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Abstract

We present a heuristic-based propagation algorithm for solving Markov decision
processes (MDPs). Our approach, which combines ideas from deterministic search
and recent dynamic programming methods, focusses computation towards promising
areas of the state space. It is thus able to significantly reduce the amount of process-
ing required in producing a solution. We present a number of results comparing our
approach to existing algorithms on a robotic path planning domain.
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1 Introduction

Markov decision processes (MDPs) have been widely used as a model for uncertainty-
based reasoning in AI, due to their generality and intuitive appeal. However, classical
methods for solving MDPs require time at best polynomial in the number of states in
the domain [6]. When dealing with large state spaces, this can become burdensome. As
a result, a number of researchers have investigated ways of reducing this computation,
by restricting the number of states considered or processing the states in a particular
order.

In this paper, we present a heuristic algorithm for solving MDPs which borrows
ideas from these recent MDP algorithms, as well as from classical deterministic plan-
ning. Our approach focusses attention on areas of the state space which appear most
promising, and processes these areas in such a way as to reduce the overall computation
required.

We begin by reviewing MDPs and classical techniques for solving them. In Section
3, a number of more recent approaches are described, which attempt to exploit different
characteristics of the problem in order to reduce the amount of processing performed.
In Section 4, we present our algorithm and explain some of the intuition behind it.
We then provide comparative results for all the algorithms on a robotic path planning
domain. Finally, we conclude in Section 6 with additional discussion.

2 Markov Decision Processes

A Markov decision process is defined as a tuple (S, A, P, R), where S is the set of
states of the world, A is the set of actions available in every state, P : S x A x S —>
[0,1] is the transition model such that P(si, a, Sj) is the probability of transitioning to
state Sj when performing action a in state s^ and R : S x A is the reward function,
where R(si,a) specifies the expected reward for taking action a in state S{. A policy
TT : S —• A is a mapping from states to actions, specifying an action to be taken in each
world state.

Given a policy TT and a reward function R, we can define the value of a state Si to
be its expected total (undiscounted) reward under the policy TT. Given this definition,
the value of state Si given policy TT can be written as [9]:

A policy TT is said to be optimal if Vir(si) > V^{si) for all Si £ S and policies TT'.
Given an optimal policy TT, Vn is known as the optimal value function. Typically, it is
these two elements we are trying to calculate.

2.1 Path Planning MDPs

We are interested in solving the domain of robotic path planning. It is most often the
case in path planning that we are trying to minimize the overall cost incurred along a
path to the goal, rather than maximizing some reward function. Thus, instead of having
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rewards associated with each state-action pair, we have costs C : SxS associated with
moving between pairs of neighboring states. Since, in path planning, the states of the
system typically correspond to positions in the environment, these costs are generally
based on the difficulty of the terrain associated with the two states. The modified value
equation becomes

VASi)=J2 P{SiMSi),Sj) -(0(3^3^ + V^Sj)). (1)

There are a few key properties of the path planning domain which set it apart from
the general MDP framework.

Firstly, it has a low dispersion rate [6]: from any state in the environment, there
are only a few neighboring states into which an agent may move. Secondly, there are
specified start and goal states: an agent is trying to determine a path from the start state
to the goal state.

Finally, the uncertainty associated with actions is limited: given realistic motion
models of current robotic actuators (see [13, 12]), the number of possible states an
agent may end up in after applying an action in a given state is very small. We will
describe the models we use for experimentation in more depth in Sections 4 and 5.

As we will see, these properties enable one to use clever algorithms to reduce the
amount of computation necessary to solve path planning MDPs. These algorithms are
discussed in Sections 3 and 4.

2.2 Classical Approaches

An optimal policy and value function for an MDP can be computed using the classical
approaches of value iteration [2], policy iteration [9], or linear programming [3, 14].
We restrict our attention here to the former two methods.

Value iteration works by treating the value equation as an assignment. It starts with
an initial upper bound value V^ and at iteration i it sets

) = min ]T Pisi^Sj) • (C(s^Sj) + V^(Sj))
Sj£S

for each element Si G S. It provably converges to the optimal value function [5] and
the optimal policy can be extracted by picking the action in each state which achieves
the minimum value specified by the value function.

Policy iteration works by maintaining a current policy TT^ at each step i. It solves
for the value function of this policy using Equation (1), then allows the policy to be
updated so that the action taken in each state provides the minimum value relative to
the newly computed values for the state's neighbors. This process repeats until the
policy does not change between iterations, i.e., TT^+1^ = TT^\ This algorithm also
provably converges.

Both of these approaches require a number of value updates (the number of times
the value equation must be performed) polynomial in the number of states in the world
[4], Typically, value iteration is more efficient when the number of applicable actions
in each state is small.



