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Abstract
In this paper we introduce a condition on lower semicontinuous integrands
L : R" -¥ R both necessary and sufficient for all problems of the form

J{u) = / L{Du)dx -+ min, u e W1'1^), u\ =f

to have a solution, provided Q, and / are sufficiently regular or certain con-
ditions on growth of L at infinity are assumed.

1 Introduction
In this paper we deal with minimization problems

J(u) -> min, «l = / , « € W1A(Q) (1.1)
Ios2
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for integral functionals of the form

J(u) = / L(Du{x))dx,

where Q is an open bounded subset of R1 with Lipschitz boundary and L :
Rn —> R is a lower semicontinuous function.

A function u € W^ljl(f2) is called an admissible function for the problem
(1.1) if u\ = / and the negative part of the function L(Du) is integrable.
In this case J(u) is well defined but equals +00 if the positive part of L(Du)
is not summable.

We accept the following notations: for a subset A of R1 the sets intA,
reintA, coA, and extvA are respectively the interior, the relative interior, the
convex hull, and the set of extremum points of A. B(a,c) denotes the ball
of radius e centered at the point a G Rn; la is a linear function with gradient
equal to a everywhere. dL(F) denotes the subgradient of L at a point F:

dL(F) := {/ G Rn : L(v) - L{F) - (/, v - F) > 0, Vt; G / T } .

L** is the convexification of L: the epigraph of L** is convexification of the
epigraph of L, that is

Note that L** exists as a function from Rn to i? if and only if L exceeds an
affine function everywhere (see Lemma 2.1).

Weak and strong convergences of sequences are denoted by —̂  and ->
respectively.

We will frequently utilize the following version of Vitaly covering theorem
(see [S,p.lO9]).

A family F of closed subsets of RJ1 is said to be a Vitaly cover of a bounded
set A if for any x G A there exists a positive number r(x) > 0, a sequence
of balls B(x,6k) with e* -» 0, and a sequence C* G F such that x G C*,
Ck C £(:£,€*), and (meas Cfc/meas £(£,€*)) > r(x) for all k e N.

The version of Vitaly covering theorem from [S,p.lO9] says that each
Vitaly cover of A contains at most countable subfamily of disjoint sets Ck
such that meas (A \ UkCk) = 0.



Problems (1.1) were studied recently in the framework of Existence The-
ory in Elasticity: when dealing with homogeneous materials undergoing anti-
plane shear deformations

(x9 y, z)eR3-> (:r, y,z + u(x, y)) G R3

the problem of minimization of the free energy is of the form (1.1). While the
existence results are well-known for problems (1.1) with convex integrands
(see e.g. [ET],[Da],[Mo]), the situation is poorly understood in the case of
nonconvex problems. Note that active research in the area of nonconvex
variational problems started since the work [B], where the first existence
results for realistic problems in Elasticity were established in the general
case (without restrictions on the class of admissible deformations).

Some recent efforts were devoted to the question of solvability of problems
(1.1) under restrictions on integrands motivated by physical reasons (see
[BP], [GT], [R], [SH]). In these papers solvability problem was treated for
particular boundary data. Moreover, the papers [Cl], [C2], [F] indicated
conditions on integrands both necessary and sufficient for the problem (1.1)
with linear boundary conditions / = /F> F G Rn to have a solution.

The answer is given by the following theorem

Theorem 1.1 The problem (1.1) with linear boundary conditions f = lp
has a solution if and only if either dL{F) ^ 0 or there exist t^ , . . . , vq G Rn

(q G N) such that F G int co{t/i,... , vq} and n£=10L(t;t-) ^ 0.

Here we state a slightly more general result since Theorem 1.1 was proved
in [Cl], [C2] for lower semicontinuous integrands with superlinear growth at
infinity and, independently, in [F] for continuous integrands bounded from
below. We also utilize different terminology in order to formulate the result
in terms of L only.

However, a crucial ingredient of the proofs (more precisely of their suffi-
cient parts) is utilization of special functions proposed in [Cl], [C2], [F].

If i / i , . . . , vg are extremum points of a convex compact subset of RJ1^ and
F G intco{t;i, . . . , vq], then the function

ws{x) = max(^ — F, x) — s (1.2)
i<t<(j



is Lipschitz, Dws(x) G {vi - F : i = 1 , . . . , q) a.e., and ws |aPs = 0, where

Ps = {x : max (^ — F,x) < s}

is a compact set with Lipschitz boundary and nonempty interior.
Note that Ps = sPx.

Since Vitaly covering arguments lets us decompose fi into disjoint sets of
the form yi + SiP\ and a set of nonzero measure, we can define UQ as

(F,x) + wSi(z - yi) for a: G yi + s{Pi.

Then ^o = IF on dfi, txo G W1>00(ft). In order to prove that Uo is a solution
of the problem (1.1) note that if / G C\q

i=ldL(vi) then for any admissible
function u G Wx'l(Q) we have

f
Jn

J(u) - J{u0) = I {L{Du) - L(Du0) - (I, Du - Duo)}dx =
Jn

{L(Du) - L(vi) - (/, Du - vx)}dx - [ {L(Du0) - L(vi) - (/, Du0 - vx)}dx.
Jnn

It is easy to see that all functions L(vi) + (l,v — Vi), i = 1 , . . . , #, coincide.
Then L(v) — L(v\) — (l,v — vi) > 0 everywhere with the equality in the case
v G {vi,... ,vq}. Hence the first term is nonnegative while the second one
equals zero. Hence J(u) — J(uo) > 0.

