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FORKING IN PREGEOMETRIES, PART II:
ABSTRACT GROUP CONFIGURATION

OLIVIER LESSMANN

ABSTRACT. The aim of this paper is to make progress towards a geometric model theory
for non first order theories. The main difficulty is to work in an environment where the
compactness theorem fails. This paper continues the work started in [GrLel]. The main
result is an axiomatic approach to the Hrushovski-Zilber group configuration theorem.

1. INTRODUCTION

A central result in Geometric Stability Theory is the presence in very general
circumstances of a definable group among the definable (maybe infinitely definable) sets
of a model. This is referred to by W. Hodges [Ho] as the Zilber Group Configuration
Theorem, and by others as the Hrushovski Group Configuration Theorem. We will call it
the Hrushovski-Zilber Group Configuration Theorem. It has an ancient flavor; it is in a line
of work which dates back to Veblen and Young around 1910. The general template is the
emergence of algebraic structures from certain geometric configurations.

The Hrushovski-Zilber Group configuration Theorem for the first order, count-
able R, -categorical case is due to Boris Zilber [Zi]. It builds on the methods of Baldwin-
Lachlan [BlLa]). It was extended to stable theories by Ehud Hrushovski [Hr1] (see also the
exposition of Elizabeth Bouscaren [Bo]). This generalization was done using S. Shelah’s
notions of forking, regular types and p-simple technology.

These methods have since developed into a field of its own. See for example the
recent books of Steve Buechler [Bul] and Anand Pillay [Pi]. They have been used to an-
swer classical logical questions, for example B. Zilber’s solution to the finitely axiomatiza-
tion problem [Zi]; to general classification theory questions, for example E. Hrushovski’s
proof that unidimensional stable theories are superstable [Hr2], S. Buechler’s work on
Vaught’s Conjecture [Bu2], and have found several applications outside of model theory
[CH], [HP1], [HP2], [EvHr1], [EvHr2], [Hr3].

In parallel, much work was done in classification for classes of models that are not
first order [Gr 1], [Gr 2], [GrHa], [GrLel], [GrLe2], [GrSh 1], [GrSh 2], [HaSh], [HySh],
[Ki], [KISh], [Le], [MaSh], [Sh3], [Sh47], [Sh 87a], [Sh 87b], [Sh 88], [Sh tape], [Sh 299],
[Sh 300], [Sh 394], [Sh 472], [Sh 576] and [Sh h]. This field was called classification for
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2 OLIVIER LESSMANN

nonelementary classes by S. Shelah. Often, the techniques are combinatorial and set-
theoretic, using basic definability properties. In the current state of the theory there are
no geometric considerations.

Our aim here is to separate the model-theoretic aspects from the combinatorial
geometry in the Hrushovski-Zilber Group Configuration Theorem to enable us to transfer
this tool to non first order contexts. This was started in [GrLel].

The setting of the Hrushovski-Zilber Group Configuration Theorem is the follow-
ing. We have a pregeometry where the closure operation comes from forking. Technically
speaking, the pregeometry is the set of realization of a stationary type p with the additional
property that the closure operation given by

a € cl(B) if and only if tp(a/B U dom(p)) forks over dom(p).

Here are several of the key ingredients in the first order case that are used. (1) The notion
of types (2) The fact that the pregeometry comes from forking guarantees that the ambient
dependence relation is well-behaved. (3) (T" stable) Every type is definable. (4) Work in
T, which allows one to use the Canonical Basis Theorem. All these results rely on the
Compactness Theorem.

There are several known pregeometries in nonelementary cases for applications:

Categorical sentences in L, (Q): S. Shelah in [Sh47] introduced a rank which is
bounded under the parallel to Ry-stability (following from X; -categoricity). It gives
rise to a dependence relation and pregeometries. Later, H. Kierstead [Ki] uses these
pregeometries to obtain some information on the countable models of these sen-
tences.

Excellent Scott Sentences: In [Sh 87a] and [Sh 87b] S.Shelah introduces a simplifi-
cation of the rank of [Sh47]. This rank induces a dependence relation on the subsets
of the models. S. Shelah also defines the concept of excellent Scott sentences. Later,
R. Grossberg and B. Hart [GrHa] continued the classification of excellent Scott sen-
tences. They proved the existence of pregeometries and used them to prove the main
gap.

