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Abstract

In this paper we introduce a condition on lower semicontinuous integrands
L: R™ — R both necessary and sufficient for all problems of the form

J(u) = /ﬂ L(Du)dz ~ min,u € WA(Q),ul = f

to have a solution, provided €2 and f are sufficiently regular or certain con-
ditions on growth of L at infinity are assumed.

1 Introduction
In this paper we deal with minimization problems

J(u) — min, ulm = f,ue Wh(Q) (1.1)
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for integral functionals of the form

J(u) = /Q L(Du(z))dz,

where  is an open bounded subset of R® with Lipschitz boundary and L :
R™ — R is a lower semicontinuous function.

A function u € W1(Q) is called an admissible function for the problem
(1.1) if ulan = f and the negative part of the function L(Du) is integrable.
In this case J(u) is well defined but equals +oo0 if the positive part of L(Du)
is not summable.

We accept the following notations: for a subset A of R™ the sets intA,
reintA, coA, and extrA are respectively the interior, the relative interior, the
convex hull, and the set of extremum points of A. B(a,€) denotes the ball
of radius € centered at the point a € R™; [, is a linear function with gradient
equal to a everywhere. 0L(F') denotes the subgradient of L at a point F':

AL(F) :={l € R": L(v) — L(F) — I,y — F) > 0, Yv € R"}.

L** is the convexification of L: the epigraph of L** is convexification of the
epigraph of L, that is

L*(vo) = {d_aL(v:) 1 i 2 0,0, € R, ) i = 1,) vy = wo}.

Note that L** exists as a function from R" to R if and only if L exceeds an
affine function everywhere (see Lemma 2.1).

Weak and strong convergences of sequences are denoted by — and —
respectively.

We will frequently utilize the following version of Vitaly covering theorem
(see [S,p.109]).

A family F of closed subsets of R is said to be a Vitaly cover of a bounded
set A if for any x € A there exists a positive number r(z) > 0, a sequence
of balls B(z,¢) with ¢, — 0, and a sequence Cy € F such that z € Cy,
Cx C B(z,€x), and (meas Ci/ meas B(z,€)) > r(z) for all k € N.

The version of Vitaly covering theorem from [S,p.109] says that each
Vitaly cover of A contains at most countable subfamily of disjoint sets Cj
such that meas (A \ U;Ci) = 0.



Problems (1.1) were studied recently in the framework of Existence The-
ory in Elasticity: when dealing with homogeneous materials undergoing anti-
plane shear deformations

(z,v,2) € R* > (z,y,z + u(z,y)) € R®

the problem of minimization of the free energy is of the form (1.1). While the

existence results are well-known for problems (1.1) with convex integrands

(see e.g. [ET],[Da],[Mo]), the situation is poorly understood in the case of
nonconvex problems. Note that active research in the area of nonconvex

variational problems started since the work [B], where the first existence -
results for realistic problems in Elasticity were established in the general

case (without restrictions on the class of admissible deformations).

Some recent efforts were devoted to the question of solvability of problems
(1.1) under restrictions on integrands motivated by physical reasons (see
[BP], [GT], [R], [SH]). In these papers solvability problem was treated for
particular boundary data. Moreover, the papers [C1], [C2], [F] indicated
conditions on integrands both necessary and sufficient for the problem (1.1)
with linear boundary conditions f = lr, F' € R" to have a solution.

The answer is given by the following theorem

Theorem 1.1 The problem (1.1) with linear boundary conditions f = lp
has a solution if and only if either OL(F) # O or there ezist vy,...,v, € R®
(g € N) such that F € intco{v,...,v,} and N_;0L(v;) # 0.

Here we state a slightly more general result since Theorem 1.1 was proved
in [C1], [C2] for lower semicontinuous integrands with superlinear growth at
infinity and, independently, in [F] for continuous integrands bounded from
below. We also utilize different terminology in order to formulate the result
in terms of L only.

However, a crucial ingredient of the proofs (more precisely of their suffi-
cient parts) is utilization of special functions proposed in [C1], [C2], [F].

If v4,...,v, are extremum points of a convex compact subset of R", and
F € intco{vy, ..., vy}, then the function

w,(z) = max(v - F,z) — s (1.2)



is Lipschitz, Dw,(z) € {vi — F:i=1,...,q} a.e., and ws|,p = 0, where
={z: _ <
P, ={z: frgl?g}EJ(U’ F,z) < s}

is a compact set with Lipschitz boundary and nonempty interior.
Note that P, = sP;.

