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FORKING IN PREGEOMETRIES, PART I:
THE BASICS

RAMI GROSSBERG AND OLIVIER LESSMANN

ABSTRACT. The aim of this paper is to set the foundation to separate geometric model
theory from model theory. Our thesis is that it is possible to lift results from geomet-
ric model theory to non first order logic (e.g. L., ,w). We introduce a relation between
subsets of a pregeometry and show that it satisfies all the formal properties that forking
satisfies in simple first order theories. This is important when one is trying to lift forking
to nonelementary classes, in contexts where there exists pregeometries but not necessarily
a well-behaved dependence relation (see for example [HySh]). We use these to reproduce
S. Buechler’s characterization of local modularity in general. These results are used by
Lessmann to prove an abstract group configuration theorem in [Le2).

1. INTRODUCTION

At the center of stability theory is the notion of forking. Forking is a dependence
relation discovered by S. Shelah. It satisfies the following properties in the first order stable
case, see [Sh b].

(1) (Finite character) The type p does not fork over B if and only if every finite subtype
q C p does not fork over B.

(2) (Extension) Let p be a type which does not fork over B. Let C be given containing
the domain of p. Then there exists ¢ € S(C) extending p such that ¢ does not fork
over B;

(3) (Invariance) Let f € Aut(€) and p be a type which does not fork over B. Then
f(p) does not fork over f(B).

(4) (Existence) The type p does not fork over its domain;

(5) (Existence of x(T")) For every type p, there exists a set B C dom(p) such that p
does not fork B;

(6) (Symmetry) Let p = tp(@/B¢). Suppose that p does not fork over B. Then
tp(¢/Ba) does not fork over B;

(7) (Transitivity) Let B C C C A. Let p € S(A). Then p does not fork over B if and
only if p does not fork over C and p | C does not fork over B.

Already in the introduction of Chapter III of [Sh b], S. Shelah states what is im-
portant about the forking relation is that it satisfies properties (1)7). S. Shelah stated
another property named by S. Buechler [Bu] the Pairs Lemma (see Proposition 16 for the
statement) as one of the basic properties of forking, which he proved in [Sh b] using the
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Finite Equivalence Relation Theorem. Later Baldwin in his book [BI] presented an ax-
iomatic treatment of forking in stable theories. This allowed Baldwin to derive abstractly
Shelah’s Pairs Lemma from the other properties of forking. Following these ideas, it has
now become common to characterize various stability conditions in terms of the axiomatic
properties that forking satisfies.

One of the most difficult directions of pure model theory is the area called by
Shelah classification for nonelementary classes. A major problem is to find a depen-
dence relation which is as well-behaved as forking for first order theories. See for exam-
ple [Gr 1], [Gr 2], [GrHa], [GrLel], [GrLe2], [GrSh 1], [GrSh 2], [HaSh], [HySh], [Ki],
[KISh], [Lel], [MaSh], [Sh3], [Sh47], [Sh 87a], [Sh 87b], [Sh 88], [Sh tape], [Sh 299],
[Sh 300], (Sh 394], [Sh 472], [Sh 576] and [Sh h]. The situation in nonelementary classes
is very different from the first order case. In the first order case, the Extension property for
forking comes for free; it holds for any theory and is a consequence of the Compactness
Theorem. This is in striking contrast with the nonelementary cases; the Extension property
is usually among the most problematic and does not hold over sets in general for any of the
dependence relations introduced thus far.

A general dependence relation satisfying all the formal properties of forking has
thus not been found yet for nonelementary classes. There are, however, several cases where
pregeometries appear; i.e. sets with a closure operation satisfying the properties of linear
dependence in a vector space. In the first order case, the pregeometries are the sets of
realizations of a regular type, and the dependence is the one induced by forking and thus
satisfies automatically many additional properties. In nonelementary classes the situation
is different.

Let us describe several nonelementary examples. The first three examples have in
common that there exists a rank, giving rise to a reasonable dependence relation. However
the Extension property and the Symmetry property fail in general (they hold over suffi-
ciently “rich” sets). The rank introduced for these classes are generalizations of what S.
Shelah calls R[-, L,2]. Intuitively, a formula has rank a + 1 if it can be partitioned in
two pieces of rank a with some additional properties that are tailored to each context. It
is noteworthy that extensions of Morley rank are inadequate, as partitioning a formula in
countably many pieces makes sense only when the compactness theorem holds. In the last
example, no rank is known, but pregeometries exist.