This proves that the condition C[q
i=ldL(vi) ^ 0 with F G int co{^i, . . . , vq}

implies solvability of the problem. If dL(F) ^ 0 then the function lp is a
solution. Therefore, each of these two conditions implies solvability of the
problem. These arguments prove the "sufficient" part of Theorem 1.1.

The converse will be proved in §2.
Before explaining what kind of influence these simple arguments had on

further developments of solvability theory, let us state the results of this
paper.

Theorem 1.2 Let L : Rn -> R be a lower semicontinuous function such
that L > 9, where 9(v)/\v\ —> oo as \v\ —> oo.

Then all problems of the form (1.1) with dQ, G C2 of positive curva-
ture and f G C2 (dQ) are solvable if and only if for each F G Rn either
dL(F) ^ 0 or there exist vu...,vq G Rn such that nq

i=ldL(vi) ^ 0 and
F G int co{^i, . . . , vq}. Moreover, all solutions are Lipschitz continuous func-
tions.



Remark We are not aware whether it is possible to weaken the conditions
on ft and / in this theorem essentially (see §4 for a discussion).

In the case when the growth of L provides a certain a priori regularity
of minimizers, an analogous result holds for arbitrary ft and / , for which at
least one admissible function u G Wl>l(Sl) with J{u) < oo exists. However,
in this case we can not state Lipschitz regularity of solutions.

Theorem 1.3 Let L : Rn -> R be a lower semicontinuous function such
that L > a\ • \p + b, a > 0, p > n.

Then each problem of the form (1.1), for which at least one admissible
function u G Wl>l{p) with J(u) < oo exists, has a solution if and only if
for each F G Rn either dL(F) ^ 0 or there exist vi,...,vq G Rn such that
Oq

i=ldL{vi) 7̂  0, and F e int co{i>i,..., vq}.

Remark Note that the only role of the growth condition L > a\ • \p + b,
a > 0, p > n, is to provide differentiability of solutions to the relaxed
problem in the classical sense almost everywhere. Hence, the result of the
theorem holds under any other conditions on lower semicontinuous integrands
L : Rn —>• R with superlinear growth, which imply this property of solutions
to the relaxed problem.

Note that regularity in minimization problems was studied typically in
the context of continuity of solutions and their derivatives (everywhere or
on an open set of full measure). However, here we need an intermediate
property - differentiability in the classical sense almost everywhere. It seems
that not too much is known in this direction. Indeed, results on continuity of
solutions are not sufficient in our situation. Simultaneously, partial regularity
of derivatives, which is more than enough for our purposes, was treated
usually for elliptic integrands, cf. e.g. [G].

The proofs of theorems 1.2, 1.3 are further refinements of the above dis-
cussed arguments, which were also developed recently in a deeper way in the
context of Theory of Differential Inclusions.

Note that the sufficient part of Theorem 1.1 is equivalent to a particular
differential inclusion Du(x) G {t^ , . . . , vq} a.e. in fi, u = lp on dfl.

When anyone deals with nonlinear boundary conditions, more compli-
cated differential inclusions should be considered. The typical one is: Du(x) G
extrC/ for a.e. x G ft, u = f on <9ft, where / G W^°°(Q) and Df{x) G U



for a.e. x G Q (here U is a compact convex subset of Rn with nonempty
interior).

It was observed in [DP] that the same functions ws with F = Df(x0) (see
(1.2)) can be utilized to perturb / by <j)s := ws(-—xo)—f{xo) — (Df(xo), •—x0)
in such a way that Dmin{f, <j)s} G extrf/ for each x in an open subset Cl of
Q, such that x0 + Ps/2 C ft C x0 + P25 and </)s = f on d£l. Refining arguments
from [DP] it is easy to see that for each xo G ft, where Df(xo) exists in the
classical sense and D/(XQ) G int/7, such a perturbation exists for all s > 0
sufficiently small (see Lemma 3.2). Applying Vitaly covering arguments we
solve the inclusion.

In the context of variational problems this means that if U is an n-
dimensional proper face of L** (note that L = L** on the set of extremal
points of [/, cf. Lemma 3.1), then we can perturb a solution u0 of the prob-
lem

/ L**(Du)dx -» min, u = /
Jn d&

on the set that includes almost all points of the set in which Duo G intC/,
in such a way that DUQ G extrf/ a.e. in this set. Since gradient of the
perturbed function lies in U on the set of perturbation, this function is also
a solution. Consequentially, there exists a subset of full measure of the set
{x : DUQ{X) G intf/}, which can be complemented by a subset of the set
{x G fi : Duo(x) G dU} and a set of zero measure to become an open set.