Since Vitaly covering arguments lets us decompose (2 into disjoint sets of
the form y; + s; P, and a set of nonzero measure, we can define ug as

(F,z) + ws,(z — y;) for z € y; + ;P

Then uolaa =l on 89, up € W1°(Q). In order to prove that ug is a solution

of the problem (1.1) note that if [ € N{_,0L(v;) then for any admissible
function u € WH(Q2) we have

J(w) — J(ug) = /Q {L(Du) — L(Duo) — (I, Du — Dug)}dz =

/ﬂ {L(Du) — L(v,) — (I, Du— ) }dz — /n {L(Duo) — L(v1) — (I, Duo — v1) }da.

It is easy to see that all functions L(v;) + (l,v —v;), i = 1,..., ¢, coincide.
Then L(v) — L(v1) — (I,v — v1) > 0 everywhere with the equality in the case
v € {v1,...,v,}. Hence the first term is nonnegative while the second one

equals zero. Hence J(u) — J(uo) > 0. ,

This proves that the condition N{_,0L(v;) # @ with F € intco{vy,...,v4}
implies solvability of the problem. If L(F) # @ then the function lp is a
solution. Therefore, each of these two conditions implies solvability of the
problem. These arguments prove the ”sufficient” part of Theorem 1.1.

The converse will be proved in §2.

Before explaining what kind of influence these simple arguments had on
further developments of solvability theory, let us state the results of this

paper.

Theorem 1.2 Let L : R™ — R be a lower semicontinuous function such
that L > 6, where 8(v)/|v] = oo as |v] = oo.

Then all problems of the form (1.1) with Q € C? of positive curva-
ture and f € C%(8S) are solvable if and only if for each F € R" either
OL(F) # O or there ezist vy,...,v; € R™ such that N]_;0L(v;) # @ and
F € intcofvy,...,vs}. Moreover, all solutions are Lipschitz continuous func-
tions.



Remark We are not aware whether it is possible to weaken the conditions
on {2 and f in this theorem essentially (see §4 for a discussion).

In the case when the growth of L provides a certain a priori regularity
of minimizers, an analogous result holds for arbitrary Q and f, for which at
least one admissible function u € W1(Q) with J(u) < oo exists. However,
in this case we can not state Lipschitz regularity of solutions.

Theorem 1.3 Let L : R® — R be a lower semicontinuous function such
that L>a|-P+b,a>0,p>n.

Then each problem of the form (1.1), for which at least one admissible
function v € WH(Q) with J(u) < oo erists, has a solution if and only if
for each F' € R™ either OL(F) # 0 or there ezist vq,...,v, € R™ such that
N_,0L(v;) # 0, and F € intco{vy,...,v,}.

Remark Note that the only role of the growth condition L > «| - [P + b,
a > 0, p > n, is to provide differentiability of solutions to the relaxed
problem in the classical sense almost everywhere. Hence, the result of the
theorem holds under any other conditions on lower semicontinuous integrands
L : R® - R with superlinear growth, which imply this property of solutions
to the relaxed problem.

Note that regularity in minimization problems was studied typically in
the context of continuity of solutions and their derivatives (everywhere or
on an open set of full measure). However, here we need an intermediate
property - differentiability in the classical sense almost everywhere. It seems
that not too much is known in this direction. Indeed, results on continuity of
solutions are not sufficient in our situation. Simultaneously, partial regularity
of derivatives, which is more than enough for our purposes, was treated
usually for elliptic integrands, cf. e.g. [G].

The proofs of theorems 1.2, 1.3 are further refinements of the above dis-
cussed arguments, which were also developed recently in a deeper way in the
context of Theory of Differential Inclusions.

Note that the sufficient part of Theorem 1.1 is equivalent to a particular
differential inclusion Du(z) € {v1,...,v} a.e. in Q, u = Ip on 0.

When anyone deals with nonlinear boundary conditions, more compli-
cated differential inclusions should be considered. The typical one is: Du(z) €
extrU for a.e. € Q, u = f on 90, where f € Wh®(Q) and Df(z) € U
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for a.e. z € Q (here U is a compact convex subset of R" with nonempty
interior).

It was observed in [DP] that the same functions ws with F' = D f(x,) (see
(1.2)) can be utilized to perturb f by ¢, := ws(-—z0)— f (x0) — (D f (z0), - —To)
in such a way that D min{f, @} € extrU for each z in an open subset 2 of
(2 such that zo+ P52 C Qc o+ Py and ¢, = f on oQ. Refining arguments
from [DP] it is easy to see that for each zo € 2, where D f(z) exists in the
classical sense and Df(zy) € intU, such a perturbation exists for all s > 0
sufficiently small (see Lemma 3.2). Applying Vitaly covering arguments we
solve the inclusion.

