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1 Introduction

Schizophrenia (SZ) is a severe, chronic and persistent mental disorder with onset in late adoles-

cence or early adulthood resulting in lifelong mental, social and occupational disability. Alzheimer's

Disease (AD) is a disease of aging, and the financial and social burdens of AD are compounded

by recent and continued increases in the average life span. Assisting clinicians in making accurate

early diagnostic distinctions becomes increasingly important with the development of effective

treatments for CNS diseases.

Structural Magnetic Resonance (MR) images have an important advantage over other imaging

modalities in that they are non-invasive and provide detailed information about gray and white mat-

ter parenchyma of the brain, and cerebrospinal fluid (CSF)-filled spaces. Classification of SZ and

AD patients using high resolution MR Images of human brains is a challenging task even for the

most experienced neuroradiologists. Many researchers are pursuing automatic or semi-automatic

classification of patients based on MR images [2, 7, 15, 9, 17]. Most work has been done on

precise segmentation of various anatomical structures for volumetric and local shape comparisons

[15, 17]. Voxel-based approaches to the analysis of imaging data are powerful tools for rapid, au-

tomated comparisons of functional or structural imaging information in large numbers of subjects

without the tediousness and subjective bias of hand tracing methods [1]. However, the validity of

applying spatial normalization to image sets of elderly and AD brains has been challenged, and the

greater variability in brain morphology that accompanies aging and dementia suggests that stereo-

tactic anatomic standardization needs to be used with care [19]. In both cases of SZ and AD, there

are considerable existing reported group morphological differences in specific anatomical struc-

tures of the brain [4, 19]. Due to group overlap, however, there is no existing reliable means to

distinguish whether an individual MR image is from a specific disease category (SZ v. normal or

AD v. normal), particularly in early stages of the disease. For example, several recent studies have

suggested subtle population differences on MR images [5] of mild cognitive impairment (MCI) in-

dividuals, many of whom may go on to develop AD over the next several years. Indeed, those MCI

subjects with smaller hippocampi had a greater likelihood of progressing to AD. Unfortunately,

these findings have limited clinical utility for individual patients, as there is large overlap in hip-

pocampal size between the groups due to high inter-individual variation of hippocampal volume

with normal aging.

We propose an alternative image feature based statistical learning approach, in addition to

anatomical structural morphology analysis, to better classify MR image classes. We formulate

this as a supervised learning problem, where the MR image labels are given (class decisions are

made by doctors based on specific clinical criteria for SZ and AD through behavior and cognitive



tests). The key element is to learn those MR image features that best discriminate disease classes.

We shall examine both separability on the training data to explore, visualize and understand the

structure of the data, and generality in terms of leave-one-out cross validation results to evaluate

the generalization power of the selected MR image features.

Our method uses an ideal midsagittal plane based affine registration algorithm to bring all brain

volumes into global spatial alignment. More than 3000 MR image features are extracted, which

form a high dimensional coarse-to-fine hierarchical description of structural MR neuroimages,

capturing quantified brain asymmetry, texture and statistical properties of MR images in corre-

sponding local regions. Discriminative image feature subspaces are computed and screened. Our

initial experimental results demonstarte an avearge of 88% classification accuracy on five binary

classification setups (Tables 2 and 3). The outcome of our approach complements segmentation-

based methods for enhanced automatic MR image classification. Such an automatic tool will aid

in the diagnosis of neuropsychiatric disease, and potentially guide patient prognosis and therapy.

The impact of such a computational framework may shift the emphasis from treating psychosis

and preventing relapse towards illness prevention.

Section 2 gives a general description of our approach. Section 3 describes our experiments on

SZ and AD datasets. We clarify some important issues in Section 4 and summarize the paper in

section 5.

2 General Approach

We propose a novel approach for exploring thousands of image features to find a discriminative

feature subspace where sample data points extracted from SZ or AD MR images are best separated

from those of normal controls. The basic components in our computational framework include:

3D Image Alignment: All MR images for each classification problem in our feasibility study are

taken using the same scanner and protocols. We verify image intensity consistency by carrying out

an analysis of intensity histograms of input image sets from which no outliers are found.

