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Homogenization and Hyperbolicity

Luc TARTAR

In memory of Ennio DE GlORGI

In the early 70s, working with Frangois MURAT on an academic question of optimal design, we had been
led to rediscover something that Sergio SPAGNOLO had already done a few years before under the name of
G-convergence, the name being a reminder of its relation with the convergence of GREEN kernels [Spl,Sp2].
Our ideas were quite different from his, and were not either along the line of his joint work with Ennio DE
GlORGI [DG&Sp], which was a first step towards creating the notion of F-convergence.

At a meeting in Roma in the Spring 1974, I had presented some results that we had obtained, and I
boasted that our method was more powerful than the Italian one (I had forgotten to mention that these
results had been obtained with Frangois MURAT [Tal]). Last year, I was told that my claim had upset Ennio
DE GlORGI, and I had planned to apologize for that old comment on our next meeting, which unfortunately
did not happen.

Although I have worked for many years on questions quite similar to some of those Ennio DE GlORGI
was interested in, I never really discussed with him about our different points of view on these questions.
Despite my bold claim of 1974, I was too shy for initiating a discussion with him, but on at least one of
my visits to Pisa, he had spontaneously told me about some question that he thought of interest. As this
question was related to something that I had already started to think about a few years earlier, I gathered
all the results that I knew about it when I was asked to write an article for a book dedicated to him [Ta2]. I
had been struck on that occasion by the way Ennio DE GlORGI was thinking about Mechanics, as he did not
seem to know of any precise situation where the type of question that he was thinking about would apply,
but he thought that it was important to study such questions. Indeed, it was.

As for myself, I had been a student at Ecole Polytechnique, at a time where the French education system
was not yet destroyed, and therefore I had a course of "Mecanique Rationnelle" during the first year and a
course of "Mecanique des Milieux Continus" during the second year, and it was indeed quite natural that
we had been taught 18th Century Mechanics during the first year as it only requires Ordinary Differential
Equations, and that we had been taught 19th Century Mechanics during the second year as it requires
some knowledge of Partial Differential Equations that we barely had at the time. After these two years at
Ecole Polytechnique I had learned from Jacques-Louis LlONS the state of the art in applying the methods of
Functional Analysis for solving some linear and nonlinear partial differential equations, but although these
equations were often connected to questions in Continuum Mechanics or Physics which I later made my
goal to understand in a better way, I found that my thesis advisor had little interest in understanding more
about Continuum Mechanics or Physics. As for Ennio DE GlORGI, it had seemed to me that he had never
really studied Continuum Mechanics or Physics, but I had felt that he had a deep philosophical interest
in understanding what basic principles could be. As a consequence, the intuition of Ennio DE GlORGI has
helped him develop some interesting mathematical tools, which are often useful for some partial differential
equations of Continuum Mechanics, but his approach has some limitations which must be overcome.

The notion of F-convergence that Ennio DE GlORGI had developped was indeed an interesting new
idea, which extended his work with Sergio SPAGNOLO [DG&Sp], but I did not use much that idea myself,
as it did not fit so well into the program of research that I had already begun. Frangois MURAT had
coined the word H-convergence to describe our approach, which differed from G-convergence by the fact
that in considering sequences of solutions of — div (An grad(un)) = f we were interested in the limit of both
quantities En = grad(un) and Dn = Angrad(un). That improvement on G-convergence is necessary in the
case where An is not symmetric, but this different point of view is also adapted to treating more general
equations, not necessarily elliptic, as one should not think that there is always an "energy" that should
be minimized. One important difference between our points of view was then that Ennio DE GlORGI was
working with real functionals, the order relation on R playing an important role, while I wanted to work with
partial differential equations together with a list of various interesting quantities to be identified, quantities
which often happened to have a physical meaning (as E denoting an electric field, D a polarization field and
(E.D) a density of electrostatic energy if one uses an interpretation in terms of Electrostatics, u being an
electrostatic potential and / a density of charge). Because I had learned more about Continuum Mechanics,



I knew of more general situations than the ones which Ennio DE GlORGI had imagined, and it might be for
that reason that I was often finding questions of F-convergence too restrictive, even in situations were I had
failed to obtain results; one such example was the question of Homogenization in Finite Elasticity.