Categorical sentences in L, (Q): S. Shelah started working on this context [Sh47]
to answer a question of J.T.Baldwin: Can a sentence in L(Q) have exactly one
uncountable model? Shelah answers this question negatively using V=L (and later
using different methods within ZFC) while developing very powerful concepts. One
of the main tools is the introduction of a rank. This rank is bounded under the
parallel to No-stability. It gives rise to a dependence relation and pregeometries.
Later, H. Kierstead [Ki] uses these pregeometries to obtain some results on the
countable models of these sentences.

Excellent Scott sentences: In [Sh 87a] and [Sh 87b] S.Shelah introduces a simplifi-
cation of the rank of [Sh47]. S. Shelah identifies the concept of excellent Scott
sentences and proves (among many other things) the parallel to Morley’s Theorem
for them. Again, this rank induces a dependence relation on the subsets of the mod-
els. Later, R. Grossberg and B. Hart [GrHa] proved the existence of pregeometries
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(regular types) for this dependence relation and used it to prove the main gap for
excellent Scott sentences.

Totally transcendental diagrams: In[Lel] Lessmann introduced a rank for ®o-stable
diagrams. Finite diagrams were introduced by S. Shelah [Sh3] in 1970 (see also
[GrLel] for an exposition). They are classes of models omitting a prescribed set of
types, with an additional condition. We call a finite diagram totally transcenden-
tal when the rank is bounded. The rank gives rise to a dependence relation on the
subsets of the models and pregeometries exist often. This is used to give a proof of
categoricity generalizing the Baldwin-Lachlan Theorem. In a work in preparation,
[GrLe2], we prove the main gap for totally transcendental diagrams.

Superstable diagrams: In [HySh], Hyttinen and Shelah study stable finite diagrams
([Sh3] or [GrLe1]) under the additional assumption that k(D) = Rg. Such diagrams
are called superstable. They introduce a relation between sets A, B and an element
a, written a g A. The main result is that the parallel of regular types exist. More
precisely, for every pair of “sufficiently saturated” models M C N, M # N, there
exists a type p realized in N — M such that the relation a |ps C (standing for
a ¢ cl(C)) induces a pregeometry among the realizations of pin N.

Thus, pregeometries seem to appear naturally in nonelementary classes, while
general well-behaved dependence relations are hard to find. The main goal of this pa-
per is therefore to recover from any pregeometry a dependence relation over the subsets
of the pregeometry that satisfies all the formal properties of forking. This is, of course,
particularly useful when the pregeometry itself was not induced by forking.

A similar endeavor was attempted by John Baldwin in the early eighties. In [Bl1],
J.Baldwin examined some pregeometries and several dependence relations in the first order
case. From a pregeometry, he defines the relationa .l C, by a € cI(BU C) — cl(B). He

B

did not however introduce A L C, where A is a tuple or a set as opposed to an element,

B
which we do (see Definition 7). This is a crucial step; it is built-in in the model theory
of first order, since forking is naturally defined for types of any arity. To make this more
precise, fix T a first order stable theory. Let us write

al C for tp(a/BUC) doesnot fork over B.
B

Inside a regular type p(z) € S(B), the relation a € cl(C) given by a L C gives rise to a
B

pregeometry. But, the relation @ I C is defined in general whether or not @ and C consist
B

of elements realizing p. Inside the pregeometry, the relation a.l C holds (defined with
B
forking) if and only if the relation @ .l C holds (defined formally from our definition using

B
the closure operator of the pregeometry). This is a consequence of the Pairs Lemma, which
holds for first order simple theories. When we start from an abstract pregeometry (or an
abstract dependence relation), we do not have the formalism of types or the Pairs Lemma.

Therefore the relation @ .l C has to be introduced for tuples, using the relation a L C for
B
elements. As a consequence, suppose we are given the corresponding notion of a regular
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type p € S(B) in a nonelementary context. Suppose there is some ambient dependence
*

relation, written AL C such that over realizations of p the relation a € cl(C), given by
B

a L C, induces a pregeometry. Then, the truth value of the relation a L. C (given from
B B
the ambient dependence relation) and @ .l C (defined from the closure operation in the

pregeometry) may not coincide. They will?coincide only if the Pairs Lemma holds for the
dependence relation (and this fact is not known in general for nonelementary cases). There-
fore, this abstract formalism allows us to introduce for nonelementary classes a (possibly)
better dependence relation, inside the pregeometry.