All MR images are deformably registered using an affine registration algorithm based on max-

imization of mutual information [14]. For the schizophrenia study, we registered the images to a

digital atlas provided by Dr. Kikinis' group at Harvard Medical School [11]. For the Alzheimer

study we registered the images to the Montreal Neurological Institute (MNI) template [6]. The reg-

istration transformation is a global affine deformation, such that all brain images are normalized

for shape and scale. Internal differences are intentionally not corrected by local deformations.

An automatic ideal midsagittal plane (iMSP) extraction algorithm [13] is applied to each 3D

MR image before and after the above affine registration ro (1) initialize yaw, roll angles and X-axis



translation [13] before the 3D registration for faster convergence and better registration accuracy.

(2) validate iMSP accuracy after affine registration. Figure 1 shows some sample corresponding

coronal slices of different subjects after affine registration, and (3) prepare each 3D image for iMSP

based brain asymmetry image feature extraction.

Regions of Interest: Since each brain image is affinely registered with a digital atlas in 3D space,

and resliced in the same way as the atlas, we are able to identify a region of interest (ROI) by spec-

ifying a stack of 2D slices on the atlas. In this initial work, only a portion of the 3D brain volume

is used to test our algorithms. The 3D regions tested in this study are suggested by our medical

collaborators. These are regions which may have potential relevance to disease classification on

individual MR scans implied in the literature, though no definitive results have been reported.

Figure 1: Left: sample corresponding slices from four different subjects, vertical correspondence indicated
by yellow lines, before and after affine registration (left to right: control, schizophrenia patient (sz), control,
sz). Note, the feature selection process also chooses which slices in a 3D volume is the most discriminative.
Right: input consecutive slices of one subject where the iMSP is aligned with the center of the image in
preparation for brain asymmetry computation, and the ROI is cropped uniformly on images from all subjects
after registration.

Image Feature Types: Two general categories of image features are used in our feasibility study:

(1) statistical features [10] (16 types) and texture features (25 types), a total of 41 image features

are extracted (Figure 2). Table 1 lists the 41 image features used in this work.

The 25 texture features are Law's texture features [12]. 2D convolution kernels for texture

discrimination are generated from a set of one-dimensional convolution kernels. From these one-

dimensional convolution kernels, we can generate 25 different two-dimensional convolution ker-



Table 1: Statistical and Texture Features Definition

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Statistical Features (16)

mean intensity

variance

vertical edge

horizontal edge

diagonal edge

(other) diagonal edge

edge orientation

standard deviation

maximum intensity

minimum intensity

median intensity

intensity range

energy

skewness

kurtosis

entropy

Texture Features (25)

mnemonics Five ID convolution kernels
Level L5 = [ 1 4 6 4 1 ]

Edge E5 = [-l -2 02 1 ]

Spot S5 = [-l 0 2 0 - 1 ]
Wave W5 = [-l 2 0-2 1 ]

Ripple R5 = [ 1 -4 6 -4 1 ]

Twenty-Five 2D convolution kernels

L5L5 E5L5 S5L5 W5L5 R5L5

L5E5 E5E5 S5E5 W5E5 R5E5

L5S5 E5S5 S5S5 W5S5 R5S5

L5W5 E5W5 S5W5 W5W5 R5W5

L5R5 E5R5 S5R5 W5R5 R5R5

nels by convolving a vertical 1-D kernel with a horizontal ID kernel. As an example, the L5E5

kernel is found by convolving a vertical L5 kernel with a horizontal E5 kernel.

Figure 2 shows some of the extracted features on a 2D coronal slice. For each filtered brain

slice I(x, y), we also compute an asymmetry brain image feature defined as: D(x. y) = I(x. y) —

IvRef{x, y) where IvRef is the vertical reflection of the original feature image I(x, y). Since I(x, y)

is already centered by the iMSP, D(x, y) is the intensity difference of the corresponding left and

right halves of a brain slice.