When I had first met John M. BALL at a meeting in Marseille in the Fall 1975, he had just succeeded
in applying to realistic problems of Finite Elasticity the notion of quasiconvex functions in the sense of
MORREY [Ba]. The advantage of using quasiconvex stored energy functions lies in their sequential weak
lower semi-continuity, so useful for proving existence of solutions, but after learning about his approach, I
thought that a more important question was to discover which were the strain-stress relations such that for
any sequence of equilibrium solutions un for which the strains and the stresses converge weakly, the weak
limits automatically satisfy the same strain-stress relation. My idea was to use the Div-Curl lemma, which
implies that
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while the monotonicity argument only used the information that

A year later, I knew of more general relations implied by the general theory of Compensated Compactness
that I had developped with Frangois MURAT, but I could not discover a "natural" class, like that of mono-
tone relations for equations of the form —div(F(grad(u))) — j for which I had described Homogenization
questions in my cours PECCOT in the Spring 1977. I had then failed to find a "natural" class stable by
Homogenization for Finite Elasticity, as I reported in the proceedings of a meeting in Rio de Janeiro in the
Summer 1977 [Ta3], but as was pointed out to me much later (by Gianni DAL MASO, I think), one can
apply F-convergence to solve that Homogenization problem in Finite Elasticity, and I must admit then that
F-convergence is a powerful tool, but this result has a few defects, that I still do not know how to correct at
the moment.

The first defect is that the F-convergence approach does not apply to the evolution problem. The
second defect is that it only considers sequences of global minimizers and does not say what would happen
to sequences of other equilibrium solutions. Of course, it says nothing about which strain-stress relations one
could obtain at the limit, as one does not yet know which strain-stress relations are gradients of quasiconvex
functions. The third defect is that the F-convergence approach assumes indeed that stored energy functions
are quasiconvex and, apart from mathematical convenience, I have never heard any argument in favour of
quasiconvexity. It is certainly a physical requirement that the evolution problem should have the finite
propagation speed property, and plane wave solutions for the linearized problem do travel at finite speed if
one imposes only the LEGENDRE-HADAMARD condition, equivalent to the rank-one convexity of the stored
energy function (a condition weaker than quasiconvexity, and different from it in dimension N > 3, according
to a counter-example of Vladimir SVERAK [Sv]). The fourth defect is that the F-convergence approach only
applies to hyperelastic materials, i.e. materials whose strain-stress relation is associated to a stored energy
function, but that could be a purely academic remark, as it might be that all real materials are indeed
hyperelastic (for the evolution problem to be well posed, for example).

Of course some of these criticisms may seem unfair as even now very little is known by any approach
for what concerns hyperbolic systems in more than one space variable, but when I was writing [Ta3] twenty
years ago in the Summer 1977 I had also criticized my own approach for not being able to take into account
entropy conditions, and it was only in the Fall 1977 that I had understood how to treat entropy conditions, in
the same way than constitutive relations [Ta4]. I doubt that Ennio DE GlORGI knew much about hyperbolic
systems of conservation laws, and he was probably not aware of my criticisms anyway, but it would have
been interesting to know his insight on that subject, because among the equations of Continuum Mechanics
hyperbolic systems of conservation laws play a crucial role, and because the subject is considered difficult
enough to have scared away many good mathematicians, so that any new idea would be welcome. I had
often thought that the class of quasilinear hyperbolic systems as described by Peter LAX was too large, but
until recently I had no idea about what conditions to add to the hyperbolicity of the linearized problem.



Recently, I had an idea which was explored for the case of Linearized Elasticity by one of my students, Sergio
GUTIERREZ [GU], and there might be interesting extensions to nonlinear problems.

Which materials should one use in Linearized Elasticity?
Linearized Elasticity consists in looking for a displacement u satisfying the equilibrium equations

together with some boundary conditions, the symmetric CAUCHY stress tensor a satisfying the constitutive
relations

TV

o-ij = J Z Cijki£ki for i, j = 1 , . . . , N, (4) •

and the linearized strain tensor e being defined by

Of course, one assumes that Cijki is unchanged by permuting i and j or by permuting k and I (one adds
invariance under the exchange of ij and kl for having a quadratic stored energy function).

A linear system of partial differential equations is said to be elliptic if, for constant coefficients, the
equation is easily solved by FOURIER transform, and in the case of (3)-(4)-(5) it means that for every
£ G RN \ 0 the linear mapping u i-* v is invertible, where for i — 1 , . . . , N one has

TV . TV

Using the symmetry in k and /, (6) means

TV

Vi = Yl Aik(Ouk for i = 1, • •. , N

TV K J

Aik(0 = ^2 Cijutjii for i, k = 1,..., N,
3,1=1

and so ellipticity consists in imposing that the acoustic tensor A{£,) is invertible for every £ ̂  0. The strong
ellipticity condition consists in imposing that A(£) is positive definite for every £ ̂  0, i.e. there exists a > 0
such that

TV

> a|A|2|f|2 for all A,f G i^N, the LEGENDRE-HADAMARD condition. (8)

The very strong ellipticity condition consists in imposing that there exists a > 0 such that

TV

V^ CijkiMijMki > a\M\2 for all symmetric matrices M. (9)
t,j,/U=i

In the case of isotropic materials,

TV

ay = 2fi6ij -f XSij Y^ £kk^or i, j = 1 , . . . , N, i.e. Cyw



the acoustic tensor is
+(A+ //)£&£, (11)

so that ellipticity means that the LAME parameters A, /i satisfy /i / 0 and 2/i -h A ̂  0, strong ellipticity
means that they satisfy /i > 0 and 2/i + A > 0 while very strong ellipticity means that they satisfy \x > 0
and 2/i + iVA > 0.