As an illustration of the value of this general relation, we present S. Buechler’s
characterization of local modularity with parallel lines (see [Bu]) in this general context.
This also has esthetic value as it allows one carry out this work in the general context of
combinatorial geometry, without logic.

Finally, we add two more sections. One devoted to basic set-theoretic results and
another to stable systems.

In the follow-up paper [Le2], Lessmann presents an abstract framework where,
using the “forking relation” defined is this paper, he is able to derive a generalization of
Zilber-Hrushovski group configuration theorem. We believe that this result has a lot of
potential for the classification of nonelementary classes.

We would like to thank John Baldwin and Saharon Shelah for valuable comments
on a draft of this paper.

2. PRELIMINARIES

We recall a few standard and well-known facts about pregeometries. The notation
is standard. We write Ab for AU {b}.

Definition 1. We say that (W, cl) is a pregeometry if W is a setand cl: P(W) — P(W)
is a function satisfying the following four properties

(1) (Monotonicity) For every set X € P(W) we have X C cl(X);

(2) (Finite Character) If a € cl(X) then there is a finite set Y C X, such that a €
c(Y);

(3) (Transitivity) Let X, Y € P(W). Ifa € cl(X) and X C cl(Y) thena € cl(Y);

(4) (Exchange Property) For X € P(W) and a,b € W, if a € cl(Xb) buta ¢ cl(X),
then b € cl(Xa).

We always assume cl(@) # W.
The next two basic properties are standard and easy.

Fact 2. If (W,cl) is a pregeometry and B C C' C W, then cl(B) C cl(C).
Fact 3. If (W, cl) is a pregeometry and B C W, then cl(cl(B)) = cl(B).
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Definition 4. Let (W, cl) be a pregeometry.

(1) For X C W, we say that X is closed if X = cl(X);

(2) I C W is independent if for every a € I, we have a ¢ cl(I — {a});

(3) We say that I C A generates A, if cl(I) = cl(A);

(4) A basis fora set A C W is an independent set I generating cl(A4);

(5) For X C W, the dimension of X, written dim(X), is the cardinality of a basis for
cl(X).

Fact 5. Using the axioms of pregeometry, one can show that for every set, bases exist and
that the dimension is well-defined see for example Appendix in [Gr]

Definition 6. Let G = (W, cl) be a pregeometry.

(1) A bijection f: W — W is an automorphism of G if foreverya € Wand AC W
we have

a € cl(A) ifandonlyif f(a) € cl(f(A))-

We denote Aut 4(G) the set of automorphisms of G fixing A pointwise.

(2) We say that G is homogeneous if for every a,b € W and A C W, such that
a ¢ cl(A) and b & cl(A) there is an automorphism of G, fixing A pointwise and
taking a to b.

3. FORKING IN PREGEOMETRIES

In this section, we introduce the main concept of the paper.

Definition 7. Let (W, cl) be a pregeometry. Let A, B and C be subsets of W. We say that
A depends on C over B, if there exist a € A and a finite A’ C A (possibly empty) such
that

aecl(BUCUA) —cl(BuA).
If A depends on C over B, we write A .} C;
B

If A does not depend on C over B, we write A L C.
B

Remark 8. An alternative definition with A’ = @ does not permit a smooth extension to

sets A L C when A is not a singleton.
B

Remark 9. A .l C if and only if AU B.L C U B. Hence, we will often assume that
B
BCANC.

We now prove that the properties of forking in simple theories hold with this
formalism, directly from the axioms of a pregeometry.

Proposition 10 (Finite Character). Let (W, cl) be a pregeometry. Let A, B and C be sub-
sets of W. Then

ALC ifandonlyif A" LC',
B B

Jor every finite A' C A and finite C' C C.
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Proof. If A L C, then there exist a € A, and a finite A’ C A such that
B

a€c(BUCUA")—cl(BUA).
By Finite Character, there exist a finite C' C C such thata € cl(B U C' U A'). Hence
A' L C', by definition.
B

For the converse, if there exist a finite A’ C A and a finite C' C C such that
A"} C', then we can finda € A’ and A" C A’ such that
B

a€c(BUC'UA")—cl(BuA").
Since C' C C, we have a € cl(BUC U A"), by Fact 2. Hence, A L C, by definition. O
B

Proposition 11 (Continuity). Let (W, cl) be a pregeometry. Let (C; | i < «) be a contin-
uous increasing sequence of sets in W, and A,B C W.

