NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

REGRESSIVE RAMSEY NUMBERS ARE ACKERMANNIAN

by

Menachem Kojman
Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh, PA 15213
and
Saharon Shelah
Institute of Mathematics
The Hebrew University of Jerusalem
Jerusalem 91904, Israel

Research Report No. 98-208 2 January, 1998

REGRESSIVE RAMSEY NUMBERS ARE ACKERMANNIAN

MENACHEM KOJMAN AND SAHARON SHELAH

Abstract. We give an elementary proof of the fact that regressive Ramsey numbers are Ackermannian. This fact was first proved b
y Kanamorij and McAloon with mathematical logic techniques.

Nous vivons encore sous le règne de la logique, voilà, bien entendu, à quoi je voulais en venir. Mais les procédés logiques, de nos jours, ne s'appliquent plus qu'à la résolution de problèmes d'intérêt secondaire. [1, 1924, p. 13] is

1. Introduction

Definition 1. 1. let A be a set of natural numbers. A coloring c $[A]^{e} \rightarrow \mathbb{N}$ of unordered e-tuples from A is regressive if $c(x)<$ $\min x$ for all $x \in[A]^{e}$.
2. A subset $B \subseteq A$ is min-homogeneous for a coloring c of $[A]^{e}$ if for all $x \in[A]^{e}$ the color $c(x)$ depends only on $\min x$.

Theorem 2 (Kanamori and McAloon). 1. For every k and e there exists N such that for every regressive pair coloring on $\{1,2, \ldots, N\}$ there exists a min-homogeneous subset of size k.
2. The statement in (1) cannot be proved from the axioms of Peano Arithmetic (although it can be phrased in the language of $P A$)
3. Let $\nu(k)$ be the least N which satisfies 1 for $e=2$. The function ν eventually dominates every primitive recursive function.

Part (3) of Kanamori and McAloon's result [3] was proved with mathematical logic methods. We present below an elementary proof of 3 .

2. The Lower bound

Define a sequence of (strictly increasing) integer functions $f_{i}, i \geq 1$ as follows:

The first author was partially supported by NSF grant No. DMS-9622579.
The second author was partially supported by the Binational Science Foundation. Number 649 in list of publications.

$$
\begin{align*}
f_{1}(n) & =n+1 \tag{1}\\
f_{i+1}(n) & =f_{i}^{(l \sqrt{n}))}(n) \tag{2}
\end{align*}
$$

Fix an integer $k>2$. Define a sequence of semi-metrics $\left\langle d_{i}: i \in \mathbb{N}\right\rangle$ on $\left\{n: n \geq k^{2}\right\}$ by putting, for $k^{2} \leq m \leq n$,

$$
\begin{equation*}
d_{i}(m, n)=\left|\left\{l \in \mathbb{N}: m \leq f_{i}^{(l)}\left(k^{2}\right)<n\right\}\right| \tag{3}
\end{equation*}
$$

Let $i(m, n)$, for $k^{2} \leq m<n$, be the greatest i for which $d_{i}(m, n)$ is positive, and $d(m, n)=d_{i(m, n)}(m, n)$.
Claim 3. For all $n \geq m \geq k^{2}, d(m, n) \leq \sqrt{m}$.
Proof. Trivial.
Let us fix the following (standard) pairing function Pr on \mathbb{N}^{2}

$$
\operatorname{Pr}(m, n)=\binom{m+n}{2}+n
$$

Pr is a bijection between $[\mathbb{N}]^{2}$ and \mathbb{N} and is monotone in each variable. Observe that if $m, n \leq l$ then $\operatorname{Pr}(m, n)<l^{2}$ for all $l>3$.

Define a pair coloring c on $\left\{n: n \geq k^{2}\right\}$ as follows:

$$
\begin{equation*}
c(m, n)=\operatorname{Pr}(i(m, n), d(m, n)) \tag{4}
\end{equation*}
$$

Claim 4. For every $i \in \mathbb{N}$, every sequence $x_{0}<x_{1}<\cdots<x_{i}$ that satisfies $d_{i}\left(x_{0}, x_{i}\right)=0$ is not min-homogeneous for c.

Proof. The claim is proved by induction on i. If $i=1$ then there are no $x_{0}<x_{1}$ with $d_{1}(x, y)=0$ at all. Suppose to the contrary that $i>1$, that $x_{0}<x_{1}<\cdots<x_{i}$ is min-homogeneous with respect to c and that $d_{i}\left(x_{0}, x_{i}\right)=0$. Necessarily, $i\left(x_{0}, x_{j}\right)=j<i$. By min-homogeneity, $i\left(x_{0}, x_{1}\right)=j$ as well, and $d_{j}\left(x_{0}, x_{i}\right)=d_{j}\left(x_{0}, x_{1}\right)$. Hence, $\left\{x_{1}, x, \ldots x_{i}\right\}$ is min-homogeneous with $d_{j}\left(x_{1}, x_{i}\right)=0-$ contrary to the induction hypothesis.
Claim 5. The coloring c in (4) is regressive on the interval $\left[k^{2}, f_{k}\left(k^{2}\right)\right)$.
Proof. Clearly, $d_{k+1}(m, n)=0$ for $k^{2} \leq m<n<f_{k}\left(k^{2}\right)$ and therefore $i(m, n) \leq k<\sqrt{m}$. From Claim ?? we know that $d(m, n) \leq$ \sqrt{m}. Thus, $c(m, n)=\operatorname{Pr}(i(m, n), d(m, n)) \leq \operatorname{Pr}(\sqrt{m}, \sqrt{m})<m$, since $\sqrt{m}>3$.