Totally transcendental diagrams: In [Le] we introduced a rank for Rp-stable dia-
grams, introduced by S. Shelah [Sh3] in 1970. They are classes of models omitting
a prescribed set of types, with an additional condition. We call a finite diagram fo-
tally transcendental when the rank is bounded. The rank gives rise to a dependence
relation on the subsets of the models. We can also show that pregeometries exist.

Superstable diagrams: In [HySh], Hyttinen and Shelah study stable finite diagrams
([Sh3]) under the assumption that x(D) = Rg. Such diagrams are called super-
stable. They introduce a relation between sets A, B and an element a, written
a |p A. The main result is that pregeometries exist with respect to this dependence
relation.

Let us examine how the above contexts allow us to circumvent the difficulties
posed by the absence of the Compactness Theorem. In each of them, we have (1) a good
notion of types. (2) In spite of the fact that the dependence relation is not necessarily
as well-behaved as forking, there exists pregeometries. By work started in [GrLel], this
implies that we can define another dependence relation which satisfies all the formal prop-
erties of forking for first order theories. (3) In many of them, there is a notion of stationary
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types and those are definable. (4) There are several ways (as yet unpublished, some due to
myself, some to Saharon Shelah) of introducing substitutes to 7°*? and get the Canonical
Basis Theorem.

The aim of this paper is to take into account the technology available (or being
developed in nonelementary classes) to find some natural axioms (behind which the logical
framework is hidden) under which group configurations may yield a group. Let us make
this more precise. The Hrushovski-Zilber Group Configuration Theorem states in essence
that if in a definable pregeometry we have the following dependence configuration (called
group configuration), then there exists a definable group.

The way to read this diagram is as follows. Any two points are independent from
each other, and any three points are dependent if and only if they are on the same line.

There are two steps in the Hrushovski-Zilber Group Configuration Theorems.

Step 1: Starting from the group configuration, where the dependence relation is fork-
ing, to obtain a similar group configuration, where in addition, some points are
uniquely determined by others. This is often called the unique definability condi-
tion.

Step 2: From this special configuration, one derives a definable group.

Both steps rely on the general properties of forking and the canonical basis theo-
rem for stable theories.

Step 1 seems decidedly model-theoretic and there is little hope for general condi-
tions for the existence of an abstract theorem generalizing it. However, Step 2 is amenable.

There are two aspects of definability: By syntactic definability, we mean some
model theoretic notion; we live in an ambient model M satisfying some axioms (not neces-
sarily first order) and have a notion of formula. A set A is said to be syntactically definable
over B if there exists a set of formulas p over B such that a € A if and only if a realizes all
the formulas in p. Now given an automorphism group T, there is also a notion of semantic
definability. We say that a set A is semantically definable over B if for every f € T fixing
B pointwise, f fixes A setwise.
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Now, syntactic definability implies semantic definability in case the automor-
phism group is (a subgroup) of the automorphism group of the model M. The converse is
more delicate.

Here is the framework of the paper. We work inside a pregeometry (W, cl), given
with an automorphism group I'. We require that the pregeometry be homogeneous with
respect to this automorphism group, which in our context means that the automorphism
group is rich. We then have a notion of semantic definable sets (henceforth just called
definable). We also consider a subcollection ® of definable sets (which in the applications
are going to be the syntactically definable sets). We assume that D satisfies an axiom
parallel to (i) the definability of (stationary) types and another axiom parallel to (ii) the
canonical basis theorem. If we assume in addition that in the unique definability condition
of Step 2, the definable sets are in D, then this implies the existence of a group, which is
equal to a (potentially) infinite intersection of sets in D.

If one is interested in applications to model theory for nonelementary classes and
in particular issues of definability, we will be given a natural notion of syntactical definable
sets and this theorem will give a definable group in this language (provided this notion
satisfies the condition of D). All the first order notions for definability used so far belong
to this set and the axioms hold in the well-known first order cases.

We can also look at this without a notion of syntactically definable sets. This
allows us to ignore 2, that is to assume that D is the set of all semantically definable sets.
Then, we do not need an axiom on definability of stationary types and just consider the
canonical basis theorem for semantically definable sets. This gives a very smooth theorem
in the context of combinatorial geometry.

The presentation owes much to [Ho], [Bo] and [EvHrl1]. In fact, the setting of
[EvHrl] is a particular case of our setting: Let KX C L be alebraically closed fields. The
pregeometry (W, cl) is given by W = L — K and a € cl(C) if and only if a is in the
algebraic closure (in L) of the field generated by K U C. The automorphism group I' is
aut(L/K). All the axioms are satisfied. Using the fact that they work in algebraically
closed fields, they managed to obtain additional information on the definable groups.