(1) fALC; foreveryi < a, then AL, Ci.
B B

Q) IfC; L Aforeveryi < a, thenJ,_ C; L A.
B B

i<a

Proof. By Finite Character. O

Proposition 12 (Invariance). Let G = (W, cl) be a pregeometry. Let A, B and C be sub-
sets of W and let f € Aut(G). Then

ALC ifandonlyif f(A) L f(O).
B f(B)

Proof. Note that since the inverse of an automorphism is an automorphism, it is enough to

show one direction. Assume that A .} C andleta € A and A' C A finite be such that
B

ac€c(BUCUA")—cl(BUA').
Then f(a) € cl(f(BUC U A")) — cl(f(B U A')), by definition of automorphism. But
since f is a bijection
fla) € cA(f(B)U f(C) U f(A") — cl(f(B)U £(4)).
Therefore, f(A) L f(C) by definition. O
f(B)

Proposition 13 (Monotonicity). Let (W, cl) be a pregeometry. Let A, B and C be subsets
of W. Suppose A L C.
B

(1) IfA"CAandC' CC, thenA' L C';
B
@) IfB'CC, thenA L C.
BUB'
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Proof. (1) Suppose that A’ L C’. Leta € A’ and A* C A’ finite such that
B

a€c(BUC'UAY) —cl(BUA").

Then, by Fact 2, we have a € cl(BU C U A*) — cl(BU A*). Buta € A and A* C A, so
AJ)C.
B

(2)Suppose A L C.Leta € Aand A’ C A finite such that
BuUB

a€c(BUB'UCUA") —cl(BUB'UA').

Since B' C C, wehave c(BUB'UCUA") = cl(BUCUA"). Also, cl(BU A") C
cl(BUB'UA'). Hencea € cl(BUC U A') — cl(BU A"). Therefore A .} C. O
B

Proposition 14 (Symmetry). Let (W, cl) be a pregeometry. Let A, B and C be subsets of
W. Then

ALC ifandonlyif C.UL A.
B B

Proof. Suppose that A .} C. Choose a € A and a finite A’ C A such that
B

*) a€c(BUCUA") —cl(BUA).

By Finite Character and (*), there exist ¢ € C and a finite (and possibly empty) C' C C
such that

(**) a€c(BUC'UcUA') and agcl(BUC'UA).
Therefore, by the Exchange Property, we have
cecl(BUC'UA Ua).
Butc ¢ cl(BUC'U A'), (**). Hence,
cecd(BUC'UA'Ua)—cl(BUC'UA).
Therefore, C 53% A’, for some finite subset A’ of A. Hence, C \B% A, by Finite Character.
a

Proposition 15 (Transitivity). Let (W, cl) be a pregeometry. Let A, B, C and D be subsets
of W such that B C C C D. Then,

ALD and ALC ifandonlyif AL D.
o B B
Proof. Suppose first that A L D. Choose a € A and a finite A’ C A such that
B

a€c(DUA") —cl(BuA4).
Eithera € c](C U A'), and so

a€cl(CUA)-c(BuA4),
which implies that A \g C.Ora ¢ cl(C U A’), and therefore

a€cl(DUA) -cl(CuA),
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which implies that A L. D.
C

The converse follows by Monotonicity since B C C C D. O

The following is proved in [Sh b] directly using the finite equivalence relation
theorem. The proof that it follows from the other axioms of forking is due to J. Baldwin.
We present it here for completeness.

Proposition 16 (Pairs Lemma). Let G = (W, cl) be a pregeometry. Let A, B, C and D be
subsets of W such that C C BN D. Then

AUBLD ifandonlyif A | DUB and B. D.
C CUB c
Proof. Notice first, that by definition

™ A | DUB ifandonlyif A . D.
CUB CUB

Therefore, by Symmetry and (*), it is equivalent to show that

Dl AuUB ifandonlyif D . A and D. B,
C CUB C

which is true by Transitivity. O

Remark 17. Let (W, cl) is a pregeometry. Let A, B, C and D be subsets of W. Then
AD.L C ifandonlyif ALl CD.
B B
Proof. Suppose A L CD. Then, by Monotonicity we have A L D. Therefore, by Sym-
B B
metry, we have D .l D. By Transitivity, we have A .l CD. Hence, AD . C by Con-
_ B BD B

catenation.