These arguments were utilized in [Z] in order to prove that problems
(1.1) with integrands L, which coincide with L** everywhere with exception
of a finite collection of distinct n-dimensional proper faces, have a solution.
Being more precise, the perturbation arguments can not be applied if the
function u0 is only in W 1 ' 1 ^ ) , since low regularity of u0 does not let us
assert that u0 = <j>8 in the boundary of an open subset of Cl. The author
of [Z] was not careful and utilized a mistaken fact that for each function
u G Wl'l(Vt) and each <5 > 0 there exists an open subset Q$ of Q such that
meas(fi \ 0$) < 5 and H^ollw1'00^) < 00. Indeed, it is easy to construct a
function u G Wl>l(Q) such that esssup|Dt/| is unbounded in any nontrivial
open subset of £1 However, we also noticed that the perturbation arguments
still work at points of differentiability of u0. This remark simplifies basic
arguments from [DP] and let us apply them to the case UQ G WliP(Q) with
p > n, since in this case uo is differentiate almost everywhere in the classical
sense (cf. [EG,p.234]). The final version of the paper [Z] will contain these



corrections.
It turns out that further refinements of these arguments can be utilized in

order to prove Theorem 1.3, which is a characterization result. It is helpful
here to utilize simple direct arguments constructing a sequence of solutions
to the relaxed problem, which converges strongly to a solution of the original
problem, instead of Baire category arguments and other techniques from
[DP], [Z] (see also the papers mentioned therein) traditional for Theory of
Differential Inclusions.

The proof of Theorem 1.2 needs more subtle arguments since growth of L
does not guarantee almost everywhere differentiability (in the classical sense)
of functions, which give finite values to the integral functional. It seems to
be an open question whether this property holds for solutions to the relaxed
problems.

In the case of Theorem 1.2 we first prove solvability of the relaxed problem
in the class of Lipschitz continuous functions, following arguments introduced
first in the context of solvability theory for the Plateau problem (see [Gi]).
Then, careful construction of special perturbations of this solution gives a
solution to the original problem in the class of Lipschitz functions. Next, we
utilize a nonsmooth analogue of the Euler-Lagrange equation to prove that
such solutions are automatically solutions of the boundary value problem
(i.i).

We prove Theorem 1.1 and Theorem 1.3 in §2 and §3 respectively. In §4
we recall some facts on solvability of problems of the form (1.1) in the class
of Lipschitz continuous functions, provided certain regularity on dQ, and /
is assumed and L is convex. Here we also prove a nonsmooth analog of the
Euler-Lagrange equation. Theorem 1.2 is proved in §5.

2 Proof of Theorem 1.1 and some auxiliary
propositions

Recall first some basic facts about convex functions. By Caratheodory the-
orem, for each subset A of Rn we have

n-fl

COA =



Since the dimension of the epigraph of any lower semicontinuous function
L : Rn —> R does not exceed n + 1, for each VQ G Rn we have

q q q

n-f2 n+2 n+2

i n t | y C^i/^fx) • Cj ^ Uj U{ £ Xt , y Cj = = 1, / Cil^ = = ^0/*
z=l i=l i=\

It is also well-known that it L : Rn -* RU {00} is a lower semicontinuous
convex function, which is bounded in a neighborhood of v0, then L is Lipschitz
in a smaller neighborhood of v0. Moreover dL(v0) ^ 0.

Recall also a version of the Hahn-Banach theorem. If U is a closed convex
subset of Rn and vo £ intt/ then there exists / G Rn such that

<J,t70)></,t;>,Vt/el7.

All these facts can be found in any textbook containing chapters on Con-
vex Analysis, see e.g. [ET].

Before proving Theorem 1.1 we state and prove two auxiliary propositions
which will be utilized frequently later on.

Lemma 2.1 Let L : Rn —>• R be a lower semicontinuous function. Then
the following assertions are equivalent:

is a convex continuous function;

2) there exists I G Rn and c G R such that

L(v) >{l,v) + c,VveRn;

3) there exists a point F G Rn such that

Q Q q

t = i



Proof
If L** : Rn -» R is a convex continuous function then dL**(0) ^ 0, and,

as a consequence, for I £ dL**(0) we have

L{v) - L**(0) > L**(v) - L**(0) > (/, v).

Hence, 1) implies 2). The implication 2) => 3) is obvious.
Let us prove the last assertion of the lemma. Without loss of generality

we can assume that F = 0. Consider auxiliary functions Lk : Rn —> JRU{OO}

defined as follows: Lk — L in JB(O, &), L* = oo - otherwise. Let also L£* be
convexification of Li..

Then, for each k the function LI* is a lower semicontinuous convex

function, which is locally continuous in B(0, k). Note also that Ll*(v) is a
nonincreasing sequence for each v £ Rn. Moreover the sequence Ll*(0) is
bounded from below. Hence, if ZA; G <9L£*(0) then sup^. \lk\ < oo and for each
limit point /Q of Ik (/o = linij^oo /&.) and each v £ Rn we have

W ( » ) - ^ ( 0 ) } - (lo, v) = Urn (L^(t;) - Lg(0) - </*„ »>} > 0.

Since Ll*(0) is bounded from below, the function L** :=
majorizes L**(0) + (ZQ, V) everywhere. Note that L** is convex as a pointwise
limit of nonincreasing sequence of convex functions. Since it is also locally
bounded, it is continuous.

The proof of Lemma 2.1 is complete.