The general theory of Homogenization (as I have developped it with Frangois MURAT) applied to Lin-
earized Elasticity uses LAX-MlLGRAM lemma, i.e. it uses V-ellipticity for a space V satisfying (H^ft)) C
V C (Hl(Cl)) . In order to talk about the effective properties of a mixture (corresponding to a sequence of
coefficients C"kl), it is important that these properties be local, and certainly the effective coefficients should
not depend upon which boundary conditions are used, i.e. they should be independent of which space V is
used. This poses no problem if one mixes only materials whose strain-stress relation is very strongly elliptic
with the same a, and coefficients can be chosen to be discontinuous in that case, but there is a problem if
one uses other materials: there are examples, using materials whose strain-stress relation is only strongly
elliptic, for which one only knows how to describe the case of DlRICHLET conditions, i.e. V = (HQ(Q,)) ,
and for some particular class of discontinuous coefficients. One may think that I could certainly do better if
I was more clever, but there is actually a deeper problem here.

Independently of creating a general theory of Homogenization, one can compute the effective coefficients
tki f°r lavered mixtures, under the simple condition that if the layers are perpendicular to £, all the

materials used are such that their acoustic tensors satisfy A(£) > al for the same a > 0. I had heard in 1975
that Me CONNELL had computed the formulas for layered materials in Linearized Elasticity, analogous to the
formulas that Frangois MURAT had obtained for a diffusion equation, but with more technical computations
of Linear Algebra [MC]. I had noticed later that one could explain all Homogenization questions for layered
media, for many linear equations not necessarily elliptic, by an application of the Div-Curl lemma, and I
had first described the method in a nonlinear setting in the Spring 1979 when, as a consultant for INRIA
with Georges DUVAUT, we had been asked questions about effective elastic properties of mixtures of steel
and rubber. I only mentioned the method in writing in [Ta5], and as I had chosen to illustrate my general
method by an example of Linearized Elasticity, I was given later an earlier reference concerning Linearized
Elasticity (by BACKUS if my memory is correct) by R. KOHN, who obviously had not understood what I
had said.

Let us come back to Linearized Elasticity, and assume that the Homogenization theory can be extended
to a class C included in the class S of all materials with a strong ellipticity strain-stress relation, and
including the class VS of all materials with a very strong ellipticity strain-stress relation, i.e. we assume
that the effective coefficients of any mixture of materials from C correspond to a material in the class C. In
particular, if the materials involved in a layered mixture all belong to C, the formula giving the effective
coefficients of the mixture should give a material in C, and that remark gives us a way to identify some
materials in S that cannot belong to any such extension C. Indeed, if one mixes a material with coefficients
Co G S with a material with coefficients C* G VS C C and one finds a material with coefficients d outside
<S, we can be sure that Co does not belong to any extension C, and we will say that Co has an index of
badness 1 (the coefficients outside S having an index of badness 0); if Co is such that C\ has an index of
badness 1, then it does not belong to any extension C and has an index of badness 2, and so on.

In his thesis [Gu], Sergio GUTIERREZ studied in dimension 2 or 3, which isotropic materials could be
rejected by this criterium. In dimension TV = 2, he found that the materials satisfying JJL > 0, 2/i + A >
0,2/i -f 2A < 0 (i.e. isotropic materials corresponding to strongly elliptic but not very strongly elliptic strain-
stress relations, but without the boundary between these) have an index of badness 1. In dimension N — 3,
he found that the materials satisfying /i > 0,2/i + A > 0,2/i + 2A < 0 have an index of badness 1, and those
satisfying /i > 0,2/i + 2A > 0,2/i + 3A < 0 have an index of badness 2 (or at most 2) [Gu].

Of course, one reason why I want to reject everything outside S is that S corresponds to materials for
which plane waves propagate at finite speed, and therefore, at least for the isotropic materials considered by
Sergio GUTIERREZ, I want to reject the materials corresponding to strongly elliptic but not very strongly
elliptic strain-stress relations because if they existed one could construct some unrealistic materials by one
or two laminations (notice that I also assume that all materials in VS are accepted).



It would be a more convincing argument if one could avoid the limiting procedure of the laminations,
and show for example that with a particular interface between two materials with coefficients Co and C*
the evolution problem is ill posed (or is well posed but does not have the finite propagation speed property,
because of surface waves propagating too fast along the interface).