Image Feature Location: One important aspect of our exploration is to localize where the poten-

tial discriminative features lie in the ROI. We subdivide each slice of the registered brain (in coronal

or axial direction) hierarchically. Figure 3 shows such a division on three levels (each level has 1,

4 and 16 regions respectively). For each level, we compute (1) mean and (2) variance of the image

feature in each subdivision. Given both original image feature slices and bilateral asymmetry dif-

ference slices, a total of (1+4+16)*4 = 84 "location features" are generated for each image feature

type on each 2D slice. Therefore we have a total of 41 x 84 x #of slices = 3444 x #of slices
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Figure 2: Left: A sample view of all extracted statistical features. From left to right, top to bottom: mean

intensity, variance, vertical edge, horizontal edge, diagonal edge, (other) diagonal edge, edge orientation,

standard deviation, maximum intensity, minimum intensity, median intensity, range, energy, skewness, kur-

tosis, entropy. Right: the top-left 3 by 3 2D texture features out of the 25 Law's texture features: L5L5,

E5L5, S5L5, W5L5, R5L5; L5E5, E5E5, S5E5, W5E5, R5E5; L5S5, E5S5, S5S5, W5S5, R5S5. They are

formed by five ID convolution kernels: Level, L5 = [ 1 4 6 4 1 ]; Edge, E5 = [ -1 -2 0 2 1 ]; Spot, S5 = [ -1

0 2 0-1] ; Wave, W5 = [ -1 2 0 -2 1 ]; and Ripple, R5 = [ 1 -4 6 -4 1 ].

dimensional feature space with both regional, statistical and textural information to explore.

Discriminative Feature Evaluation and Screening: A common theme in our research is to use

available image features selectively for different image discrimination tasks; this is especially ef-

fective when there is redundancy within different feature dimensions which is a strong characteris-

tic of image features. For a feature F with values SF in a data set with C total classes, we define

an augmented variance ratio (AVR) as follows

Var(SF)
AVR(F) = Varj(SF)

C L*i=l

where Vark(Sp) is the variance of the subset of values from feature F which belongs to class c

and mearii(F) is the mean of feature F's values in class L AVR is the ratio of the variance of the
feature between subjects to the variance of the feature within subjects, with an added penalty for
features that have close inter-subject mean values. Individual features that have higher variance
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Figure 3: This diagram illustrates the hierarchical decomposition of each slice. For each image feature we

compute the mean (m), variance (v) , asymmetry mean (mA), and asymmetry variance (vA) in each red,

green, and yellow block indicated (right). We then concatenate all of these local measures into a feature

vector. The numbers in each block indicate an index of the feature location (clockwise rotation of the four

quarters starting from top-left).

ratios are more discriminative. AVR ranked features provide us with a quantitatively plausible

approach to remove non-discriminative features before applying forward sequential feature subset

selection [3]. Feature subset selection is carried out using Linear Discriminant Analysis (LDA) [8]

as the evaluation classifier, which has a measure for discriminating power that is consistent with

AVR.

Separability Analysis: We define separability of a data set in a particular feature subspace

as the classification rate (plus sensitivity and specificity) in that feature space using a K-nearest

neighbor (KNN) classifier [8] with a fixed K. Different feature subspaces are explored using either

an exhaustive search for all triplet features or a forward sequential selection method [3]. The result

is a set of image feature subspaces with the highest classification rates indicating highest degrees

of separation among image classes.

Prediction: Given N data points (3D MR images from N different subjects), N — 1 are used

for training to find discriminative feature subspaces, and the one left out is used as the unseen

test sample for the classifier prediction accuracy evaluation. This process is repeated N times

in a round-robin manner. Summarize the classification results on each of the N subjects during

the leave-one-out (LOO) cross validation, we compute the LOO classification rate, sensitivity and

specificity.



3 Experiments

3.1 Classification of Schizophrenia Patients

A feasibility study is carried out using (1) an image data set from Dr. Shenton of Harvard medical

school [18] containing MR images of 15 schizophrenia patients (chronical) and 15 controls; and

(2) an image data set from Univeristy of Pittsburgh containing MR images of 24 first episode

(FE) schizophrenia patients and 27 normal controls. The controls are matched in age, family

background and handedness. From each 3D MR scan a set of 2D coronal slices are sampled

around the region of interest (Figure 1). Taking the top 30 most discriminative features from more

than 3000 candidates, followed by sequential forward feature selection using LDA [3], and LOO

using KNN we achieve the results listed in Table 2.