3 Related Approaches

Both value iteration and policy iteration are simple algorithms guaranteed to produce
optimal results. But often the computation required to generate these results is far more
than is necessary. In particular, when we are only interested in the values and policies
of a restricted subset of the states in the world, it may be more sensible to restrict our
attention to these states. Furthermore, in domains such as robotic path planning, it can
make a huge difference if we order our value updates in a sensible manner.

The following four approaches attempt to gain computational advantage over the
classical methods by paying close attention to the nature of the particular problem being
solved. As a result, they are often able to produce solutions much more efficiently. We
present each as it applies to the path planning MDP framework described above.

3.1 Real-Time Dynamic Programming

In [1], Barto et al. introduce the Real-Time Dynamic Programming (RTDP) algorithm.
The algorithm attempts to restrict the number of examined states to a small fraction of
the complete state space.

The algorithm begins with admissible value estimates for each state in the world.
It then performs a series of simulated traverses through the environment, beginning
from the start state and following the greedy policy with respect to the current value
estimates. The values of states are updated using the value equation as they are en-
countered along these traverses.

The algorithm has been shown to converge to the optimal value function on the set
of all states reachable from the initial state under the optimal policy [1].

3.2 Envelope Propagation

In [6], Dean et al. describe a related method of reducing the state space to an "envelope"
of consideration. As with RTDP, the Envelope Propagation (EP) algorithm begins with
admissible value estimates for each state in the world. Ten depth-first paths from the
start state to the goal are generated. They then remove redundant steps in each of these
paths and select the shortest. Given this path as their initial envelope, they "strengthen"
it by adding neighboring cells which may help increase the chance of an agent staying
within the envelope if it tried to follow the policy induced by the path.

They then alternate between two phases: envelope expansion and policy generation.
The envelope expansion phase consists of simulating a number of runs through the
envelope from the start state, following the current policy. If a run encounters a state
which is not in the envelope, then that state is marked as a potential element to be added
to the envelope. After all the simulated runs are performed, the states which were
encountered most often are added to the envelope. The envelope is then strengthened
by computing paths from each of these new states back into the envelope, and adding
the states along these paths to the envelope also.

The policy generation phase consists of performing dynamic programming over the
envelope to compute an optimal (relative to the envelope) policy for each state in the
envelope. This can be performed using either policy iteration or value iteration.
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3.3 LAO*

Similar in practise to the envelope propagation of Dean et al. is the LAO* algorithm
[8, 7]. LAO* also alternates between an expansion phase and a policy generation phase.
However, its expansion phase is slightly different from that of envelope propagation.
A "fringe" of states is maintained, which represents all states adjacent to the current
envelope which are reachable from the start state given the current policy. During
expansion, the entire fringe is added to the envelope. Thus, LAO* can increase its
envelope quite substantially at each expansion phase.

It is worth noting that the motivation behind LAO* was the extension of the classic
search algorithm AO* to handle cyclic domains such as MDPs [8]. The application of
deterministic heuristic search techniques on stochastic domains has proven to be very
fruitful. The research we present here is likewise an attempt to capture the intuition
behind a number of classical search ideas and employ it in the development of effective
stochastic algorithms.

3.4 Prioritized Sweeping

The Prioritized Sweeping (PS) algorithm was developed by Moore and Atkeson to
perform reinforcement learning on stochastic Markov systems [10]. Rather than per-
forming a number of passes through the environment in which every state has its value
updated, as value iteration does, Prioritized Sweeping maintains a priority queue and
updates states of the world based on their priority in this queue.

There are two possible ways of employing PS on the path planning MDP. The first
is to initialise all states with admissible heuristic values, then perform PS propagation
from the start outwards. The second is to initialise all states (except for the goal) with
infinite values and perform propagation from the goal inwards. In the former case, the
priority queue is seeded with the start state, while in the latter case, it is seeded with
the states neighboring the goal.

In both cases, the algorithm then repeats the following steps. The state s with
maximum priority is popped off the queue and a value update is performed for s. The
difference in the value of s before and after the update is recorded, as its delta value,
A. Each state which neighbors s is then placed onto the queue with priority A (or has
its priority updated if it is already on the queue with a lower priority).

This process continues until the priority queue is empty or an acceptable solution
has been reached.

Prioritized Sweeping focusses its computation on areas of the environment which
are experiencing the greatest change in value during propagation. Often, these areas
are the most interesting and by updating them first, their resulting values can be used
to more accurately update subsequent states.

4 Focussed Dynamic Programming

Each of the above approaches uses one of two methods to reduce the amount of com-
putation required. The first method, used by RTDP, EP, and LAO*, is to restrict the set



While termination criteria not satisfied

1. Pop the state with minimum key value from the
queue. Call this state x.

2. For each state s e {xU nbrs(x)}

2.2 V'(s) :=min V" P(s,a,Sj) • (C&
£S

2.3 A := \V(s)-V'(s)\

2.4 V(s) := V'(s)

2.5 If A > e

(i) H.{r, s) := Heuristic Cost from start state to s.