Corollary 2.2 Lower semicontinuous function L : Rn -> R has nonempty
subgradient at F E Rn if and only if J2l=i CiL(vi) > L(F) for any q e N,
Vi e Rn, Ci > 0 (i = 1 , . . . , q) such that £? = 1 a = 1, ZLi civi = F-

Proof
Let / G dL(F). Then for all a > 0, v{ e Rn such that EUiQ = 1,

ELi civt = F, q e N,we obtain

£ vi) - L{F) =
*=1



To prove the converse note that by Lemma 2.1 L** is a convex continuous
function. Since L(F) = L**(F), dL**(F) ^ 0, and L > L** everywhere, we
infer that dL(F) ^ 0.

The proof is complete.

Lemma 2.3 Let L : Rn —t R be a lower semicontinuous function. Let
Vi,...,vq be such points in Rn that Y,i=icivi — F for some C{ > 0 with

Then, there exists a bounded in WliOO(Q,) sequence uk such that uA =

and J(uk) —> Z)i=i CiLfa) meas Q,.

This lemma is a version of the well-known relaxation theorem (see [ET,Ch.lO]).
The main difference is that here we have a lower than usual regularity of in-
tegrands.

Proof
Without loss of generality we can assume that Q > 0 for all i.
Consider first the case when F has unique representation as a convex

combination of {^i,..., vq}. In this case vi , . . . , vq are extremum points of a
compact convex set.

In the case F G intco{ui,... ,vq} the claim was proved in Introduction
since there we proved existence of a function u0 such that Du0 G {i>i,..., vq}
uo\ = lF. Indeed, in this case we have

f q

I Du(x)dx = 5^(Q meas £l)vi = Fmeas = l ,q > 0.

Since the representation of F in the form of a convex combination of v\,..., vq

is unique, we obtain that c» = Q for each i. Hence, defining uk as u for all
k G N we obtain that J(uk) = £?=i Q L ( ^ ) meas Q.

Consider now the case when F £ intco{^i, • • • ->vq\- In anY cstŝ  F G
reint co{i;i,..., vq}. Let P be the largest subspace of Rn perpendicular to all
vectors Vi — JF1, i G {1 , . . . , q}. Assume that dimP = m and fg+i,..., vq+m+i
are such points in P that co{t;g+i,... ,i;m+i+g} has nonempty interior in P
and 0 belongs to this interior.

For each S > 0 consider the function

10



 



where
Vi = Vi for i G { l , . . . , g } ,

Vi = F + Svi for i G {q + 1 , . . . , m + q + 1}.

It is clear that for each 6 > 0 the inclusion F G intco{i5i,... , iJ
holds and V\,..., vq+m+i are extremum points of a compact convex set.

Moreover,

meas { x E f i : P t i ;^ ^ fo i - F , . . . , vq - F}} _^ Q

meas {x € Ps : DwSi5 G {vi - F , . . . , vq - F}}

as 5 —> 0 uniformly with respect to 5.
For a A; G AT consider Vitaly covering of ft by the supports ft; := Xi + PSi

of the functions min{0, wSi,i/fc(# — Xi)} a n d define {tfc = /F + w8iii/k(- — Xi) in
fti (i G AT), tifc = /F -otherwise. In this case

meas {x G ft : jDu/k ^ { ^ I , • • •, vq}} —> 0

as A; ~> ex). Therefore, if for a subsequence of Uk (not relabeled)

* meas {x G ft : DSfc = ^i} ^ . r^ ^
C - = ^ ^ ^ , , € { 1 , . . . , , } ,

then ]Ccj = 1, X)c»vi = ^5 a n ( l because of uniqueness of the representation
of F in the form of a convex combination of V{ (i = 1 , . . . , q) we infer that
C{ = Cj. Hence, c£ -> Cj as fc —>> oo for the original sequence c£.

But we can not assert yet that J(uk) ~> E?=i CiL(vi) since L can be
unbounded in the set {F + 6vq+i,..., F + 6vq+m+i\ S G [0,1]}. In order
to overcome this difficulty notice that for all 8 > 0 sufficiently small the
vectors Vi := Sv{ + F (i = g + l , . . . , m + g + l) lie in the interior of the set
co{vi, . . . , vq+m+i}. Hence, for all k sufficiently large the function Uk can be
redefined by the above described procedure in each set {x G ft : Duk = 5*},
i G {g + l , . . . , m + 9 + l } , (we denote the new function as Uk) in such a way
that Duk G {vi , . . . , vq+m+i} a.e. on this set and t^ = u^ on the boundary
of this set. Since Uk = v>k &-e. on the set {x G ft : Duk(x) G {^i,..., u9}}
and |L(Dujb)| < c < oo we infer that J(uk) —> J2i=i CiL(vi).

The general case can be reduced to the one discussed above. We can
assume without loss of generality that V{ ̂  F , Q > 0 for all i G { 1 , . . . , #}.