We would like to thank John Baldwin for valuable comments on a draft of this
paper.

2. THE CONTEXT

Let (W, cl) be a pregeometry and I be a group of automorphisms of (W, cl).

We always assume cl()) # W, in fact we will make the following assumption:
Hypothesis 1 (Nontriviality Assumption). We assume that (W, cl) is infinite dimensional.

Notation2. (1) We denote I'x the group of automorphisms of (W, cl) fixing X point-
wise.
(2) Given a sequence A of elements of W. We denote by I x (A) the orbit of A under
I'x, namely

I'x(A) ={f(A) | f € 'x}.
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For a sequence 4 = (a; | ¢ < a), we write f(A) for (f(a;) | i < a).
In [GrLel], we introduced the following relation between subsets of a pregeome-
try. For convenience and readability, we use the usual notation . (introduced by Makkai

in [Ma]). The justification for this use can be seen in the theorem below.

Definition 3. Let (W, cl) be a pregeometry. Let A, B and C be subsets of W. We say that
A depends on C over B, if there exist a € A and a finite A’ C A (possibly empty) such
that

a€cl(BUCUA') —c(BUA).
If A depends on C over B, we write A L C;
B

If A does not depend on C over B, we write A L C.
B

In [GrLel], we proved that this dependence relation satisfies the familiar axioms
of forking, as introduced by Shelah (see, for example [Sh3]). As a result, we have given
them their usual name.

Fact 4 (Forking Relations).
(1) (Definition) A L C ifand only if A L BUC;
(2) (Existence) A f C. B
(3) (Finite Charactgr) A \é, B if and only if A’ \C"/ B’ for every finite A’ C A and finite

B' C B;
(4) (Invariance) If f € T, then 4 J, C ifandonly if f(4) L f£(C);
f(B)

(5) (Monotonicity) Let B C B, C C’ C C.Then A J, C implies A L C';
B,
(6) (Symmetry) A \L C if and only if C \L A;

(7) (Transitivity) If BCCCD,then A J, D ifandonlyif Al Cand AL D;

B B o
(8) (k(T') = Ro) For every a and C there exists B C C, |B| < Ry, i.e. finite, such that
alC;
B
(9) (Closed Set) AL C ifand only ifcl(A) L cl(C).
B cl(B)

Remark 5. Definition, Existence, Finite Character, Invariance, Monotonicity, £(T) = Rg
and Closed Set are obvious. The difficulty is to obtain (6) and (7).

To provide intuition, we give another property, which can with Finite Character,
be used as a definition.

Proposition 6. Let S, Sy be finite dimensional closed sets satisfying So = Sy N Sy. Then,

Si L\S'L Sy ifandonlyif dim(S;U S3) + dim(S; NSz) = dim(S)) + dim(Ss).
0
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The first axiom corresponds to the extension property of forking as well as some
saturation.

Axiom 7 (Extension). Let @ be given and X be finite dimensional. Then, there exists
a' € I'(a) such thata' | X.

The next axioms correspond the uniqueness of the nonforking extension. I call
it Homogeneity because a pregeometry satisfying H1 is called homogeneous. The axioms
H2 and H3 have a similar flavor and in first order model theoretic cases follow from the
same facts: stationarity and saturation.

Axiom 8 (Homogeneity).

H1 Ifa, b & cl(X) then there is f € [ x) such that f(a) = b;
H2 Ifa; € I'x(az), by € T'x(b2) and a; L b; fori = 1,2, then there is g € T'x such
X

that g(@,) = dz and g(b;) = by;
H3 Ifa.l b,a’ Lbanda € I'x(a'), then @ € Ty x5(@’).
X X
<

Fact9. If dim(X) < dim(W) and | T'x (a)| < Ro, then a € cl(X).

Proof. Since W is infinite dimensional, there exists an infinite set {a, | n < w} C
W — cl(X). By Homogeneity, if a ¢ cl(X), then {a, | n <w} C T¢(x)(a) € T'x(a),a
contradiction. O

The next definition is a substitute for the logical notions of algebraic or definable
closure.

Definition 10. (1) We say that a is in the definable closure of X, written a € dcl(X),
if[Tx(a)] =1,ie.I'x(a) = {a};
(2) We say that a is in the algebraic closure of X, written a € acl(X), if |I'x (a)| < No;

Remark 11. For small dimensional sets X C T and elements a € W, Fact 9 implies that
ifa € acl(X) ora € dcl(X), then a € cl(X).