The mathematical theorem is that no class C which is stable by Homogenization and contains all the
(stable) clciss VS can contain any isotropic material whose strain-stress relation is strongly elliptic but not
very strongly elliptic (apart from the limiting cases perhaps), and probably it cannot contain any such
anisotropic material either (but I do not know if Sergio GUTIERREZ has extended his computations to that
case), i.e. C must probably coincide with VS. The physical interpretation of that result which I propose is
that isotropic (and probably anisotropic) materials whose strain-stress relation is strongly elliptic but not
very strongly elliptic should be considered unrealistic. One should notice that this argument of rejection goes
much farther than the usual arguments invoking "Thermodynamics", which only impose /x > 0 for isotropic
materials, I believe.

If one could extend this criterium to Finite Elasticity, for example in the hyperelastic case, accepting the
convex functions and rejecting the functions which do not satisfy the LEGENDRE-HADAMARD condition, and
using the formula for layered mixtures as a way to create new materials, one might discover a natural class
stable by Homogenization: if only convex functions remain it would mean that there is no generalization of
Homogenization in the sense that I have imagined, while if all quasiconvex functions remain, I would have
fallen into my own trap, but I would have learned how quasiconvexity could be considered a perfectly valid
hypothesis from a physical point of view.

Homogenization of the wave equation
Let us consider a sequence of solutions un of wave equations

Pn^~- div(Angrad{un)) = fn in SI x (0,T), (12)

such that
un ->• u°° in H\oc (ft x (0, r ) ) weak, (13)

and assume that pn and An are independent of t and satisfy

An H-converges to Aeff,

and that fn satisfies

fn -» f°° in H[-O
l
c (ft x (0, T)) strong. (15)

Then u°° satisfies the wave equation

p°°^^- - diviA'^gradiu00)) = f°° in ft x (0,T). (16)

Indeed for every <p € X>(0,T), the sequence f/n defined by

f/n(x) = / un(x,t)ip(t)dt for a.e. x G ft, (17)

converges in H/oc(ft) weak to U°° defined from u°° in a similar way, and satisfies an equation

- div(Angrad(Un)) = <?n in ft,

pn —} g°° in H^l(Q) strong,



so that
Angrad(Un) - - Aeffgrad(U°°) in (jL?oc(il)) weak, (19)

and therefore, by varying y?, one has

Angrad(un) -* Aeff grad(u°°) in ( L L Y H X (0,T))) weak. (20)

Notice that this argument does not use any symmetry for An, but in (14) it is implicitely assumed that
there exists a > 0 such that (An7].r]) > a\r]\2 a.e. for all n € RN] the argument does not use any positivity
for pn either, so that I should not even speak of wave equations at this level. In order to say something
relevant to wave equations, I assume that

pn(x) > p- > 0 a.e. xGf ) , (21)

and that all An are symmetric, and one then has a wave equation, for which existence and uniqueness are
known if one uses the boundary conditions corresponding to a space V such that HQ(Q,) C V C H1^), if
initial conditions are of the form

un(-,0) =v
n eV, with vn ->> v00 in V weak,

8un o (22)
pn-7— (-,0) = wn e L2(Q), with wn ->> w°° in L2{Q) weak,

at

and if the sequence fn satisfies

fn stays bounded in Ll (0, T; L2(ft))

If 2 \ ^
fn _̂  foo i n p ;(n)7 /°° G L1 f0,T; L2(fi)J.

Then under these hypotheses, the limit w°° satisfies the equation with the coefficients p°° and Ae^, the
right hand side /°°, and the initial conditions v00^00.

I am interested now in using the finite propagation speed property of the wave equation, and I will
assume that Q = RN (in order to avoid reflection effects on <9ft), and I want to use the simple fact that if cn

is the maximum speed of propagation for the wave equation with pn,An and ce^ is the maximum speed of
propagation for the wave equation with p°°, Aeff, then one must have

ceff <liminfcn. (24)
n—>oo

Indeed if the initial data v°°, w°° have their support in a compact set K, one can choose vn = v°°,wn = w°°
for all n, and one has un(x,t) = 0 if dist{x,K) > tcn\ if a subsequence satisfies cn -* c°°, then one has
u°°(x,t) = 0 if dist(x,K) > tc00, and therefore ceff < c°°.

A more precise statement is obtained by replacing cn by cn(£) the maximum speed of propagation in the
direction £ (with |£| = 1), i.e. using the fact that if the initial data have their support included in the strip
{x : zi < (x.£) < z2}, then at any time t > 0 the solution un is 0 outside the strip {x : z\ —tcn(£) < (x.£) <

}
Of course, a precise expression of c(£) will be needed, and a good choice of the sequence pn must be

made, as this choice has no effect on A6^, but might constrain the limit c6^ (£) and therefore give some
indirect information on Ae*f.