11



For q = 2 we can assert that there exists a sequence of piecewise affine
functions uk such that uk = IF, meas{:c € ft : Duk = ^ } -> qmeas ft
(z = 1,2), and J(ujt) —>• £ C J L ( ^ ) meas ft, since F has unique representation
in the form of a convex combination of vuv2*

Let this claim be valid for q = s. To prove it for q = s + 1 , consider vectors
vu...,v8 such that v{ = ^ for i < s - 1, vs = (cst;5 + cs+1?;s+1)/(c5 + c5+i).
Then F = £?=i c^j, where Q = a for i < 5 — 1 and cs = cs + c5+i. By the
induction assumption there exists a sequence of piece-wise affine functions
uk such that uk\ = IF, meas{x G fi : Duk(x) = ^ } -> corneas fi (i =
1 , . . . , 5), and J(uk) -» 52ciL(vi) meas fi. For a A; G iV let ^ •= int{a: G
fi : Duk{x) = vs}. We can find a sequence Uj such that ^ = uk in
| |^ lk i^(n f c ) < c< 00, and

• > .

m e a s { x E Q k - ̂  ¥" v i } ~^ ^r m e a s Q k (i = s , s + l ) , j —» cx>,
J c 5

5 + 1 c . 5-t-l
J ( ^ fi) —>> ^2 ^L^Vi) meas fi^ — ̂ 2 ci^(vi) m e a s ^ ? i ~^ °°-

i=si=s °s

Then, for a subsequence wk := ^(fc) (A; —> 00) we get the convergence
</(wfc) -> E L i c ^ ( ^ ) m e a s ^«

The proof of the theorem is complete.

Proof of Theorem 1.1
Sufficiency of the condition

either dL(F) ^ 0 or there exist Vi,..., vq G Rn such that F G int co{i>i,..., vq}
and Dq

i=1dL(vi) = 0

for solvability of the problem

/ L(Du)dx -> min, u\ =lF,u 11

n * on

has been proved in Introduction.
In order to prove its necessity, first note that

N,Ci>O,Vie Rn,

12



Indeed, for each Q , v , (i=l,...,q) from (2.1) by Lemma 2.3 we get

inf{J(u) : u\dQ = lF,ue Wl>°°} < £ * L { v i ) . (2.2)
1=1

Since solvability of the problem (1.1) implies the inequality

inf{J(u) : u\dQ = lF,ue Wl>°°} > - o o ,

we infer that (2.1) holds.
By Lemma 2.1 we infer that L** is a convex continuous function. More-

over, if uo is a solution of the problem (1.1) then (2.1), (2.2) imply that
J{u0) < L**(F) measft.

Let I G dL**(F). For each admissible u we have

J(u) - L**(F) meas ft = / {L(Du) - L**(F) - (/, Du - F)}dx > 0.
Jn

Hence, J(u0) = L**(F) meas ft.
Let

Pl = {v G Rn : L(v) - L**(F) - {l,v - F) = 0}.

Since J(u0) = L**(F)measft and /n(/,jDu0 — F)dx = 0 we infer that
Duo(x) G PI for a.a. x G ft.

It is obvious that P/ is a closed set. Moreover, we claim that F G intcoP/
if L(F) ^ L**(F). Otherwise by the Hahn-Banach theorem there exists an
a e Rn such that (F,a) > (v,a) for any i; G coP^. Then (F,a) > (Duo,a)
a.e. on ft. Since Jn(Duo^a)dx = (F, a) meas ft we infer that DUQ G {t; G
Rn : (T; — F,a) = 0} a.e. on ft. As a consequence,

^ - F , a ) = 0

a.e. on ft. Since UQ = IF on Oft we infer that UQ = /F a-e. on ft. Hence
F e Pi, and, as a consequence, I/(F) = L**(F). This is a contradiction.

We have proved that either F G intcoP/ or L(F) = L**(F). In the first
case there exist v i , . . . , u f l 6 P / such that F G int coj^ i , . . . , vq}. It is obvious
that in this case / G dL(vi) for any i G { 1 , . . . , q}. Hence nq

i=1dL{vi) ^ 0.
This completes the proof of Theorem 1.1.
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3 Proof of Theorem 1.3

We will need one more lemma with respect to properties of convexifications.

Lemma 3.1 Let L : Rn —> R be a lower semicontinuous function such
that L(v) > 6(v), where 6(v)/\v\ -> oo as \v\ -> oo. Let F G Rn and
I G dL**(F). Let also

P{ := {v G Rn : L**(v) - L**(F) - (/, v - F) = 0}.

Then L = L** in the set of extremum points of Pi.

Proof
Assume that v0 G extrP/. By Caratheodory theorem there exists cf > 0,

v\ G Rn (i = l , . . . , n + 2) such that E ^ c f = 1, Z£i <$v? = ô and
Ei±i<$L(v*) -> L**(v0) ask-*oo.

We can assume also that cf —> Ci and either ^f —> V{ or |vf | —> oo as
A: -> oo. Since cf \v\\ -> 0 in the case \v\\ —» oo (recall that ^(v)/|v| -> oo
as |?;| —> oo), we obtain that for all i G { 1 , . . . , ra + 2} such that Q > 0 the
convergence v\ —> ^ holds and J2c{Vi = ^o- Because of lower semicontinuity
of £ we have E Q L ( ^ ) = L**(^o). Since L(v) - L**(v0) - (Z, v - v0) > 0
everywhere, we infer that L(^) — L**(v0) — (/, fi — t>o) = 0 for each v,-. Then
Vj 6 P/ for each i. Because ^o €E extrP/ we obtain that Vi = VQ for all i under
consideration. Hence L(VQ) = L**(t;o).