(ii) Q(s, g) := Heuristic Cost from s to goal,

(iii) K:=H(r,s) + g(s,g)

(iv) Insert s onto queue with key value /C.

Figure 1: The Focussed Dynamic Programming Algorithm

of considered states to include only those which are completely necessary for obtaining
an optimal solution. This allows these approaches to ignore potentially large sections
of the world and thus reduce the number of value updates required.

The second method, used by PS, is to pay particular attention to the order in which
states are updated, so that each update can be as effective as possible. By concentrating
on areas of the world which are experiencing the greatest change in value, PS is able
to direct its value propagation from areas which have had their values updated towards
areas which have not.

Our new algorithm, Focussed Dynamic Programming (FP), attempts to capture the
benefits of both of these methods. It uses heuristics to limit the number of states exam-
ined and focusses value updates so that they are used most effectively.

Like the deterministic search algorithm Focussed Dynamic A* (D*) [11], our algo-
rithm propagates out from the goal state and focusses towards the start state. It selects
states to update based on a heuristic estimate of their value and a heuristic cost to the
start state. Both of these considerations are vital: incorporating the heuristic estimate
of a state's value helps ensure that states that could have low optimal values but have
high current values are updated, and incorporating the heuristic cost to the start state
favors states which are likely to have the greatest influence on the value of the start
state.
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Figure 2: The possible resulting states after attempting to move from state s to state sj
using our action model.

All states are initially assigned infinite values, and the value of a state at any time is
an upper bound of the state's optimal value. The algorithm maintains a priority queue
of states to be updated, ordered by increasing key values. The key value of a particular
state s is the heuristic cost from the start state to s plus the (continuously updated)
heuristic cost from s to the goal.

When a state s is popped off the priority queue, s and all of its neighboring states
have their values updated. As with PS, each of these states computes its own A: the
difference in its value before and after the update. If the A for a particular state is
greater than some tiny threshold, the state is added back onto the queue with its new
key value. If the state is already on the queue, it is promoted if its new key value is
less than its previous one. In this way, the A values are used to decide when to insert
a state onto the queue, but they do not have any influence on the state's priority within
the queue.

The complete algorithm is given in Figure 1. Thus far, we have not mentioned
how the heuristic functions H(r, s) and Q(s, g) compute their values or what termina-
tion criteria we use. We discuss these choices with respect to our desired application
domain.

4.1 3-State Action Path Planning

To take into account the uncertainty associated with current robotic actuators, we em-
ploy a motion model which assumes error in the translational and rotational directions
(as in [13, 12]). Our planning is performed over an eight connected grid, with eight
available actions from each state in the grid. Our motion model takes the shape of a
mapping from states and actions to probability distributions over adjacent states.

Since the distance associated with each action is small, it is unrealistic to assume
that an action may take an agent wildly off its intended track. As such, our motion
model assigns nonzero probabilities to only three adjacent states for each action. Figure
2 shows the possible resulting states after attempting to move from state s to Sd- Of
course, the probabilities associated with ending up in each of these states are different:
it is much more likely that the agent will end up in state Sd than either of its unintended
neighbors. Notice that we have not allowed for the possibility that the action takes the
agent backwards or directly sidewards. We are trying to model realistic robots and their
actuation error over small periods is not nearly this extreme. However, in our results
we do discuss generalising the action model (from having three possible resulting states
to five) to show that the relative efficiency of our algorithm is not tied to a particular



Figure 3: Example of Focussed Dynamic Programming in action. The sequence runs
from left to right, top to bottom.

model.
To derive an admissible heuristic function H(r, s), we assume each state in the

world has the minimum possible terrain cost, then perform value iteration to achieve
the optimal cost from each state to the start state. This only needs to be done once for
each environment size we are dealing with (assuming the start position r is kept fixed).
A less accurate heuristic is the standard Euclidean distance metric used in deterministic
planning.

The calculation of the heuristic value of a state, Q(s, g), is a little more complicated.
In deterministic search algorithms such as D* this would amount to the current value
of s: the value of the state which placed 5 on the queue plus the cost of transitioning to
that state from s. But in nondeterministic domains, the current value of s may depend
on several states. Some of these states may not have been updated yet, leaving them
with unrealistically large values. We would like the priority of a state on the queue to
represent the current promise of the state, i.e., an indication of what the value of the
state could be based on the values of states which have already converged. This would
allow us to determine which states' values were worth spending more time converging,
and which could be ignored as irrelevant.

To do this, we set Q(s, g) to be a lower bound for the value of s given the current
values of converged states. In the present domain, this is performed by computing a
heuristic value for each possible action a from state s. For each of the three possible
resulting states after performing action a (s^, si, and sr) we use one of two values. If
the state is an obstacle, we use an infinite value. If the state is not an obstacle, we use



the the value of state sj. The heuristic value associated with action a is then given by

where V(a,s){
sj) *s t n e v a ^ u e u s e d for state Sj when looking at action a in state 5, as

just described. Q(s, g) is then taken to be the minimum heuristic value associated with
any action from s:

G(s,g) = mmga(s,g).