For the converse, suppose that A L CD. Then by Symmetry we must have

B
CD I A. Hence, by the first paragraph, we know that C .. AD, so by Symmetry, also
B B

AD L C. O
B

This finishes the list of usual properties of forking. We now prove a few proposi-
tions relating closure and L.

Proposition 18 (Closed Set Theorem). Let (W, cl) be a pregeometry. Let A, B and C be
subsets of W. Then

ALC ifandonlyif A LC',
B B’

provided that cl(A U B) = cl(A’ U B'), cl(B) = cl(B') and cl(C U B) = cl(C' U B).
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Proof. 1t is clearly enough to prove one direction. Furthermore, by Symmetry, it is enough
to show that A L C implies A L C'. Suppose that A L. C’. Leta € A and A* C A be
B B’ B’
such that
a€cl(B'UC' UA*)—cl(B'UAY).

But, it follows from the assumption that cl(B' U C' U A*) = cl(BU C U A*) and cl(B' U
A*) = cl(B U A*). Therefore

a€cl(BUCUA") —cl(BUA"),
which implies that A L. C. O
B

Remark 19. In view of the previous result, when A L C, we can first choose a basis B’

B
of B, and choose A’ C A and C' C C, independent over B (or equivalently B'), such that
cl(AUB) = cl(A'UB) and cl(CUB) = cl(C'UB), and thus A’ | C' andalso A’ L C".
B B’
Proposition 20. Let (W, cl) be a pregeometry. Let A, B and C be subsets of W.
AL C implies cl(AUB)Ncl(CUB) = cl(B).
B

Proof. Certainly cl(B) C cl(A U B) Ncl(C U B). Suppose that the reverse inclusion

does not hold, and let a € cl(A U B) N cl(C U B) such that a ¢ cl(B). Then a €

cl(C U B) — cl(B), so cl(AU B) ., C. But the previous proposition implies that A .} C,
B B

which is a contradiction. O
Remark 21. In view of the definition and symmetry, when we look at A.L C, we will

B
generally assume that B C A and B C C. Further, because of the closed set theorem, we
may assume that A, B and C are closed, and finally, that B = AN C.

4. BUECHLER’S THEOREM

We list a few more definitions.

Definition 22. Let (W, cl) be a pregeometry.

(1) (W, cl) is called modular if for every closed subsets S; and S; of W we have
dim(S; U S3) + dim(S; N S3) = dim(S1) + dim(Sz);

(2) (W,ql) is called locally modular if for every closed subsets S; and S, of W we
have

dim(S; U S2) + dim(S; N Sz) = dim(S;) + dim(S»),

provided that 5; N .Sz # 0;
(3) (W, cl) is called projective if for every a,b € W and C C W such that

a € cl(C U {b}),
there exists ¢ € C such thata € cl({c, b}).
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Remark 23. It is not too difficult to see that a pregeometry is projective if and only if it is
modular.
Definition 24. Let (W, cl) be a pregeometry.
(1) Aclosedset L C W is alineif dim(L) = 2;
(2) Two disjoint lines L, and L, are parallel if dim(L; U Ly) = 3.

Definition 25. Let G = (W, cl) be a pregeometry and A C W. Define the localization of
G at A, written G4 = (Wa,cla), by

Wa=W—A and cla(X)=cl(XUA)— 4, for X C Wi.

Remark 26. It is easy to see that if G is a pregeometry, then G 4 is a pregeometry. In G 4,
we denote the dimension of X by dim(X/A).

Remark 27. If G = (W, cl) is locally modular, then G 4 is modular for any finite subset
Aof W — cl(@).

Proposition 28. Let (W, cl) be a pregeometry. Let Sy, S2 be finite dimensional closed sets
satisfying So = S1 N Sy. Then,

S1 LSy ifandonlyif dim(S;US;)+ dim(S; NS2) = dim(S;) + dim(Ss).
So

Proof. Suppose first that S; L Ss. Let I be a basis for Sy, and let I; D I be a basis for

0
S; fori = 1,2. Clearly, cl(S; U S2) = cl(I; U I;). We claim, in addition, that I, U I5 is
independent. Otherwise there is a € cl(l; Ul — {a }). Without loss of generality, we may
assume that a € I;. Now, since I; is independent, a & cl(I; — {a }), thus

acc(lul, —{a})—cl(l; —{a}), fori=1,2.