The proof is complete.

Lemma 3.2 Lei u0 £ C(J5(xo,r)) 6e dijferentiable at x0 in the classical
sense. Let U be a convex compact subset in Rn, and let vi,..., vq G extrC/ be
such that

Duo(xo) e int co{^i, . . . , vq}.

Then, for all s > 0 sufficiently small the function

where ws(x) := maxi<i<q(vi — Duo(xo),x) — s, has the properties:

(j)s < u0, x G x0 + Ps/2) 4>s > uo,x E xo + dP2s, where

Ps = [x G Rn :

14



Proof is straightforward. We have

uo{x) - </>5(x) = uo(x) - (Duo(xo),x - xo) - UQ(X0) - ws(x -

o(\x — XQ\) — WQ(X — Xo) + 5.

Since \wo{- — #o) I < s/2 inside Xo + Ps/2 we obtain that u0 — (/>s > 0 inside
Xo + Ps/2 if 5 > 0 is sufficiently small.

Since wo{x - x0) = 2s for x e x0 + P2s, we infer that u0 - (f>s < 0 in dP25

if 5 > 0 is sufficiently small.
The proof is complete.

Proof of Theorem 1.3
By Theorem 1.1 solvability of all problems (1.1) with linear boundary

data implies that

for each F G Rn either dL(F) ^ 0 or there exist V\,... ,vq G Rn such
that nq

i=ldL(vi) ^ 0 and F G int co{?;i,..., vq}

We need to prove that this condition suffices for solvability of all problems
(1.1) with boundary data / admitting at least one function u G Wlyl(tt) such
that J(u) < oo.

First note that the function L** : Rn —> R is a continuous convex function
satisfying the growth condition L** > a\-\p + 6, a > 0, p > n.

Let Q, and / be of the described above type. Let u0 be a solution of the
problem

/ L**(Du(x))dx •-> min,n = /,tx G Wl'l(Q). (3.1)

We will construct a solution u of the problem (3.1), for which the inclusion
Du(x) G {v : L(v) = L**(v)} holds a.e. in Q, as a limit of a sequence of
perturbations of w0, each of which is also a solution of the problem (3.1).
Note that u is automatically a solution to the original problem (1.1).

Let Q be the set of those points x G f i , where uo is differentiable in the
classical sense and L(Duo(x)) / L**(Duo{x)). Note that u is differentiate
in the classical sense almost everywhere in Q, since u G WliP(Q) with p > n
(cf. [EG, p.234j).

Let x0 G £1. There exist Vi,...,vq, which are extremum points of a
compact convex set, and / G Rn such that Duo(xo) G intco{i;i, . . . ,v9},
/ G riidL(vi). Note that £**(•) = L(t;i) + ( / , • - ^i) in co{t;i,..., vq}.

15



By Lemma 3.2 for all sufficiently small s > 0 the function

(j)s := (Duo(xo), • - x0) + uo(xo) + WS(-— X0), where

ws{x) = mtt(«j - £>no(a;o),a;) - s,

satisfies the inequalities:

05 <uOjx e xo + P8/2, <t>s > uo,x e x0 + dP2s (3.2)

W1L11 JT 5 . — | JU \Z. -L h • l l l a A | < 2 < n \ l/j — .I_y CtQlU/Q J, JL I \ D j .

Hence, the function i£i, which is equal to u0 outside the set x0 + P2s and
to min{^5, u0} inside this set, is well defined and is an element of WliP(Q).

Since problems (3.1) with integrands L** and L** + (/, •) + c have the
same solutions, we can assume without loss of generality that L** — 0 in
U := coj^i,.. . , vq} and L** > 0 otherwise.

At the same time, if fi' := {x G Q : U\ ̂  Wo} then Du\ G extrC/ a.e. in Q!
and, as a consequence, we have L(Du\) = 0 a.e. in 0'. Hence J(^i) = J(u0).

Since sets of the form Qf form the Vitaly cover of Q (see (3.2)), by the
Vitaly covering theorem we can decompose Q on disjoint closed sets CljJ =
1,2,..., and a set of zero measure such that for each j G N there exists a
function rj)j G W^°°{Qj) such that DUQ + Dipj G {v : L(v) = L**(v)} a.e. in
Qj, and

/ L(Duo)dx = f L(Du0 + DipAdx.

Define Ui as uo+ipj in fy, j < z, and as u0 otherwise. Then U{ is a sequence
of solutions of the problem (3.1). Note that this sequence converges strongly
in Wlil(£l). Indeed, in view of the growth conditions on L we have

\\Duk - Dut\\Ll = \\Duk -

2 / (ciL**(Z?u0) + c2)dx -^0, as k, I -> 00.

Therefore, the function £t, which is the limit of Ui in Wljl(fi), is also
a solution of the problem (3.1). Simultaneously meas{x G ft : L(Dui) ^
L**(Dui)} -> 0 and, as a consequence, Du G {v : L(v) = î **(v)} a.e. in Q.
Hence, w is a solution of the original problem (1.1).