Table 2: Schizophrenia Classification Experimental Results

Disease Class

# of Subjects

Separability

Sensitivity

Specificity

Prediction (LOO)

Classification Rate

Sensitivity

Specificity

CTL v. SZ (chronical)

(15 v. 15 from Harvard)

100%

100%

100%

90%

93%

87%

CTL v. SZ (first episode)

(27 v. 24 from UPMC)

90%

88%

92%

78%

79%

77%

Figure 4 shows two image feature subspaces automatically selected from the Harvard schizophre-

nia data. Clear linear separation between SZ patients and controls is observed. The locations

of selected discriminative features include quantified brain asymmetry from temporal lobe re-

gions, which echos previous findings on temporal lobe asymmetry difference between normal and

schizophrenia patients [18].

3.2 Classification of Alzheimer's Disease

A set of 60 subjects are selected by experts from University of Pittsburgh Alzheimer's Disease

Research Center (ADRC funded by NIH), in which 20 are normal controls, 20 are subjects with

MCI, and 20 are diagnosed AD patients matched on age, education and sex.



(1) (2)

Figure 4: Two 3-feature subspaces automatically selected for two different schizophrenia MR image data

sets. (1) Harvard image set of chronic SZ versus normal controls. (2) UPMC image data set of FE SZ

patients versus normal controls. In both cases, clear linear class separation can be observed where red

stars are from schizophrenia MR images and blue hexagons are from normal controls. The three feature

dimensions in (1) correspond to range feature in lower left quarter, L5E5 texture feature in top-middle-left

block and horizontal edge filtered from the lower left quarter (Figure 3). In (2) the three features are from

slice 2, statistical feature 10, location 39; slice 7, statistical feature 7, location 53, and slice 7, texture feature

18 at location 78 (local region brain asymmetry).

The image data are acquired in three dimensions to obtain 120 thin, contiguous images through-

out the entire brain. The contrast was designed to maximize the gray-white matter and CSF differ-

ences (TR=25, TE=5, slices = 1.5mm, 0 gap, 40 degrees flip angle, FOV=24xl8cm), the data are

gathered in the coronal plane, this minimizes partial voluming effects. See Table 3 for classifica-

tion results on this data set. Figure 6 shows statistics of selected discriminative image features for

MCI versus controls. These plots indicate the most frequently selected image features and brain

regions.

Combination of Image Features with Shape Features: Using LONI (Laboratory of Neuroimag-

ing, UCLA) software [16], we have hand-segmented hippocampi for each subject in the 20-20-20

(control, MCI and AD) image data set. We explore the effect of adding this morphology informa-

tion into our image feature selection process. Several shape features are computed using the hand

traced 3D surface information. They are: hippocampus volume, the coordinate of the centroid of

the hippocampus, the x,y, and z dimensions of the bounding box around the hippocampus, the 2nd-



Table 3: Alzheimer's Disease Classification Results

Disease Class

# of Subjects

Features Used

Separability
Sensitivity

Specificity

LOO Classification

Sensitivity

Specificity

CTL v. MCI

20 v. 20

Image

100%

100%

100%

93%

100%

85%

CTL v. AD

20 v. 20

Image

96%

95%

96%

93%

85%

100%

MCI v. AD

20 v. 20

Image

97%

100%

95%

78%

80%

75%

MCI v. AD

20 v. 20

Image+Shape

98%

100%

95%

88%

85%

90%

order geometric moments of the hippocampus along three axes, and 2nd-order legendre moments

of the hippocampus. Adding these shape features to the image feature selection process we have

achieved better classification rates. For MCI versus AD case, for example, the right hippocam-

pus volume and second-order geometric moments along the XZ direction respectively are selected

jointly with image features with improved separability and LOO results (right-most column in Ta-

ble 3). This result indicates that the image intensity features and shape features complement each

other in discriminative power for disease classification.

Experiments with Multiple Classifiers: We have also experimented with many standard clas-

sifiers including decision trees, dicision graphs, decision stumps, instance-based learning, naive

bayes and support vector machines (SVM) with or without bagging or stacking on the top 100

AVR ranked image features. We found the performance depends primarily on the features used.