The intuition here is as follows. State 5 had to be inserted on the queue by one of
its neighbors, which at the time had the lowest key value of all states on the priority
queue. If the heuristic value of s is computed as above, then s can at best have a key
value equal to the state which inserted it onto the queue. If this key value is small
enough for s to be the most promising state (i.e., at the top of the priority queue), then
the state which inserted s onto the queue must have converged to its optimal value
given the values of states within the current "envelope": the states which have already
been popped off the priority queue. From this point, s will keep being popped until
either it has converged (at which point its A will be zero and it will not get reinserted
onto the queue) or some other state appears more promising.

The resulting algorithm captures the benefits of A* and D* while contending with
the complex interrelationship of state values inherent in nondeterministic domains such
as MDPs. Note that states which have converged relative to the current envelope do
not necessarily have optimal values - it is possible for new states to be popped which
may eventually reduce the values of states already converged. This is akin to envelope
expansion in [6] and [8].

The termination criteria we use is that of D*: when the lowest key value on the
priority queue is greater than the value of the start state. This criteria does not guarantee
that the value of the start state will be completely optimal, as we will discuss, but in
practise we have found it to generate results very close to optimal.

Figure 3 shows the states examined at various stages of the algorithm when applied
to a small example map. The start state is the blue cell at the far left center; the goal is
the blue cell at the far right. Note that the red cells are the only cells which would be
examined regardless of the size of the map.

5 Results

To test both the algorithm and the termination criteria independently, we performed
two different experiments. For use in each experiment we constructed a set of random
environments, each of dimension 200 x 200. We varied the number of obstacle cells
in the environments so that we had 20 maps for each obstacle density from 0 (no ob-
stacle cells) to 20 (one cell out of every five is an obstacle). In each map, the terrain of
non-obstacle cells was also randomly generated, and the cost of traversing between two
adjacent cells was a function of their respective terrains. The start and goal states were
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Table 1: The number of updates and time taken by each algorithm to reach the same
start error as Focussed Dynamic Programming.

OD

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

FP
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.4
0.8
1.0

Average
VIO
3.0
3.1
3.0
9.0
13.2
16.5
28.2
36.6
36.6
48.1
52.2
54.5
54.5
54.7
55.0
55.0
55.4
55.7
56.4
58.6
60.6

5 Number of Value Updates (times 10b

VIA
2.8
2.8
2.8
8.1
11.6
14.9
25.6
32.8
34.0
42.2
48.6
47.7
50.1
50.0
50.0
56.2
52.3
51.5
51.3
47.2
42.9

VIS
0.8
0.8
0.9
0.9
1.0
1.0
1.1
1.1
1.2
1.2
1.5
1.5
1.4
1.7
2.3
1.7
3.2
4.8
6.2
13.1
16.6

EP
1.7
2.0
2.4
2.8
3.3
3.9
4.3
5.1
6.0
5.5
6.5
6.4
7.2
7.4
8.4
9.2
11.7
13.4
16.5
31.0
39.8

LAO
2.2
2.3
2.3
2.4
2.5
2.6
2.7
2.9
2.9
2.9
3.0
2.9
3.3
3.4
3.8
3.9
4.7
5.3
7.2
10.9
12.6

RT
4.4
3.7
5.7
5.0
9.9
9.8
10.2
10.3
12.8
6.8
14.1
8.3
12.2
14.5
11.5
37.1
10.5
14.1
12.7
16.2
6.1

)
PS

.7

.7

.6

.6

.6
1.5
.5

1.5
.5
.4
.5
.4
.6
.6

1.7
2.1
3.3
4.4
5.7
13.3
21.6

FP
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.3
0.3
0.6
1.1
1.3

Average Time Taken (in seconds)
VIO
1.8
1.8
1.8
5.8
9.1
10.6
17.9
25.2
22.6
33.5
34.5
38.3
38.9
39.1
40.4
40.0
43.0
38.4
43.3
44.7
44.2

VIA
1.6
1.7
1.6
5.2
7.8
9.5
16.3
22.7
20.9
29.1
32.1
33.4
35.7
35.5
36.5
40.7
40.2
35.4
39.5
35.0
31.3

VIS
0.5
0.5
0.5
0.6
0.7
0.6
0.7
0.8
0.7
0.8
0.9
1.0
1.0
1.2
1.7
1.2
2.5
3.3
4.6
10.1
11.9

EP
2.3
3.1
3.9
5.2
7.0
8.0
10.0
13.8
15.9
18.1
20.5
24.0
28.9
31.7
37.9
41.4
60.3
58.9
88.0
141
167

LAO
.3
.4

1.4
.7

1.8
1.7
1.8
2.1
1.8
2.1
2.0
2.1
2.4
2.5
2.7
2.8
4.0
3.7
5.5
7.8
9.5

RT
3.5
3.0
4.5
4.3
9.1
8.0
8.4
9.7
10.4
5.8
12.1
7.4
11.1
12.4
9.7

32.0
9.9
11.8
12.1
13.6
5.7

PS
6.6
6.8
6.5
7.3
7.5
6.7
6.7
7.0
6.3
6.5
6.4
6.5
7.2
7.2
7.7
9.4
16.7
18.6
27.1
58.0
101

Error

(%)
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.01
0.52
0.31
0.01
0.39
0.19
0.00
0.03
0.01
0.14
0.33
1.74