In the rest of this section, we introduce the notions that can be used to bypass the
general €% technology, in particular Shelah’s Canonical Basis Theorem.

Definition 12.

(1) We say that a set A C W™ is definable over X C W, ifevery f € I'x fixes A
setwise;

(2) We say that X C W is the support ofaset A C W™ if forevery f € T, f fixes A
setwise if and only if f fixes X pointwise.

Fact 13.

(1) Any automorphism f fixes X pointwise if and only if f fixes dcl(X') pointwise, so
by definition of support, we have X = dcl(X).
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(2) The support of A is unique if it exists. Let X and Y be supports of A, Let f € T
fixing X pointwise. Then f fixes A setwise since X is a support and so f fixes ¥’
pointwise since Y is a support also. Thus 'x (Y) =Y so dcl(Y) =Y C dcl(X).
We are done by symmetry.

Remark 14. By the previous fact, if A has support X, we define dim(A) := dim(X) and

ALl Cifand only if supp(A) L supp(C). All these notions are well-defined and
B supp(B)

satisfy all the facts we have already proved. There will be no ambiguity since we will not

deal with A C W.

We consider a collection D of definable sets (without) parameters. We require
that © be closed under union and intersection, projections, product and permutation. We
do not require closure under complementation. For clarity, we use the usual first order
notation with formulas. For example, by ¢(Z) € © we mean a definable subset of W),
We write = ¢[a, b] to say that (a, b) is in the definable set ¢(Z).

We require that if a € dcl(b), then there is ¢(x,7) € D such that = ¢[a,b] and
for every a' such that |= ¢[a’, b], we have a = a'. We also require that the sets of if D are
compatible with T', i.e. if = ¢[a, b], then also = ¢[f(a), f(b)] for f € T.

Now on to the last axioms.
Axiom 15 (Definability of Stationary types). Leta, b € W and R € D be a relation on the

orbits of @ and b. Then there is dr € D such that for all @’ € I'(@) we have a’ € drp € D
if and only if for every ' € I'(b) ifa' .L b/, then (a’, ') € R.

Axiom 16 (Canonical Basis). If E (Z,7) € D is an equivalence relation over orbits of W,
then each equivalence class b/ F has a support.

3. THE GROUP CONFIGURATION

In this section, we show that if a pregeometry, its automorphism group and the
collection of definable sets satisfy our list of axioms, then Hrushovski and Zilber nice
group configuration gives rise to a definable group.

Hypothesis 17. There exist b;, a; for ¢ = 1,2, 3, sequences of dimension 1, such that

(1) All sequences are pairwise independent;
(2) dim(byb2b3) = 2, dim(b;ajax) = 2, foralli # j # k, and

dlm(b1 b2b3a1 as (13) = 3;

(3) a3 € dcl(bias), a1 € dcl(b2as3), and a3 € dcl(braz) Ndcl(bqa; ).
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b3 a;

Given sets of sequences A, B, we will denote A + B, the set
A+B={(a,b)|a€ Abe B, anda.l b}.

Given (b}, b,) € T'(b1) + I'(b1) and a € ['(az) — cl(b;by), we define A 1) (a)
as follows. Choose f € T such that f(by) = b}, f(b2) = b5 and f(az2) = a. To do this,
choose first o € T such that o(b;) = b}, o(b2) = b. Clearly o exists by Axiom H2, since
b. € T'(b;) fori = 1,2. Then, choose 7 € T such 7(0(az)) = aand 7 [ biby = id.
This is possible by Axiom H1 since by assumption on the configuration a2 ¢ cl(b1b2), so
o(az) & cl(bybh) and a & cl(b}by) by choice of a.

We now make a few observations. First, f(a3) is uniquely determined since
a3 € dcl(biaz). Indeed, suppose g(b1) = b} and g(az) = a. Then g='f € Tp,q, 0
g~ 1f(a3) = a3. Therefore g(az) = f(as). Second, notice that f(a;) is uniquely de-
termined, since a; € dcl(bzas). Indeed, suppose g(bs) = b} and g(as) = f(a3). Then
g_lf € szas’ By g_lf(a'l) = a;, and g(al) = f(al)'

We define hy p,)(a) = f(a1). In view of the previous considerations, this is
well-defined and furthermore f(a;) € I'(az). Notice also that (b}, b},a,a’) € D, for all
b 5) (@) = o', using projections and intersection.

