss and E.H. Adelson. A unified mixture framework for motion

segmentation: Incorporating spatial coherence and estimating the number of models. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 321-326,

1996.

[Weng et al., 1993] J. Weng, N. Ahuja, and T. Huang. Optimal motion and structure estimation.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(8):864-884, 1993.

A Checking Depth Ordering

At several points in Section 4.5.2 we assumed that we could check the depth ordering of planes

and lines along rays in space defined by pixels in the input images. Suppose that we are working

with the image Ip captured with a camera with projection matrix P p . The ray through the pixel

(u, v)T in image Ip is defined by:

\
X

y

z

1 ,

= (ppr

/ u

V

I 1

\

(13)

where (Pp)* = (PP)T [PP (PP)T]~ 1 is the pseudo-inverse of the camera matrix P p , ^ any vector

in the null space of P p (P p p p = 0), A is an unknown scalar, and = denotes equality up to scale. In

Section 4.5.2 (u, v)T is set to be one of the end points of one of the 2D lines Zf = (ff, sf).

22

As A varies in Equation (13), the point (x, y, z, 1)T traces out a line in the 3D projective space.

In order to compute depth ordering we need to know whether A increases or decreases into the

scene. This can be determined by: (1) Estimate the value of A that corresponds to the image plane

by setting the bottom (4th) row of the right hand side of Equation (13) to zero and solving. Denote

the result of this Ao. (2) Intersect any ray with any of the planes to estimate another value of A. See

below for how to do this. Denote the result of this Ai. If Ai > Ao then A increases into the scene.

To complete the description of how to compute the depth ordering along the ray defined by the

pixel (u, v)T in image Ip, all we need to do is describe how the value of A in Equation (13) can

be computed for planes (and lines.) The value of A that corresponds to the intersection of the ray

through (z/, v)T with the plane iXj = (n^, dj)T is the solution of:

r
\

u

V

1

Ap» 7T7- = 0. (14)

The value of A that corresponds to the intersection of the ray through (u, v)T with the line Lj =

(Fj, Sj) (or the plane TTJ = Lj defined by one line) is the solution of:

\

+ (15)

for A (throwing away the results for 7, and /j,). Assuming that the pixel (u, v)T lies on the projection

of the 3D line Lj into the image Ip (which is always the case in Section 4.5.2) this over-constrained

system of equations (4 equations and 3 unknowns) must have an exact solution.

23