Let cp be a smooth function in RN x (0,T), and let us multiply (13) by



 



giving

( 2 6 )

In the case where fn = 0, we want the right hand side of (26) to be < 0 for all functions un not necessarily
solutions of any equation, and this is done by choosing if such that

at

(Angrad((p).grad{<p)) < pn

The preceding inequality shows that

dip

(28)

Indeed, choosing (p of the form </?o ((£•£) — «t) with K > 0, (27) becomes

< where 0,
(29)

= 0 for 2 < z2 and 0 < ^o(^) < 1 and <po increasing for z > z2, one deduces that for

+ \(Angrad{un).grad{un))) dx < 0, (30)

and by taking
t > 0 one has

and therefore un(x,t) — 0 for (x.£) — «^ > 22? once K is such that (29) holds. Choosing instead a function
</>o((#•£) + Kt), one deduces that un(x,t) = 0 for (x.£) 4- K^ < z\, hence the upper estimate for cn(£).

Of course, the energy estimate for the wave equation is first derived for smooth coefficients and smooth
initial data (and smooth right hand side), in which case the solution is more regular and all integrations by
parts are valid, and the result obtained is kept at the limit in the case of discontinuous coefficients, which
we are handling.

If one has An -» A°° in L°°(RN;CS(R
N ,RN)) weak • , and if one chooses pn =

p°° — (A°°£.£), then cn(f) < 1 and therefore c6^(£) < 1, and one deduces that

(AeffCO < (A°°£.O a.e. ,

if one has improved the analog of (29) into the more precise relation

ceff(0 =

so that

(31)

02)

As the coefficients of the wave equation that I consider may be discontinuous, the only proof that I
could think of consists in using a blow-up argument, a technique which Ennio DE GlORGI had introduced
for a quite different purpose, that of studying the regularity of solutions of elliptic equations.

Let us assume then that ce-^(f) < 1, and let us deduce that (Aeff^.^) < p°° a.e. Taking the origin
at a LEBESGUE point of both Ae*f and p°°, we rescale the wave equation by considering coefficients As,ps

defined by

A.(x) = Ae"(^), p.(x) = p°° (^) a.e. x € RN, (33)



and the wave equation with coefficients ps, As corresponds to a speed cs(£), which obviously coincides with
ceff(Oi a s o n e s e e s easily by rescaling the solution and the initial data in a similar way. Letting s tend to
oo, the coefficients converge strongly (in Lp

loc for every p < oo), to their frozen value at 0, and as the speed
cannot increase at the limit, one has c^ < limcs(f) = ceff(£) < 1, but the speed of propagation c^ for a
wave equation with constant coefficient is easily computed, but as only an inequality is needed, it is enough
to consider solutions of the form u((x.£) — nt), which satisfy a one dimensional equation whose explicit
solutions have been known since D'ALEMBERT.

The preceding argument gives then a new proof of a classical upper bound for Aeff, but I do not know
of a similar derivation of a lower bound for Ae*f based on hyperbolicity.

Homogenization of the time dependent Linearized Elasticity system
If instead of the wave equations (12), we consider now time dependent Linearized Elasticity systems

pn^f - E | T = / f in n x {0'T) for l = h---'N

Jm^iioxi,j = l,...,N (34)

such that
< -* u™ in H}oe\p, x (0,T)) for i = 1,... ,7V, (35)

and assume that pn and all the C^kl are independent of t and satisfy

pn -± p°° in L°°(ft) weak *,

Cn H-converges to C e / / ,

and that
/ f -> /?° in ff"^ (n x (0, T)j strong, for t = 1, . . . , N, (37)

then u°° satisfies the equation

N
 j=l 3 (38)

Notice that this argument does not use the symmetry for C^ki under the exchange of ij and kly but in (36) it
is implicitely assumed that the very strong ellipticity condition (9) holds with the same a > 0; the argument
does not use any positivity for pn either. If one assumes then that the coefficients pn satisfy (21) and that
the coefficients Cf^kl are invariant under the exchange of ij and kl, then the evolution equation is well posed

if one uses the boundary conditions corresponding to a space V such that (HQ(Q)) C F C (i/1(H)) for
which KORN's inequality holds (which is automatically the case if Q — RN or if Q is a bounded open set
with LIPSCHITZ boundary); of course, one needs to use initial conditions analogous to (22) and hypotheses
on fn analogous to (23).

We consider now the case H = RN in order to discuss finite propagation speeds, and the same argument
(24), and its analog for the cn(£) hold, as they are not based on which particular equation is used, as long
as it has the finite propagation speed property.