We may also assume that a ¢ I. To see this, assume that a € I. Choose I} C I; — I,
minimal with respect to inclusion, such thata € cl(J;UILUI —{a}), I} # 0, fori = 1,2.
By the Exchange Property, there is b ¢ I, such that

bec(HULUIU{b}) Ccl(l Ul, —{b}).
But,ifa ¢ I, thencl(ly —{a}) =cl({UIL, — {a}) so
a € cl(l U (Iz — {a})) —cl(T U (I2 — {a})),
which means that S; L S2, a contradiction. Hence I; U I, is independent. Therefore
dim(S; U S2) = |Ih U?zl. But |} U L] + |I| = |I1| + |I2], so
dim(S; U S3) + dim(S; N Sz) = dim(S;) + dim(Ss).

For the converse, suppose S; . S. Leta € S; and A4; C S) such that
So

™ a € cl(S2U Ay) —cl(So U Al)

Choose a such that A; has minimal cardinality. This implies that A; U {a} is independent
over Sp, and A, is independent over S,. Thus, we can pick a basis I for Sp, and extend
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Ip U A; U {a} to a basis I; of S;. Now choose I} disjoint from Iy, such that Io U I} is a
basis of S2. But, Iy U A; U {a} U I} is not independent by (*). Hence

dim(S; U S2) + dim(S; N Sz) < dim(S;) + dim(S»),
which finishes the proof. 0

In the previous section, we showed that in any pregeometry, there is a relation
that satisfies all the properties that forking satisfies in the context of simple theories. This
allows us to show a theorem of Buechler [Bu], originally proved for stable theories, when
the pregeometry comes from forking.

Theorem 29 (Buechler). Let G = (W, cl) be a pregeometry. Then G is locally modular if
and only if G 4 has no parallel lines for every finite A C W, such that A Z cl(0).

Proof. Suppose first that there is a finite A C W, such that A € cl(@)) and G4 contain
parallel lines. Thus, let L; and L, be disjoint lines in G 4 such that dim(L; U Ly /A) = 3.
Let L} = cl(L; U A) fori = 1,2. Then A C Li N L}, so Ly N Ly € cl(®), L, is closed for
i=1,2,and

dim(L} U L}) + dim (L}, N L}) # dim(L}) + dim(L}).

This shows that G is not locally modular.

For the converse, suppose that G is not locally modular. Then there are closed S;
and S, subsets of W such that S; N Sz Z cl(P) and

dim(S; U S2) + dim(S; N S2) # dim(S,) + dim(Ss).
We may assume that S; and S are finite dimensional. Let Sy = S; N .S2. By Proposition

28, this implies that S; L Sa.
So

Let D be the set of pairs of integers (d , d2) such that there are closed sets S; and
S» such that

e So=51NSyand Sy Z cl(B);
(] d1 = dlm(Sl /So) and d2 = dlm(S2/So),
L] Sl \,L Sz.

So

By assumption D # ). Choose (d;,d2) minimal with respect to the lexicographic order.
We claim that {d;,d2) = (2,2). Note that this is enough to prove the theorem since
cls, (S1 — So) and cls, (S2 — So) are parallel lines in G's,,.

Certainly, d; > 1. Otherwise, dim(S;/Sy) = 1 and since S; L S; there must
So
exist a € S} — Sp such that a € cl(S2) — cl(Sp). Since S; and Sy are closed, we have
a € S; NS, — Sy, a contradiction, since S; N S; = Sp.

We now show that d; < 3. Suppose d; = dim(S;/So) > 3. We will show that
this contradicts the minimality of d;. We first show that

™ S; N cl(S2a) = cl(Spa), foranya € Sy — So.
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First, notice that Spa C S; and Spa C cl(Sz2a), so
S1 Ncl(S2a) D cl(Spa), foranya € S; — So.
Hence, if (*) does not hold, it is because for some a € S; — So, there exists
b € (51 Ncl(Sz2a)) — cl(Spa).
By definition, this implies that { a,b} .L S>.

(0]

Let S = cl(Spab). Then S} NSz = Sp and Sp & cl(P). Furthermore S; .k Ss.

So
But dim(S2/So) = d2 and dim(S;/So) = 2 < 3 < d, which contradicts the minimality
of d;. Therefore, (*) holds.