the same for each environment: the start was at the center of the left edge of the envi-
ronment with the goal at the center of the right edge. We assumed a symmetric error
model for our actions, with P(s, a, Sd) — 0.85 and P(s, a, si) — P(s, a, sr) — 0.075.

In the first experiment, we initially ran value iteration until it converged on the
optimal value for each state in the world (VIO). We then ran our Focussed Dynamic
Programming (FP) approach until its termination criteria was satisfied. We recorded
the error of the FP value for the start state, then ran seven different algorithms until they
each reached a value for the start state that was within the error achieved by FP. The
first two algorithms, VIA and VIS, differed slightly in their termination conditions.
VIA was run until the maximum value change between iterations was less than the
specified error of the FP approach, while VIS terminated as soon as the value of the
start state was within this error of its optimal value. We recorded both the number of
value updates and CPU time required by each approach when run on a P3 1.4 GHz
processor.

In the second experiment, we altered the termination condition of the FP algorithm
so that it finished as soon as the value of the start state was within some error S of its
optimal value. We then ran each of the above algorithms over this same error threshold
and recorded their relative performances.



Table 2: The standard deviation associated with the number of updates and time taken
by each algorithm to reach the same start error as Focussed Dynamic Programming.

OD

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Standard Deviation of Value Updates (times 10
FP
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.1
0.1
0.0
0.1
0.1
0.3
0.5
0.7

VIO
0.1
0.1
0.1
12.8
15.4
17.2
22.3
20.0
19.7
14.5
9.1
1.7
2.0
2.8
2.8
2.5
2.6
2.3
3.2
3.9
4.0

VIA
0.2
0.2
0.2
11.2
13.5
14.4
20.6
17.8
18.6
13.6
12.7
9.0
7.0
10.0
8.5
6.2
9.1
7.3
12.2
10.1
11.8

VIS
0.1
0.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.8
0.8
0.1
0.8
2.8
0.2
4.1
5.3
4.6
6.1
4.9

EP
0.1
0.2
0.3
0.7
0.6
0.8
0.8
0.9
1.6
1.0
2.1
1.3
1.6
2.3
1.7
2.1
6.4
7.6
7.2
13.6
22.1

LAO
0.1
0.1
0.1
0.1
0.2
0.2
0.2
0.2
0.2
0.2
0.5
0.3
0.4
0.7
1.2
0.6
1.6
1.8
2.6
3.3
4.4

RT
2.1
1.9
5.5
3.7
10.1
7.9
10.5
10.2
14.9
7.9
13.8
8.5
12.8
11.4
13.9
51.9
9.2
18.3
14.3
50.1
4.1

b)
PS
0.2
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.2
0.1
0.2
0.3
0.3
3.1
3.5
3.1
6.7
9.0

FP
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.0
0.1
0.1
0.0
0.2
0.2
0.5
0.7
0.9

Standard Deviation of Time Taken (in
VIO
0.0
0.0
0.0
8.7
12.1
11.3
13.7
13.5
12.1
11.2
6.5
3.2
3.7
3.4
8.1
4.5
7.9
1.8
10.4
12.6
5.1

VIA
0.1
0.1
0.1
7.6
9.9
9.3
12.6
12.4
11.3
9.5
9.0
6.6
5.6
6.8
8.8
5.3
8.7
4.9
14.9
7.6
9.2

VIS
0.0
0.0
0.0
0.1
0.2
0.1
0.1
0.1
0.1
0.1
0.5
0.6
0.1
0.7
1.8
0.1
2.9
3.6
3.3
5.3
3.3

EP
0.2
0.3
0.4
0.9
1.3
1.6
2.0
2.6
3.3
4.0
4.3
4.3
5.2
7.8
9.1
8.1

23.2
22.8
32.6
71.7
53.9

LAO
0.0
0.1
0.1
0.1
0.4
0.1
0.2
0.3
0.2
0.3
0.4
0.3
0.3
0.5
0.8
0.5
1.8
1.2
2.2
2.3
3.4

seconds)
RT
1.6
1.4
4.2
3.1
9.4
6.3
8.2
10.3
11.8
6.1
12.1
7.3
11.9
9.7
11.4
44.0
8.1
15.2
14.0
41.1
4.1

PS
0.5
0.5
0.5
0.7
1.5
0.5
0.9
0.7
0.5
0.5
0.9
0.9
0.7
1.0
1.2
1.8
15.3
15.1
16.8
28.3
44.4

Where applicable, for each approach we used the same heuristic costs to the start
and goal states, obtained by performing two initial value iterations over an empty 200 x
200 environment (one for heuristic costs to the goal and one for costs to the start).
RTDP, EP, and LAO* used the heuristic costs to the goal as their initial admissible
values, while FP used the heuristic costs to the start as part of its priority measure.
We have strived to represent each algorithm favorably, in some cases making fairly
significant alterations in order to improve overall performance.