The proof of the theorem is complete.
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4 Some auxiliary facts related tq solvability
of boundary value minimization problems
with convex integrands and validity of the
Euler-Lagrange equation for their solutions

In this section we recall some standard facts about solvability of problems
(1.1) with convex integrands. These facts were established in the context of
solvability theory for the Plateau problem (see [Gi]). We also prove a version
of the Euler-Lagrange equation, which is valid for all Lipschitz minimizers of
problems (1.1) with convex integrands.

Recall that boundary data / is said to satisfy boundary slope condition if
there exists M > 0 such that for each point x0 G dQ, we can find lul2 G Rn

such that |Zi|, |Z2| < Af and (h,x - x0) + f(x0) < f(x) < (h^-x0) + f{x0),
\/x G

For the proof of the following theorem see, e.g., [Gi].

Theorem 4.1 Let L : Rn —> R be a convex continuous function. Let
boundary data f satisfy the boundary slope condition with M > 0. Then
there exists a solution UQ of the problem J(u) -> min, u\ — f in the class
of Lipschitz functions. Moreover, u0 can be chosen satisfying the inequality
\\Du0\\Loo < M.

Remark
Let Q be a convex domain with dCl G C2 of positive curvature and let

/ G C2(dQ). Then / satisfies boundary slope condition with certain M > 0.

Solutions of the minimization problems always satisfy a nonsmooth ver-
sion of the Euler-Lagrange equation.

Theorem 4.2 Let L : Rn —> R be a continuous convex function. Let
uo G VF1)OO(Q) be a local minimizer of the functional J: J(UQ) < J(uo + (j>)
for all (j) G Cl(Q) with | |0| |ci < e, e > 0.

Then there exists a function I G L°°(Q) such that l(x) G dL(Duo(x)) a.e.
in fi and

(l{x),Dcj>(x))dx = O,V0 G Cl(Q).
t
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Proof
Let M > \\u0\\wi,oo(ny Define LM to be equal to L for \v\ < M + 1 and

to oo for \v\ > M + 1.
Let

K := sup{|/| : / G dLM(v), \v\ < M} + sup{|LM(t;)| : |t;| < M}.

Consider convexification G** of the function G ~ min{LM, K\v\+K(M+1)}.
Because of lower semicontinuity of G, by Lemma 2.1 we infer continuity

and convexity of G**. Note that G** = L for \v\ < M. Indeed, for these v we
have \L(v)\ <K< K\v\ + K{M + 1). Then G = L for |i;| < M. Moreover,
for each v0 G 5(0, M) and each / G dLM(v0) we have:

(/, v - vo>| < K + KM + K\v\.

Hence / G dG(v0) and, as a consequence, dG(v0) = dLM(v0) ^ 0. Then, by
Corollary 2.2 we get L = G = G** in 5(0, M).

Since G** = L in 5(0, M), the function u0 is a local minimizer for the
integral functional with the integrand F, where F(x,v) := G**(v) + \v —
Duo(x)\2. In this case UQ is automatically a solution of the minimization
problem. To prove this, note that for each nontrivial <j> G CQ(Q) the function

/(c) := / {F(x, Duo(x) + eD(/>(x)) - Fix, Duo(x))}dx
Jn

is a convex function of e and 1(0) = 0. Moreover, for e > 0 sufficiently
small we have I(e) > 1(0) = 0, since u0 is a local minimizer. Because of
strict convexity of / we infer that I(e) > 0 everywhere. Since <f> G CQ (Q) is
arbitrary we obtain that u$ is a unique global minimizer.

The proof reduces to finding a function lM G L°°(Q; Rn) such that IM(X) ^
dvF(x}Du0(x)) for a.e. x e Q and

L(lM(x),Dcf>(x))dx = O,V0 G CS(n). (4.1)

Indeed, since for a.e. x G fi the identity dvF(x,Du0(x)) = dLM(Du0(x))
holds, we obtain that /M(^) € dLM(Du0(x)) a.e. in £1 Note that for
each v e Rn the identity 9L(v) = DMdLM(v) holds. Note also that, since
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^xendLM(Duo(x)) is a nonincreasing sequence of bounded sets, we infer that
all functions lM are equabounded in L°°. Then, by Banach-Mazur theorem
(see, e.g., [ET;Ch.l,Sect.l]) there exists a sequence lk := ^JMI+I^I W ^

Mk -> oo, C{ > 0 such that E ^ M J U I
 Ci = * an(* ^ ~* °̂ i n ^1 - Since lk(x) G

dLMk(Du0{x)) for a.a. x e f i w e obtain that /0(^) € nM9LM(Dn0(x)) =
dL(Duo{x)) a.e. in fi. It is also clear that (4.1) holds with l0 instead of IM-
This proves the claim of Theorem 4.2.

In order to prove (4.1) notice that in the case F(x, •) G C1 for a.e. x g f l
the identity (4.1) holds with IM(X) = Fv(x,Duo(x)). The general case can
be reduced to this one by approximation arguments.

Consider functions Fe : Q x Rn —>• R such that for each x0 G S7, i>0 G i?n

= /

where p > 0 is a usual mollifying kernel, i.e. p is smooth with the support
in the unit ball, JRn p = 1, and pe = e~np(x/e).