We show that $f_{k}\left(k^{2}\right)$ grows eventually faster than every primitive recursive function by comparing the functions f_{i} with the usual approximations of Ackermann's function. It is well known that every primitive recursive function is dominated by some approximation of Ackermann's function (see, e.g. [2]).
Let $A_{i}(n)$ be defined as follows:

$$
\begin{align*}
A_{1}(n) & =n+1 \tag{5}\\
A_{i+1}(n) & =A_{i}^{(n)}(n) \tag{6}
\end{align*}
$$

The A_{i}-s are the usual approximations to Ackermann's function, which is defined by $\operatorname{Ack}(n)=A_{n}(n)$.
Claim 6. 1. $f_{i}(n) \geq 4 n^{2}$ for $i, n \geq 4$.
2. $A_{i}(n) \leq f_{i+4}\left(4 n^{2}\right) \leq f_{i+4}^{(2)}(n)$ for all i and $n \geq 4$.
3. $A_{i}(n) \leq f_{i+5}(n)$ for all i and $n \geq 4$.

Proof. The first item is verified directly. The second inequality in the second item is by 1 . The first inequality is proved by induction on i. Suppose $A_{i}(n) \leq f_{i+4}\left(4 n^{2}\right)$. Since $A_{i}(n) \leq f_{i+4}^{(2)}(n)$, iterating n times yields $A_{i}^{(n)}(n) \leq f_{i+4}^{(2 n)}(n)$, which is $\leq f_{i+4}^{(2 n)}\left(4 n^{2}\right)=f_{i+5}\left(4 n^{2}\right)$. Thus $A_{i+1}(n) \leq f_{i+5}\left(4 n^{2}\right)$.

The last item follows now trivially: $A_{i}(n) \leq f_{i+4}^{(2)}(n) \leq f_{i+5}(n)$ (as $n \geq 4$).
Corollary 7. The function $\nu(k)$ eventually dominates every primitive recursive func tion.

3. Discussion

3.1. Other Ramsey numbers. Paris and Harrington [8] published in 1976 the first finite Ramsey-type statement that was shown to be independent over Peano Arithmetic. Soon after the discovery of the Paris-Harrington result, Erdős and Mills studied the Ramsey-ParisHarrington numbers in [7]. Denoting by $R_{c}^{e}(k)$ the Ramsey-ParisHarrington number for exponent e and c many colors, Erdős and Mills showed that $R_{2}^{2}(k)$ is double exponential in k and that $R_{c}^{2}(k)$ is Ackermannian as a function of k and c. In the same paper, several small Ramsey-Paris-Harrington numbers were computed. Later Mills tighten ed the double exponential upper bound for $R_{2}^{2}(k)$ in [5].

Canonical Ramsey numbers for pair colorings were treated in [4] and were also fond to be double exponential.

The second author showed that van der Waerden numbers are primitive recursive, refuting the conjecture that they were Ackermannian, in [9] (see also [6]).

We remark that an upper bound for regressive Ramsey numbers for pairs is $R_{2}^{3}(k)$ - the Ramsey-Paris-Harrington number for triples. Let N be large enough and suppose that c is regressive on $\{1,2, \ldots, N-1\}$. Color a triple $x<y<z$ red if $c(x, y)=c(x, z)$ and blue otherwise. Find a homogeneous set A of size at least k and so that $|A|>\min A+1$. The homogeneous color on A cannot be red for $k>5$, and therefore A is min-homogeneous for c.
3.2. Problems. The following two problems about regressive Ramsey numbers remain open:

Problem 8. 1. Find a concrete upper bound for regressive Ramsey numbers.
2. Compute small regressive Ramsey numbers

References

[1] André Breton. Manifeste du surréalisme. In Manifestes du Surréalisme, pages 11-66. Gallimard, 1972.
[2] Calude, Cristian. Theories of computational complexity. Annals of Discrete Mathematics, 35. Amsterdam etc.: North-Holl and. XII, 487 p., 1988.
[3] Akihiro Kanamori and Kenneth McAloon. On Gödel incompleteness and finite combinatorics. Ann. Pure Appl. Logic, 33(1):23-41, 1987.
[4] Hanno Leffman and Vojtëch Rödl. On canonical ramsey numbers for complete graphs versus paths. Journal of Combinatorial theory, Series B, 58:1-13, 1993.
[5] George Mills. Ramsey-paris-harrington numbers for graphs. Journal of Combinatorial theory, Series A, 38:30-37, 1985
[6] Alon Nilli. Shelah's proof of the hales-jewett theorem. In Jaroslav Nešetřil and Vojtěch Rödl, ed itors, Mathematics of Ramsey Theory, volume 5 of Algorithms and Combinatorics, pages 151-152. Springer, Berlin, 1990.
[7] Paul Erdős and George Mills. Some bounds for the ramsey-paris-harrington numbers. Journal of Combinatorial theory, Series A, 30:53-70, 1981.
[8] J. Paris and L. Harrington. A mathematical incompleteness in peano arithmetic. In J. Barwise, editor, Handbook of Mathematical Logic. North-Holland, 1977.
[9] Saharon Shelah. Primitive recursive bounds for van der Waerden numbers. Jour nal of the American Mathematical Society, 1:683-69 7, 1988.

Department of Mathematics and Computer Science, Ben Gurion University of the Negev, Beer Sheva, Israel sity, Pittsburgh, PA

E-mail address: kojman@cs.bgu.ac.il
Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

E-mail address: shelah@math.huji.ac.il

38482 O 1430145 ?