For Envelope Propagation, we performed several optimisations. Firstly, we per-
formed a heuristic-based search to generate the initial envelope, rather than depth-first
search. Secondly, during envelope expansion we added all states encountered that were
not in the envelope, and added them immediately rather than waiting until all simulated
runs were completed. This was because, especially towards the start of processing, the
runs would end up in the same state a large percent of the time, and this would limit the
number of new elements added to the envelope. Thirdly, we performed value iteration
rather than policy iteration to update values within the envelope.

Finally, we found, as did Hansen and Zilberstein [8], that both EP and LAO* per-
formed much more favorably when the dynamic programming policy generation phase
was not run to convergence. For our experiments, a single forwards and backwards
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sweep was most effective.
Together, these changes drastically improved the overall performance of the EP

approach. We also experimented with assigning inadmissible values to states outside
the envelope, but this resulted in very restricted envelopes that gave highly sub-optimal
results (and terminated without approaching optimality).

With PS, we found that propagating inwards from the goal was much more efficient
than propagating outwards from the start. This is primarily because the values of states
near the goal can be quickly updated to be close to optimal, which allows for more
accurate value updates of their neighbors. Further, this approach allowed us to restrict
the set of states added to the queue to be only those whose admissible heuristic costs
to the goal and to the start combined were less than the current value of the start state.
When propagating out from the start, all values were admissible (including the value
of the start state), so we could not use this limiting criteria. We have included in our
tables only the results for the second PS approach. Comparative results between the
first and the second approach can be found in Table 5.

The results for the first experiment are in Tables 1 and 2 . The leftmost column
represents the obstacle density (OD) of each set of environments. In the first table, the
error of the FP result is shown on the rightmost column, as a percentage of the optimal
cost. In both the number of value updates and the total time taken, the FP approach is
significantly more efficient than any of the other algorithms. A graph illustrating the
time taken by the three most efficient approaches is provided in Figure 4.
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Figure 4: Run time required for the four most efficient approaches to get within same
error (for start state value) as FP approach.
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Table 3: The number of updates and time taken by each algorithm to get the value of
the start within 5 = 0.1 of its optimal value.

OD

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Average Number of Value
FP
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.4
0.9
1.1

VIA
2.3
2.4
2.3
6.5
9.5
11.5
19.5
25.3
25.5
34.1
36.7
38.1
38.7
38.7
39.1
39.2
39.9
40.2
42.1
44.0
45.9

VIS
0.7
0.7
0.7
0.8
0.8
0.9
0.9

.0

.0

.0

.4

.4

.2

.6
2.3
1.5
3.1
4.3
6.0
13.1
17.9

EP
1.6
2.0
2.1
2.6
2.9
3.6
3.8
4.5
4.8
5.3
5.9
6.2
6.7
7.0
7.8
8.0
11.5
12.6
16.0
29.9
43.7

Updates
LAO
2.1
2.2
2.3
2.4
2.5
2.5
2.6
2.8
2.8
2.9
3.1
3.0
3.2
3.5
3.9
3.8
4.7
5.1
7.2
10.9
13.5

(time*
RT
2.2
2.2
2.2
2.3
2.2
2.2
2.2
2.2
2.1
2.1
2.1
2.0
2.0
2.0
2.1
2.0
2.3
2.4
2.7
3.9
5.2

>10b)
PS
1.3
1.3
.3

1.3
1.3
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.3
1.5
1.6
2.8
3.6
4.8
13.0
23.8

FP
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.3
0.3
0.6
1.1
1.5

Average Time Taker
VIA
1.4
1.4
1.4
4.3
6.6
7.4
12.4
17.7
15.6
23.7
24.2
26.6
27.7
27.7
27.3
28.4
31.4
27.5
32.2
32.7
35.2