Let <p be a smooth function on RN x (0,T), and let us multiply the first equation # i of (34) by

<£>— (39)

and sum in i, giving

' dxJ ' fr±x dxj x w , —
jy ?vr AT x '

^ V 2 S i ' dt

In the case where fn = 0, we want the right hand side of (40) to be < 0 for all functions un not necessarily
solutions of any equation. In order to do this, we introduce the symmetric bilinear forms B™ defined on
N x N matrices by

N

CZuWMijPu, (41)

and the condition that the right hand side of (40) be < 0 for all functions un corresponds to

< 0, (42)

for all 7? € RN and all symmetric matrices M, because of the symmetry of an. Using then the fact that, for
a.e. x £ RN', the form B% is positive definite when restricted to symmetric matrices, and using the other
symmetries of the coefficients C^kl, (42) means

dt " ' 2 (43)
B(r) 0 grad{ip),ri

The preceding inequality shows that

dip
for all 7]

< sup J W M , (44)
V p

and the blow-up argument mentioned before, and the use of functions of the form u((x.£) — n t), shows that
one has equality in (44). If one defines then pn by

pn(x)= sup(An(0V'V), (45)

one has cn(£) = 1, and therefore ce^ {() < 1, i.e.

^v(Aeff(0^ri)<p°°. (46)

In the special case of isotropic materials, the acoustic tensor has the form (11), and therefore (45)
corresponds to the choice

pn = 2/in + An (47)

and therefore, in the case where the effective material is itself isotropic, (46) means

2/xe// + Xeff < 2/i°° + A°°, (48)

9



where the index oo corresponds to weak • limits, but (48) is not as precise as the classical upper bound for
the effective coefficients, which corresponds to

BeJf{M, M) < Bf{M, M) for all symmetric M a.e. x, (49)

and as

Bn{M, M) = 2fintrace(MTM) + An (trace(M)^ for all symmetric M a.e. x, (50)

in the case of isotropic materials, (49) corresponds to the bounds

~~ (51)
2neff + NXeff < 2/i°° + NX00, V ;

which imply (48).

Homogenization of MAXWELL's system
In 1981, during a meeting in New York, I was told about the following result of SCHULGASSER: in

dimension N — 3, if an isotropic mixture with conductivity a{x) has an (isotropic) effective conductivity

aeff(x) and if the isotropic mixture with conductivity b(x) = ——- has an (isotropic) effective conductivity
a{x)

beff(x), then one has ae^be^ > 1. I had immediately found a proof based on the finite propagation speed
property for MAXWELL's system, and I had mentioned it to George PAPANICOLAOU and Joseph KELLER.
I was a little upset to discover later that George had written his own proof of that result (in an article
with KESTEN, I think), without mentioning mine, as I thought that if he had already done it before I had
mentioned mine, he should have told me; however, his proof worked for N > 3, while mine had only been
thought in connection with MAXWELL's equation, in dimension N = 3.

My idea was to consider MAXWELL's equation in a material with dielectric permittivity e(x) = a(x)
and magnetic susceptibility ji{x) = b(x), and as the local velocity of Light c(x) is defined by eye2 — 1, one
would have c(x) = 1, and therefore ce^ < 1, proving then that ee^fie^ > 1, i.e. ae^be^ > 1.

If we consider a sequence of solutions of MAXWELL's system

dBn

div(Bn) = 0, -r— + curl(En) = 0 in Q x (0, T)

8Dn (^9}
div(Dn) = pn , - ^ - + curl{Hn) = j n i n f ix (0,T) [bZ)

Dn = £nEn^ £n = ^njjn m Q x (QjT),

such that
Bn _± BooDn _, DcoEn _, EooHn _, ^oo j n ^ 1 ^ ^ x (0,T))) weak, (53)

and assume that en and yn are independent of t and satisfy

en H-converges to ee*f, /xn H-converges to /xe^^, (54)

and that
pn -* p°° in H£ (fi x (0, T)) strong, j n -»• j°° in {H£ (n x (0, T))) strong, (55)

then one has
div{B°°) = 0, ^ — + cuW(£J°°) = 0 in ft x (0,T)

at

div(D°°) = p°°, - ^ - + curl(H°°) = j°° i n f ix (0,T) ( 5 6 )

poo = £eff JS0Oj Boo = ^eff jjoo i n ^ x (Q) T )

10



Notice that this argument does not use the symmetry for en and \in, but in (54) it is implicitely assumed
that there exists a > 0 such that (enr].T]) > a\r]\2 and (finr}.rj) > a\r]\2 a.e. for all rj € RN, although in
that first part of the argument one could change the sign of all fin for example. One should notice also
that after integration in t against a smooth function </?, one obtains equations which are not of the form
—div(Angrad(un)) = gn, as En and Hn are not curl free, and the full force of the Div-Curl lemma is needed.