It is easy to see that F c is convex in v and Fe(x, •) G C°° for a.e. x G f i .
Moreover,

Al\v\2 + Bl <Fe{x,v) <A2\v\2 + B2,ee]O,l],A2>A1 > 0,

and for a.e. x G Q, the family F€(x, •) converges to F(x, •) uniformly in each
compact set.

Since each problem J€ -> min, u = / , w G H^1'2 has a solution u€ we
infer that ue,€ G]0,1], form a relatively compact set in the weak topology
of Wl>2. Then, because of lower semicontinuity of convex functional with
respect to weak convergence in Wl>2 we infer that

l immfJ e(u e)> J{u)

for each limit function u of u€ (u€k —> u in L2 for some ek —> 0), see e.g.
[Sycl].

Since u$ is the unique solution of the original problem we infer that ue —>•
UQ in L2. Then u6 -^ u0 in VT1>2, where —̂  denotes the weak convergence.
For strictly convex functionals convergences ue —̂  uo in Wl>2, Je(ue) -> J(u0)
imply strong convergence of ue to u0 in Wl>2 (see [Sycl] for a simple proof,
and [Syc2] for the characterization of this property of integral functionals in
terms of integrands).
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For each t > 0 we have

F^x, DuHx)), D<t>)dx = 0, V0 € Cjftfl), (4.2)

where F€(#, Z)n6) (e G]0,1]) form a relatively compact set in the weak topol-
ogy of LX(Q).

Locally uniform convergence of F€k(x, •) to F(x, •) for a n a ; e f l implies
that for each sequence Vk G # n and each sequence /* € F*k(x,Vk) such that
6fc —̂  0, Â; —̂  vo, h~-*l the inclusion I G dvF{x, v0) holds.

Without loss of generality we can assume that FJ*(-, Duek{-)) converge to
/ G L1 weakly in L1. Since for a.e. x G fi all limit points of the sequence
F*k(x, Du€k(x)) belong to dvF(x, Duo(x)) (recall that i?w€fc -> .D^o a.e. in fi)
and dvF(x, Du0) is a compact convex set, we infer that l(x) G dvF(x, Duo(x))
for a.e. x G O. Being the weak limit of i^*(-,jDu6*(-)), the function /(•)
satisfies (4.2) automatically.

The proof is complete.

5 Proof of Theorem 1.2
In this section we give proof to the last result of this paper - Theorem 1.2.

Proof of Theorem 1.2. Due to Theorem 1.1 solvability of all problems
(1.1) with linear boundary conditions and a fixed fi implies that

for any F G Rn either dL(F) ^ 0 or there exist vi,..., vq G Rn such that
nq

i=1dL(vi) ^ 0 and F G int co{^i, . . . , vq}

To prove the converse, fix Q with dQ, G C2 of positive curvature and
/ G C2{dQ).

By Lemma 3.2 L** : Rn —> R is a continuous convex function. It is clear
also that L** > 6, where 0(v)/M -> oo as |v| -> oo.

By Theorem 4.1 and the remark to it there is a solution ?/o G Wl'°°(Q)
of the problem

| (5.1)

in the class u G Whoo(Q).
We can also prove that u0 is a solution of the problem (5.1) in Wl

Indeed, by Theorem 4.2 there exists / G L°°(Q) such that l(x) G dL(Duo(x))
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for a.e. x € fi and

[{l{x),D4>(x))dx = 0S
Jn

If ix = / then we obtain

J * » - J*>0) = J{L**{Du) - L**{Du0) - (l(x),Du - Duo)}dx.

Since the expression in the brackets is nonnegative in Q a.e. we obtain
that u0 is a solution in W1*1. Note also that in the case esssup|Lh/| is
sufficiently large the expression in the brackets is positive in a set of positive
measure since L** has superlinear growth at infinity, and, as consequence,
J**(w)- J**{u0) > 0. Therefore, all solutions to the problem (5.1) in Wl>l(Sl)
are bounded in Wl>°°(n).

Let M := ||I}tto||L«>(n)- By Rademacher's theorem (cf.[EG,p.81]) u0 has
classical derivative a.e. in Q. Let Q, be the set, where Duo exists in the
classical sense and L(DUO(XQ)) ^ L**(Duo(^o))- There exists Mi such that
for each point x € Q there exists vx,..., vq G B(0, Mi) such that Duo{x) G
intco{t;i,... ,vq} and nj=ldL(vi) ^ 0 (as a consequence, L** is affine on
co{i;i,... , vq}). Indeed, because of superlinear growth of L** at infinity, the
union of those compact convex sets intersecting 2?(0, M), on each of which
L** is affine, is a bounded set.

Therefore, for any x0 G & we can isolate extremum points Vi,i G {1, . . . ,</},
of a compact convex set such that v\}..., vq G B(0, Mi), Duo(xo) G int co{?;i,..., vq},
and C\idL(vi) ^ 0. Let tt;s be functions from (1.2) with F = Duo(xo). By
Lemma 3.2 we have that for all s > 0 sufficiently small the function

(f)s : =

has properties:

(j)s < u 0 , x G

where P5 = {x G i?n : maxi<K9(t;i — Duo(xo),x) < 5}.
Hence, we can define a perturbation u\ of UQ as follows:

{x0 + P2s})> v<i = min{(/>s, u0} — otherwise.
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