VIS
0.4
0.4
0.4
0.5
0.6
0.5
0.6
0.7
0.6
0.7
0.9
1.0
0.9
1.2
1.6
1.1
2.5
2.9
4.4
9.6
13.6

EP
2.3
3.1
3.6
5.1
6.6
7.9
9.1
13.0
13.7
18.1
19.8
24.6
28.4
31.4
35.0
39.1
58.3
57.0
81.7
134.4
171.1

i (in seconds)
LAO

.3

.4

.4

.6

.8

.7
1.7
2.0
1.8
2.0
2.1
2.2
2.4
2.6
2.7
2.8
3.8
3.5
5.5
8.4
10.0

RT
1.8
1.8
1.8
2.1
2.2
1.9
1.9
2.1
1.9
2.0
1.9
1.9
2.0
2.0
1.9
1.9
2.2
2.1
2.6
3.8
4.8

PS
5.6
5.7
5.6
6.2
6.5
5.5
5.5
5.8
5.2
5.6
5.4
5.7
6.0
6.7
6.7
7.7
14.7
15.9
23.4
59.9
108.7

The results for the second experiment are in Tables 3 and 4. For this experiment,
we set S = 0.1 (where optimal values for the start state in each environment ranged
from 250 to 900). We have also included a graph showing the time performance of the
four most efficient approaches for this experiment (see Figure 5).
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Table 4: The standard deviation associated with the number of updates and time taken
by each algorithm to get the value of the start within S = 0.1 of its optimal value.

OD

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Standard Deviation of Updates (times
FP
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.0
0.1
0.1
0.0
0.1
0.1
0.3
0.5
0.7

VIA
0.1
0.1
0.1
8.9
10.9
11.7
15.2
13.6
13.6
10.1
6.5
1.2
2.5
2.1
2.7
2.6
2.9
2.4
3.3
3.5
3.6

VIS
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
1.5
1.4
0.1
1.5
3.0
0.1
4.3
4.7
4.9
6.1
4.7

EP
0.1
0.2
0.3
0.4
0.4
0.7
0.6
0.6
0.8

(

1.0
.0

).9
.3
.2
.6
.9

6.9
6.9
7.9
13.6
22.7

LAO
0.1
0.1
0.1
0.1
0.2
0.2
0.2
0.2
0.2
0.2
0.6
0.5
0.4
0.6
1.2
0.6
2.0
1.5
2.5
3.3
4.0

105)
RT
0.0
0.1
0.]
0.1
0.1
0.1
0.1
0.1
0/,
0.1

o.:
o.:
o.:

)

)
>
>

0.2

o.:
0.2
0.6
0.!
0.(
0.9

n

PS
0.1
0.1
0.1
0.1
0.0
0.0
0.
0.
0.
0.(
0.
0.
0.
0.
0.

o.:
3.
3.

)

I

2.6
6.9
9.1

Standard Deviation
FP
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.0
0.1
0.1
0.0
0.3
0.2
0.5
0.7
0.8

VIA
0.0
0.0
0.0
6.1
8.4
7.7
9.3
9.6
8.2
7.7
5.2
2.2
3.5
2.5
2.2
3.5
6.2
1.9
8.3
8.3
7.2

VIS
0.0
0.0
0.0
0.0
0.1
0.0
0.1
0.1
0.1
0.1
0.<
1.1
0.1
1.2
2.0
0.1
3.8
3.2
3.6
4.6
3.9

of Time Taken
EP
0.1
0.3
0.4
0.7
1.7
1.4
2.1
2.0
2.1
4.2
3.2
3.7
4.9
6.5
5.8
6.2
27.3
21.2
29.6
87.8
57.8

LAO
0.0
0.0
0.1
0.1
0.4
0.2
0.2
0.2
0.2
0.3
0.4
0.4
0.3
0.6
0.8
0.5
2.2
1.0
1.8
4.1
3.4

(in seconds)
RT
0.0
0.1
0.1
0.2
0.5
0.1
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.4
0.2
0.3
0.8
0.5
0.6
1.7
1.8

PS
0.3
0.3
0.2
0.4
1.3
0.4
0.7
0.6
0.3
0.5
0.5
0.5
0.7
1.4
0.6
1.4
16.7
13.9
13.4
29.9
43.3
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Figure 5: Run time required for the four most efficient approaches to get within 0.1 of
the optimal value for the start state.
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Table 5: Comparison between standard PS approach (PS1) and modified PS (PS2).

OD

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Experiment 1
Updates (106)
PS1
6.0
5.8
5.6
5.5
5.4
5.2
5.1
5.1
5.1
5.0
5.0
5.2
5.6
6.3
7.7
9.0
13.2
15.9
23.2
36.9
51.7

PS2
.7
.7
.6
.6
.6
.5

1.5
.5

1.5
.4
.5
.4
.6
.6
.7

2.1
3.3
4.4
5.7
13.3
21.6

Time
PS1
34.6
35.3
43.8
34.0
32.8
31.2
31.1
28.4
29.0
30.3
30.6
32.2
30.9
35.0
44.5
48.5
71.1
95.8
94.6
134.9
190.4

(s)
PS2
6.6
6.8
6.5
7.3
7.5
6.7
6.7
7.0
6.3
6.5
6.4
6.5
7.2
7.2
7.7
9.4
16.7
18.6
27.1
58.0
101