Assuming now that en and /xn are symmetric, one can then prove existence and uniqueness of solutions
under suitable initial data and boundary conditions (as described in the book of Georges DUVAUT & Jacques-
Louis LIONS [Du&Li] for example). In order to study the finite propagation effects, I choose Q — RN, and
for a smooth function ip on RN x (0,T), I multiply the equations in (52) by (pEn and ~(pHn and, after some
algebraic manipulations with the eijk symbol for cross products and curl, this gives

-<p(jn.En) = V > ( ^ - #

+ div(<p(En x i / n ) ) - (grad(v).En x Hn).

In the case where j n = 0, I want to have

^ {(fH.H) + {enE.E)) + 2(grad(<p).E xH)<0 (58)

for all EjH £ RN, and using functions ip((x.£) — Kt), one deduces that

(,°X*(*U- (59)

and in the isotropic catse (59) gives a bound independent of £

y/e^cn(0 < 1. (60)

The blow-up argument mentioned before and the use of functions of the form E((x.£) — «£),#((#.£) —
nt), shows that one has equality in (59).

In the case of anisotropic aeff — e6**, be^ = ne*f, one needs to express that ce^(£) < 1 for all f, and
one such formula is

(aeffE.E)(beffH.H) >\Ex H\2 for all Ey H € R3. (61)

Comments
The preceding examples consisted in looking for informations about the effective coefficients of a first

equation by introducing a second equation of a different type, though not completely alien to the first, and
certainly there is a lot more to be done in this direction. I have gathered these examples here because they
are all related to the hyperbolic character of the new equation, but one may as well use a second equation
which is not hyperbolic, and I hope in the near future to write down other results where hyperbolicity plays
no role.

The last example is reminiscent of a method developed by David BERGMAN, who had considered the
case of isotropic materials when the effective material is also isotropic [Be]. Needless to say, there is a lot
more to be done in order to understand more general cases.

In the last years, I have never failed in my talks to warn about the defects of Linearized Elasticity, and
as I have used this linear system here in order to explain some mathematical questions, I hope that it is
clear to the reader that I have only considered these equations in connection with mathematical questions
of hyperbolicity, which are not so well understood in nonlinear situations. One should understand the
discussions using Linearized Elasticity as a mere training ground for the more realistic time dependent
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Finite Elasticity, which is a quasilinear system for which not enough is known. One important defect of
Linearized Elasticity is that it assumes the gradient of the deformation to be near Identity, while in fact
it is only near a rotation, and it gives unrealistic results in corners where the gradient of the solution of
Linearized Elasticity often becomes infinite; it is often mentioned in that respect that one can still deduce
some interesting results in corners due to the existence of an invariant of both Finite Elasticity and Linearized
Elasticity, but this argument is valid for homogeneous bodies.

Can one explain spectroscopy?
After Sergio SPAGNOLO had successfully studied sequences of elliptic or parabolic problems

- div(An(x)grad(un)\ = fn in Q

^ - - div(^An(x,t)grad(un)) = fn in ft x (0,T),

with general bounded positive definite matrices An, he stumbled on the apparently similar case of second
order "wave" equations with general bounded and symmetric positive definite matrices An

at2 - div(An(x,t)grad(un)^ = fn in fi x (0,T), (63)

because all available theorems giving existence and uniqueness of solutions (and satisfying suitable boundary
conditions and initial data) assumed that the coefficients An were regular in t; he worked then at under-
standing if one could define solutions of (63) without regularity hypotheses on the coefficients. I have already
described the case where An does not depend on £, and I want to discuss now why it is important to study
some cases of time dependent coefficients, in connection with classical experiments, which have resulted in
the development of non classical theories, the experiments of spectroscopy.

In an experiment of spectroscopy, one sends Light through a gas, and therefore a natural "classical"
setting for this problem is to consider MAXWELL'S system (for describing Light), and to study the question
of multiple scattering of Light on the "atoms" or "molecules" constituting this gas. This is not an easy
problem, and one stumbles immediately on a first difficulty due to the fact that the "atoms" or "molecules"
constituting the gas, whatever they are, are supposed to be moving, and one should therefore develop a
theory for MAXWELL'S system (or for the scalar wave equation as a first step), with coefficients that do vary
with £, but those variations with respect to t should certainly not be arbitrary.