Now, since S; L So, there exist a € S; and a finite A C S; such that
So

**) a € cl(S2 U A) — cl(Sp U A).

But A € Sp. Otherwise, by (**) we have a € cl(S2)—cl(Sp). This shows thata € Sy —S;
since Sz and Sy are closed. Buta € Sp,s0a € (S; N S2) — Sp = B, which is impossible.
Hence, there is b € A — Sy. Then, since Ab = A, we have

a € cl(S2 U A) — cl(SobU A).

Hence S; L Ss.
SoUb

Now consider S} := cl(Szb). Then, S; L S implies that S; L Sj. By

SoUb SoUb
(*) we have S; N S, = cl(Spb). Finally, dim(S;/(Sodb)) < dim(S;/So) = d; and
dy = dim(S2/So) = dim(S%/Spb). This contradicts the minimality of d;. We prove
similarly that d2 = 2, which finishes the proof. O

5. SOME “SET THEORY”

In this section, we gather several observations with a set-theoretic flavor. The next
theorem is a generalization of a lemma from J. Baumgartner, M. Foreman and O. Spinas
[BFS]. Although the proofis easy, it does not follow from the analog theorem involving
models as we do not have control over the cardinality of the closures. The value of this
theorem is that it makes it possible to attach a club as an invariant of the pregeometry.

Theorem 30. Let G = (W, cl) be a pregeometry. Suppose dim(W) = X is regular and
uncountable. Let I = {a; |t <A} and J = {b; | i < A} be bases of W. Then

C={i<A: d{{e;|j<i}) =c({bj|i<i})}

is a closed and unbounded subset of \.

Proof. We first show that C is closed. Let § = sup(d N C). Then, for any i < § there is
i3 € C suchthati < 7; < 8. Hence, by definition of C

* c({aj|j<i})=cl({b;j|j<i1}).
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Lemma 4 and (*) implies that a; € cl({b; | 7 < 8 }). Hence,

{ajli<d}Cel({bjli<d}),
and therefore

d({aj|j<dé}) Ce({d;|j<d}),
by Fact 2 again. The other inclusion is similar and so

c({aj |5 <d}) 2cl({b;j |5 <6}).
This shows that § € C, by definition of C.

We now show that C' is unbounded in A. Leti < \ be given. We construct 7, < A
for n € w increasing with 79 = 4 such that

(D cd{a;|i<in}) Cc({bj|j <int1})ifniseven;
(@) cd({b;|J <in}) Ccl{{aj|j <in41})ifnisodd.

This is enough: Let i(%) = sup{ i, | n € w}. Theni(x) < A since X is regular
uncountable. Further cl({a; | j < i(x) }) = cl({b; | 7 < i(x) }), since if ¢ < i(x), then
there is 1,, with n even such that i < i,,, so

ai€cd({a; |j<in}) Cel({d; | <iny1}) Cel({d; |7 <i(x)}),
hence

d({a;|j<i(x)}) Cel({b; |5 <i(x)})
The other inclusion is proved similarly. Thus i < i(x) € C, which shows that C is
unbounded.

This is possible: Given ¢ < A, we let g = 7. Assume that 7, < A has been
constructed. Suppose n is even. For each j < i,, we have thata; € W = cl({b; |
j < A}) since J is a basis. By Finite Character, there is a finite S; C A such that
aj € cl({bx | kK € S;}). Letk; = supS; < A\, s0a; € cl({b; | Il < k;}), and by
increasing k; if necessary, we may assume that k; > in,. Setiny =sup{k;j+1|j <i,}.
Theni,41 < A since A is regular and satisfies our requirement. The case when n is odd is
handled similarly. d

Proposition 31 (Downward Theorem). Let G = (W, cl) be a pregeometry. Let A, B and
C be subsets of W. Suppose A L C and A’ is a subset of A, of cardinality at most ), for
B

X an infinite cardinal. Then there is B' C B of cardinality at most X such that A' | C.
BI

Proof. Let A' C A of cardinality A be given. Let { {a;, A;) | ¢ < A} be an enumeration
of all the pairs such that a; € A’ and A; C A’ is finite. Such an enumeration is possible
since A is infinite. Since A L B, necessarily

C
™) a; € c{(BUCUA;)—cl(BUA4;), foreveryi<A.
Hence, either a; & cl(B U C U A;), or a; € cl(B U A;). If the latter holds, by Finite

Character, we can find a finite B; C B such that a; € cl(B; U A;). We let B; = §, if
a; € cl(BUA;). Let B = |JB;. Then B' C B,and |B'| < A.
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We claim that A’ | C. Otherwise, there exist a € A’ and a finite A* C A’, such
BI
that

(**) a € cl(B'UCUA*) —cl(B'U AY).