We wish to extend the action of ['(b;) + I'(b;) on all elements of I'(a2). To do
this, we define the following relation on I'(b;) + I'(b1):

(b}, b5) ~ (b,b5) if ke pry(a) = by pyy(a), foralla € ['(az) — cl(bybyby'by).

Claim. ~ is an equivalence relation on I'(b1) + I'(b1).

Proof. Reflexivity and Symmetry are obvious. To see that Transitivity holds, we first show
that we can replace “for all” by “there exists” in the definition of a. Indeed, suppose that
a,a’ € I'(az)—cl(b)bybyb5) and that by, b1)(a) = hesy by)(a). By Axiom HI, there exists
(S Fcl(b’lb’zb’l’b’z’) such that o(a) = a'. Notice that h(b;,bé)(a(a)) = O'(h(b'l,b’z) (a) and sim-
ilarly, h(b'l',b’z’)(o'(a)) = O’(h(brlr,bg)(a), and hence h(b'pb'z)(al) = h(b’l’,bg)(a')- Transitivity
now follows easily. O

We denote by [b], b}] the equivalence class of (bj, b3) under ~. It now follows
from Axiom 15 that ~€ ©. Hence, each [b],b5] € D and by Axiom 16 must have a
support. Clearly, suppl[b, b5] cl(b}, b3) C W.
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Let H = {[b},b5] | (b}, b5) € D(by) +T(b1)}.

Notice that I' acts transitively on the elements of H in the following sense: if
[b1, 2], [c1, c2] are elements of H, there is f € I such that f([b1,2]) = [c1,ca]. To see
this, recall that ¢; € I'(b;) for ¢ = 1,2 and that by definition of H we have that each
sequence is independent and b; . b2 and ¢, .L c. Hence, by Axiom H2 there exists f € T’

such that f(b;) = ¢; fori = 1,2. Then f([b1, b2]) = [f(b1), f(b1)] = [e1, c2] as required.
Notice also that by Axiom 16, every element o € H has a support X, so that we

can extend forking and dimensions on elements of H. Elements of H are called germs and

they each act on I'(a;). We will want to compose germs, but we will want to make sure

that the composition is also an element of H. For this, some more work is needed. We can
express H by an infinite intersection of elements of © by Axiom 15.

Lemma 18. [by,b2] C cl(bs) and therefore [by,b2] L b; fori =1,2.

Proof. First, observe that
* [b1,b2](a2) = a1 € cl(azb3),
by definition and the configuration. We want to show that
X := supp([b1, bs]) C cl(b3).
By definition of support, it is enough to show that for all f € I'¢(s,), we have
f([ba,b2]) = [by, b2),
i.e. [by, ba] is fixed setwise by f.
For this, fix f € [¢yp,) and leta € T'(az) — cl(X f(X)b1b2b3).

We claim that [b;, b2](a) € cl(abs). To see this, it is enough to find an automor-
phism o € Tj(p,b,05) Such that 0(a2) = a and then applying o to (*). But the existence
of o follows from H1 if we can show that az & cl(b; b2bs). This follows from the config-
uration. Suppose ay € cl(byb2b3). Then a; € cl(b1b2bs), since a; € cl(azbz) and also
a3 € cl(byb2bs) since a3 € cl(a;by). This is a contradiction since

dim(a1a2a3b1b2b3) =3 # 2= dim(blbzbg).

Now choose g € T'y(p;a) Suchthatg [ X = f [ X.

Then, we have the following equalities:

b1, b2)(a) = g([b1, b2)(a)) (since [b1, b2](a) € cl(bsa))
= g([b1, b2])(9(a)) (g is an automorphism)
= g([b1, b2])(a) (9(a) =)
= f([b1,b2])(a) fI1X=g1X)
Thus, by definition of the germs, [b1, b2] = f([b1, b2]). This finishes the proof. O

The elements of H act on I'(az). It makes sense to compose them. Leta, 8 € H.
We write a * 3 for an element v € H, such that for all @ € I'(a2) such that a | afy, we
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have v(a) = a(B(a)). Such ~’s do not necessarily exist. We will show that, in fact, o * 8
exists ifa L 8.

Suppose [c1, c2] and [cz, c3] are in H. Then in this case, it is easy to see that
[c1,c2) * [c2, 3] = [e1,c3]. We will show that, in fact, this is the typical situation when
a L B. This is done by the following lemmas.