Using the top 30 AVR ranked image features in combination with shape features, for example,

decision stumps achieves the best classification rates for control versus AD, 90% (sensitivity and

specificity).

4 Discussion

Our method establishes a framework for a computer system to automatically explore very high
dimensional image feature spaces in search of a discriminative subspace. The preliminary results
suggest that regional image features contain highly discriminative information to separate different
CNS diseases from normal brains on several limited (15 to 27 subjects in each disease class) but
well-chosen image sets. The leave-one-out results also suggests the potential to build a disease



Figure 5: Sample LOO result showing the predicting power of the learned image feature space for MCIs

versus normal controls. The large star indicates the subject (an MCI patient) which is left out as the testing

sample, as it is placed back into the learned discriminative feature subspace for classification. In this case,

the classification result is positive. The three feature axes are all from slice one (Figure 6): 17 is the mean

of bilateral asymmetry value from region 64 when image feature median intensity is used. 18 is the same as

17 except it is from image feature mean intensity, and 19 is from region 27 representing the variance of a

texture feature combining spot and ripple (Figure 3).

predictor that uses critically chosen image features to classify an unknown image into one of the

correct disease categories with probability much higher than chance. In the case of AD, for exam-

ple, the LOO result of controls versus AD surpasses the result reported in [9], which is based on

only one-time division of the input data — the probability of chance is high. Our result, on the

other hand, is based upon a statistically justified 40-way division LOO cross validation [8]. Using

selected triplet image features alone on SZ classification, our result (Table 2) also surpasses the

performance reported in [17] on the same image set.

One non-intuitive aspect of our approach perhaps lies in the fact that, contrary to most medical

image analysis work and particularly in SZ and AD MR image studies, no anatomical segmentation

of the MR neuroimages is carried out. Instead, we bring all brain images into a common coordi-

nate system where their iMSPs coincide, divide each 2D slice into equal sized geometric regions

and compute image properties in that region where the true anatomical structures in corresponding

patches may or may not correspond. Our method takes advantage of this local non-correspondence

or intensity discrepancy by examining quantitatively whether it is representative of its own image

semantic class (disease). Another advantage of our method over, e.g. neural network approaches,

is that it is not a black-box. We are able to visualize the relative weights in the found discrimina-
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Figure 6: Three plots showing feature type, slice number and geometric location of the most discriminative

features selected for MCI versus normal controls prediction. Top: The most popular image feature is the

15th texture feature (31st on the X axis) composed of ripple and spot. Middle: The most important slice in a

3D image is the most inferior slice in the chosen ROI. Bottom: besides the feature extracted from location 1

(overall mean), the top three most discriminative features come from region 64 (mean intensity asymmetry

value), region 14 (mean value of the top left-middle region) and region 27 (the intensity variance) (Figure

3).

tive subspace, data points distributions, and trace back the type and the (anatomical) locations of

selected image features (Figure 6).

There are several limitations in our current experiment setup, including: (1) the data set is

small. (2) the skull is not removed from the image beforehand such that some boundary regions

contain background signal intensity. (3) image features are all 2D features extracted from each

slice. Therefore we propose to gather more MR image cases, improve image preprocessing and

add a large variety of image feature extractors, especially 3D image features in our future research.

5 Conclusion

In this paper, we propose and validate a new method for SZ and AD MR image discrimination

via exploration in high dimensional image feature spaces. For a given disease versus control data

11



set and a local ROI, the algorithm is able to automatically find both the type and the location of

the most discriminative image feature subsets for data visualization, exploration and prediction.

In these subspaces the two classes can be linearly separated. Based on clinical need, we have in-

troduced an intermediate disease category, first episode for SZ and MCI for AD, forming a more

challenging classification problem. Our classification algorithm has shown superior performance

compared with existing reported results. Furthermore, the learned feature subspace is stable as

demonstrated by the results of leave-one-out cross validation. The locations of discriminative im-

age features found in focused ROIs are clinically relevant, and include quantified brain asymmetry,

which echos previous findings on temporal lobe asymmetry in SZ and hipocampi asymmetry in

AD patients. We plan to explore the whole brain systematically in future studies, and test our

method on a larger, well defined data set.
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