Choose i < A such that a = a; and A* = A;. Thus, a; € cl(B' UC U A4;), and so by Fact
2 we have a; € cl(B U C U A4;). Therefore, by (*) we have that a; € cl(B U A;). Hence
a; € cl(B; U A;) by construction. But B; C B’, and so0 a; € cl(B' U A;) by Fact 2. This
contradicts (**) since A* = A;. O

Corollary 32. Let G = (W,cl) be a pregeometry. Let A,B and C be subsets of W.
Suppose that A, B and C have cardinality at least X for some X infinite. If AL B, then
C

we canfind A' C A, B' C B and C' C C of cardinality )\, such that A' | B'.
Cl

Proof. By the previous theorem using monotonicity. 0O

Proposition 33 (Ultraproducts of Pregeometries). Let I be a set and ® an R;-complete
ultrafilter on 1. Suppose that (Wj, cl;) is a pregeometry for each i € I. Consider W =
IT;e;W; and fora € W and B C W, define

ae€clB) if {ie€l]|a@)e€cli(B@)}eD.
Then (W, cl) is a pregeometry.

Proof. We only show Finite Character, since all the other axioms of a pregeometry are
routine. Suppose a € cl(B). Then J = {i € I | a(i) € cl;(B(i)) } € D, and by Finite
Character of cl;, for each ¢ € J, there is a finite B'(i) C B(i), such that a(z) € cl;(B'(7)).
Let J, = {i € J | B'(i) has n elements}. Then

{ieJ|a@)eci(B'@)}= | Jn
n<w

Hence, by R;-completeness, there exist n < w such that J, € D. We now write B'() =
{03,...,0,} fori € J,. Let A = {f1,...,fn} C B be given by fx(i) = b} when
i € Jp and fi (i) € B(i) arbitrary when i ¢ J,,. Then

{ieT]a(i) € ci(A()} 2 Jn €D,
by construction. Hence { ¢ € I | a(i) € cl;(A(¢)) } € D. Thus, a € cl(A) and A is a finite
subset of B, which is what we needed. O

6. STABLE SYSTEMS

We now introduce stable systems, a notion originally developed in model theory.
They are used for example in [Sh 87a], [Sh 87b] and later in the proof of the main gap
[Sh b]. See also [Ma].

Definition 34. Let G = (W, cl) be a pregeometry.
(1) Wecall S = (A | s € I) asystem, if A, C W, I is a subset of | I closed under

subsets and s C ¢ implies A; C A,. We denote by s~ the immediate predecessor
of s in I if one exists;
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(2) Wecall S = (A, | s € I) a stable system, if S is a system which satisfies in
addition

A, L U{At|t23,tel}, forevery s,t € I.
A,-

Proposition 35 (Generalized Symmetry Lemma). Let G = (W, cl) be a pregeometry. Let
S = (A; | s € I) be a system. Suppose there is an enumeration I = (s(i) | i < a) such
that

(1) s(i) C s(j) impliesi < j, foreveryi,j < a;
@ Ay L Ufds 15 <i}
Asg(i)-

Then S is a stable system.

Proof. By Finite Character, we may assume that I is finite. We prove this by induction on
|I]. The base case is obvious. Suppose it is true for |I| = n < w. Suppose I = (s(i) |
1 < mn) is an enumeration satisfying (1) and (2). Assume for a contradiction that S is not a
stable system. By induction hypothesis, we have either

™) As(n) \L U{As(j) [ s(4) € s(n)},
As(n)—
or there exists ¢ < n with s(2) € s(n) such that
(**) Ay L Ul |50G) € 56),50) # 5(n)} U Ayny.-
s(i)~
By assumption, we know that
) Ay L J{4u) 15 <n}.
As(n)‘
By (1), we have that

U{Aui) 15G) € s(m)} € UL Asiy 15 <}
Hence (*) is impossible, by Monotonicity and (}).

Now if 5(¢) C s(n), then s(i)~ C s(n)~. Hence, Ay;)~ C Ays(n)- since S'is a
system. By Monotonicity used twice, (}) implies that

As(n) J/ U{As(j) ' 3(.7) g S(i)7s(j) ‘_Ié s(n)} UAs(i)'
s(i)—
But this and Remark 17 contradicts (**). Hence s(i) € s(n). a
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