Lemma 19. Ifc;, ¢y and c3 € T'(by) are such that dim(cicocs) = 3, then [c1c2] L[z, ¢s)

Proof. First, let X = supp([c1,cz]) and Y = supp([cz,c3)). Suppose [c1c2] JLlez, c3).
Then, by definition, X L Y, and so X C Y since they are both closed, and furthermore
X =Y since they have dimension 1. By the dimension, ¢; . ¢2¢3, so since Y C cl(cacs3),
we must have ¢; L ;Y. But, since X = Y, we now have also ¢; L c2X. Since c2 L X,
we thus have dim(c; c2 X) = 3. But cl(c;c2X) = cl(ey ¢2), so that’s impossible. O
Lemma 20. Let o, 3 € H. If a L B3, then there exist ¢y, c2 and c3 such that a = [c1, ¢2),

B = [¢2,¢3] and dim(cy, c2,¢3) = 3.

Proof. Notice that I acts transitively over H + H, via the supports: let a; L 81 and
az L B2. Denote by X,,, (respectively X,) the supports of a; (respectively 3;). Then,
by definition X,, L Xg,, fori = 1,2 and further, X, € I'(X,,), and X, € I'(Xp,) by

a homogeneous axiom. The result follows by Stationarity. Now, by the previous lemma,
if c1,¢2 and c3 € I'(a) are such that dim(c;cae3) = 3, then [c1c2] L[c2, ¢3]. Thus, by

transitivity, we can find f € I such that f([c1,c2]) = a and f([c2,c3]) = B. Thus,

a = [f(c1), f(c2)] and B = [f(c2), f(c3)]. Clearly, dim(f(c1), f(cz), f(c3)) = 3. Weare
done. O

Lemma 21. Ifa,8 € H witha L B3, then ax f is a well-defined element of H. Moreover,
axBlaandaxfB LS.

Proof. Choose ¢, ¢z and ¢3 such that a = [¢1, ¢2] and 8 = [e2, ¢3], with dim(ey, ¢2,¢3) =
3. Check that y = [c1, ¢3]. The rest is now immediate. O

Define an equivalence relation on H + H,
(1, 41) = (a2,B2) if 1% pi(e) = az *Pa(e),

for every e € I'(j) such that &y * 81 (€) and a * 32 (e) are both defined. Let G be the set of
equivalence classes. Let us call [a, (] the equivalence class of («, 8) under ~. We define

[01,012] * [51,ﬁ2] = {’7,‘5],

where a; * g * §1 * B2 ~ v * §,and (v,d) € H + H. By considerations similar to H, G
can be expressed by an infinite intersection of sets in , and also its product by Axiom 16.

The next claim shows that G is closed under composition.
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Claim. (G, *) is closed under composition.

Proof. Let [oy, a3, [B1, B2] € G be given. Then a; L a3 and a; x as L a;, fori = 1,2
by a previous lemma. Similarly, 3, L 82 and 8y * 8, L B;, fori = 1,2.

We distinguish two cases. Let o := a; *ap. Ifa L 81 %32, then both [a, (81 % 82)]
and [B1, 2] € G, and obviously a; * az * B * B2 = a * (B * B2).

If a L B1 * B2, then a € cl(B; * B2) and so since B, * B2 L By, also a L B;.
Thus, a J/ ,81 and ﬂl J,/ ﬂg.

First, choose § € H such that § L af3;8;. In particular, 3; .l §. Now choose
0, € H such 8, L 6. Then &y * ¢ is well-defined, and §; * 6 .| 6. Since I' acts transitively

on H+ H,wecan find g € I' such that g(6) = § and g(6 *8;) = (1. Thus, 81 = g(6;) *4.
Call g(6;) =6’ € H. Then a x 8; * B2 = (a * 8) * (6’ x B2). We are done in we can show
thata . 6 and ' L B;. Certainly a .L & by choice of §. Now if §' .L B2, then B> € cl(8').

But 3; € cl(4,6") so &' € cl(B:6). Hence, dim(4, 81, 32) = 2, contradicting the choice of
d.

This finishes the proof. O
Lemma 22. (G, %) is a group.

Proof. G is nonempty. Since H is closed under inverse, it is easy to see that the inverse
of [a, 8] is [871,a71], so G is closed under inverse. The previous claim shows that G is
closed under composition. Finally, (G, *) acts on I'(a;) as described. 0
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