Experiment 2
Updates (106)
PS1
5.4
5.2
5.1
5.0
4.9
4.7
4.6
4.6
4.6
4.6
4.8
4.9
5.2
6.1
7.3
8.5
12.7
15.1
22.3
36.7
54.1

PS2
1.3
1.3
1.3
1.3
1.3
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.3
1.5
1.6
2.8
3.6
4.8
13.0
23.8

Time (s)
PS1
31.8
32.1
40.9
31.1
30.1
28.7
28.5
26.3
26.8
28.0
29.0
30.9
29.1
34.1
42.8
46.8
68.7
92.0
91.0
134.8
199.8

PS2
5.6
5.7
5.6
6.2
6.5
5.5
5.5
5.8
5.2
5.6
5.4
5.7
6.0
6.7
6.7
7.7
14.7
15.9
23.4
59.9
108.7

Table 6: Example results from using a 5-action model.

OD Number of Value Updates (times 106)
FP VIS EP LAO RT PS
2.5 19.9 136.5 167.1 5.8 14.6

6 Discussion

It can be seen from the results that FP offers a significant improvement over current
approaches. In this section, we discuss and explain the relative performance of each of
the algorithms with reference to their unique characteristics.

VIS performs favorably because it begins with the entire state space as its "en-
velope", so it does not spend a lot of time processing intermediate envelopes, where
states cannot approach their optimal values because of the restricted nature of the en-
velope. For the current experiments, the start and goal states were on opposite ends of
the environment, and thus a significant proportion of the state space was relevant. If
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the position of the start and goal states were closer to one another relative to the size of
the environment then VIS would not perform nearly as well.

EP takes much longer than VIS for two main reasons. Firstly, its use of simulated
runs to expand its envelope is both time consuming and can impose limitations on how
many states are added to the envelope at each expansion. As a result, EP spends a
significant amount of time processing intermediate envelopes. Secondly, the use of
admissible values by EP typically causes dynamic programming to take much longer
to converge than if upper bounded values were employed.

LAO* shares the same disadvantage as EP of processing intermediate envelopes,
but because it adds the entire fringe at each stage, it saves on the computation of simu-
lating runs and its envelope expands at a much faster rate.

In general, RTDP performs worse than LAO* when the desired solution must be
very close to optimal. Because RTDP only updates during its simulated runs, it is prone
to not updating the values of states associated with highly unlikely paths. This means
that occasionally it can take a very long time to get the value of the start state to be
within a small error of its optimal value. In the tabulated results we can see a couple
such situations. However, when our error threshold is less demanding (such as the 0.1
error bound in the second set of experiments), RTDP performs much more favorably.
In this setting, the fact that RTDP does not deal with the entire envelope every time it
updates values is highly beneficial, and gives it an edge over LAO*.

PS consistently requires more time than LAO*. This is because it fails to focus its
propagation towards the start state. By not incorporating into the priority of a state its
potential influence on the value of the start state, PS ends up performing far more value
updates than are necessary.

PS was designed to be used to update MDP policies when new or conflicting infor-
mation is received. It has also proven to be very useful for learning the state transition
functions and rewards of MDPs. Under these situations, its propagation based on cost
differences is much more beneficial.

FP performs well because it is able to grow its envelope out from the goal, so that
states which get converged early generally do not need to be updated again. Thus, it
does not need to converge its entire envelope every time it is expanded. Secondly, it
focusses its propagation towards the start state. The combination of these two charac-
teristics enable it to minimise both the number of states examined and the number of
updates required to converge each examined state. As a result, it is able to produce
solutions much more efficiently than any of the competing approaches.

It is worth noting that the performance of FP is not intricately linked to the current
domain. We ran similar experiments using a 5-action model and it still showed signif-
icant performance gains over the other approaches (see Table 6 for a sample result).
However, we are of the opinion that this added complexity is unjustified for robotic
path planning.

Finally, the termination criteria used by FP in the first set of experiments has shown
itself to be quite effective. All of the approaches discussed here can return optimal
solutions, yet knowing when to stop processing because the current solution is "good
enough" can be difficult. Continuing until the envelope is completely closed (for EP
and LAO*) or until there are no more states on the queue (PS) returns solutions of
far more accuracy than we typically require, yet the bounds that can be computed
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for intermediate solutions are often very loose [8]. We have presented a termination
condition that allows for good results (on average within 0.18 percent of optimal over
environments with obstacle densities of up to 20 percent) to be generated very quickly.

7 Conclusion

In this paper we have presented Focussed Dynamic Programming, an algorithm that
efficiently solves Markov decision processes. The approach uses heuristics to both
focus computation towards relevant areas of the state space and update state values in
a sensible order. We have presented extensive comparisons between our algorithm and
several current approaches applied to a robotic path planning domain. These results
have shown our approach to provide significant benefit over existing methods.

We are currently investigating how we can use the ideas described here to perform
efficient replanning with MDPs. This would be of enormous use for robots navigating
through partially known environments.
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