Let us consider, as a first step, the case of a rigid and homogeneous object traveling with fixed velocity
V in an infinite and uniform medium; in that case the coefficients are of the form A(x — Vi), and as A is
discontinuous at the surface of the object, these coefficients do not satisfy the usual hypothesis that their
derivative with respect to t is bounded, but one can easily get rid of this difficulty by performing a Galilean
transformation in the case of the wave equation, or by performing a LORENTZ transformation in the case of
MAXWELL'S system, so that one is back to the case where the coefficients are independent of t. In the case
of the wave equation in all RN, that I would like to take as a model, the energy estimate would therefore be
obtained by (formally) multiplying (63) by

and the coefficients would be partially regular and satisfy

ft N 8
Tr + Yvi-£-)Ais bounded. (65)
dt j ^ dxi /

Of course, it would certainly be better if the velocity V stayed much smaller than the characteristic velocity
of the wave equation itself, which in the case of MAXWELL'S system would mean that V stays much below
the velocity of Light c. If there were a large number m of some of these rigid and homogeneous objects,
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with various shapes, each traveling at its own constant velocity, then the existence and uniqueness of a
solution would follow easily from the finite propagation speed property of the wave equation, as long as
collisions between these objects would be avoided. In that case, the energy estimate would still be obtained
by (formally) multiplying (63) by (64), and that will corresponds to the coefficients satisfying (65), but V
would be variable now.

Could one find a class of coefficients depending on (x, £), generalizing the preceding case of a finite
number of moving rigid inclusions avoiding collisions, for which existence, uniqueness and uniform bounds
could be obtained? Could one extend that theory to the case of elastic bodies, for which one might have to
introduce effects of electrostriction and magnetostriction? Could one answer questions of Homogenization
for these classes of equations, and would they explain the effects that physicists have observed?

When I had written what I knew about memory effects in [Ta2], I had forgotten to mention that (around
1980) I had guessed that the absorption and spontaneous emission effects that physicists had invented, in
order to explain what they were observing in experiments of spectroscopy, were but the sign of an effective
equation having a memory effect. Mathematicians know that the fact that an equation has solutions is a
different matter from the fact of choosing a proof of this fact among all the different proofs that have been
found; on the contrary, physicists seem to believe that if one proof relies on a probability argument then
it shows that Nature follows probabilistic rules. I could not tell what equations one should consider for
describing these phenomena, but as a first step towards studying the propagation of waves in a material with
moving objects in it, I had chosen to study first order hyperbolic equations with variable coefficients.

One part of the challenge is that one has no idea about what these moving objects are, as most of
what physicists claim about particles, atoms, molecules, result from some dogmatic theory like Quantum
Mechanics. I think that some of these dogmas, which had been thought natural at some time, are just
mistakes on the path of discovery, and that they will be replaced by more realistic ones, probably after a
more complete mathematical theory of microstructures in solutions of partial differential equations will have
been developed. Anyway, I hope that for performing the Homogenization program that I have sketched,
it will not be necessary to know exactly what these objects are. The concept of H-measures, that I have
introduced a few years ago, permits to compute in a more accurate way some effective coefficients and it
also permits to describe the evolution of some microstructures in solutions of hyperbolic systems in a way
which explains why these microstructures can behave like "particles" [Ta6]. After I had succesfully created
this concept, Graeme MlLTON had pointed out to me that in order to compute scattering coefficients I
needed information on three-point correlations, while H-measures are only related to two-point correlations,
and therefore his feeling was that one needs a more precise mathematical tool to describe questions about
spectroscopy.

Up to this point I have avoided the question of "collisions" between these moving objects, because in
order to take them into account one must certainly forget about a "classical" point of view, and instead of
using a BOLTZMANN like theory, one should dare look at reality: there are no "particles" out there, only
waves. I have shown in [Ta7] a computation, done with Patrick GERARD, which shows the importance of
interaction in the case of multiple scales, and the same computation (related to the classical effect of beats)
contains the qualitative answer to a question which had puzzled me for years: why is it that the rays of
absorption of Hydrogen are attributed to the electron, and what are protons doing then?

Obviously, in order to carry out the program that I have tried to sketch here, one must be ready to
question a lot of things that one has been told by physicists, but one must also question a lot of things
that one has been told by mathematicians concerning Physics. As I have written a few months ago in the
conclusion of [Ta7], "the transition to the new era might be difficult for many who may see their preferred
equation lose part of its scientific interest, although one should remember that obsolete problems may still
contain quite interesting Mathematics, but one should not lure students into working on an obsolete problem
without having explained to them what one is really looking for." One could certainly question what I have
been teaching for all these years, about how Physics should be explained through the study of microstructures
of solutions of partial differential equations; a few mathematicians have tried to attribute to themselves part
of the program of research which I have expanded through the years, and although I cannot accept such a
dishonest behaviour which should be unheard of among scientists, I could almost forgive a thief who would
do a good job of leading the young researchers in the right direction, but that is rarely the case.
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It is important to do one's duty, and although a mathematician's duty might be different from that of a
physicist, I agree with my colleague Robert GRIFFITHS when he writes "any scientist ... is under obligation
to God to seek after the truth, and God holds him accountable for the quality of his work". I think that
Ennio D E GlORGl would have agreed too.
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