In the context of variational problems this means that if U is an n-
dimensional proper face of L** (note that L = L** on the set of extremal
points of U, cf. Lemma 3.1), then we can perturb a solution uy of the prob-
lem

/QL (Du)dz — mln,u‘an =f

on the set that includes almost all points of the set in which Duy € intU,
in such a way that Duy € extrU a.e. in this set. Since gradient of the
perturbed function lies in U on the set of perturbation, this function is also
a solution. Consequentially, there exists a subset of full measure of the set
{z : Duo(z) € intU}, which can be complemented by a subset of the set
{z € Q: Duy(z) € OU} and a set of zero measure to become an open set.
These arguments were utilized in [Z] in order to prove that problems
(1.1) with integrands L, which coincide with L** everywhere with exception
of a finite collection of distinct n-dimensional proper faces, have a solution.
Being more precise, the perturbation arguments can not be applied if the
function wug is only in WH(Q), since low regularity of uy does not let us
assert that uy = ¢ in the boundary of an open subset of 2. The author
of [Z] was not careful and utilized a mistaken fact that for each function
u € WH(Q) and each 6 > 0 there exists an open subset {2; of Q such that
meas (2 \ Q) < J and ||ug||wreo(n;) < 0. Indeed, it is easy to construct a
function u € WhH'(Q2) such that esssup|Du| is unbounded in any nontrivial
open subset of 2. However, we also noticed that the perturbation arguments
still work at points of differentiability of ug. This remark simplifies basic
arguments from [DP] and let us apply them to the case up € WH?(Q) with
p > n, since in this case uy is differentiable almost everywhere in the classical
sense (cf. [EG,p.234]). The final version of the paper [Z] will contain these



corrections.

It turns out that further refinements of these arguments can be utilized in
order to prove Theorem 1.3, which is a characterization result. It is helpful
here to utilize simple direct arguments constructing a sequence of solutions
to the relaxed problem, which converges strongly to a solution of the original
problem, instead of Baire category arguments and other techniques from
[DP], [Z] (see also the papers mentioned therein) traditional for Theory of
Differential Inclusions.

The proof of Theorem 1.2 needs more subtle arguments since growth of L
does not guarantee almost everywhere differentiability (in the classical sense)
of functions, which give finite values to the integral functional. It seems to
be an open question whether this property holds for solutions to the relaxed
problems.

In the case of Theorem 1.2 we first prove solvability of the relaxed problem
in the class of Lipschitz continuous functions, following arguments introduced
first in the context of solvability theory for the Plateau problem (see [Gi]).
Then, careful construction of special perturbations of this solution gives a
solution to the original problem in the class of Lipschitz functions. Next, we
utilize a nonsmooth analogue of the Euler-Lagrange equation to prove that
such solutions are automatically solutions of the boundary value problem
(1.1).

We prove Theorem 1.1 and Theorem 1.3 in §2 and §3 respectively. In §4
we recall some facts on solvability of problems of the form (1.1) in the class
of Lipschitz continuous functions, provided certain regularity on 02 and f
is assumed and L is convex. Here we also prove a nonsmooth analog of the
Euler-Lagrange equation. Theorem 1.2 is proved in §5.

2 Proof of Theorem 1.1 and some auxiliary
propositions
Recall first some basic facts about convex functions. By Caratheodory the-
orem, for each subset A of R we have
n+1 n+1

coA={> cvi:c;>0,v;€ A, ) ¢ =1}

=1 =1



Since the dimension of the epigraph of any lower semicontinuous function
L : R® — R does not exceed n + 1, for each vy € R™ we have

q q q
L*(vo) == inf{> _c;L(v;) : ¢ € N,c; > 0,v; € R",Y ci=1,) civ; = v} =
-1

=1 i=1

n+2 n42 n+2
inf{z ¢;L(v;) : ¢; > 0,v; € R, Z ¢ =1, Z Civ; = Vg }.
=1

i=1 i=1

It is also well-known that if L : R* — RU{oo} is a lower semicontinuous
convex function, which is bounded in a neighborhood of vy, then L is Lipschitz
in a smaller neighborhood of vg. Moreover dL(vp) # 0.

Recall also a version of the Hahn-Banach theorem. If U is a closed convex
subset of R™ and vy & intU then there exists [ € R™ such that

(l,v0) > (l,v),Yv € U.

All these facts can be found in any textbook containing chapters on Con-
vex Analysis, see e.g. [ET].

Before proving Theorem 1.1 we state and prove two auxiliary propositions
which will be utilized frequently later on.

Lemma 2.1 Let L : R* — R be a lower semicontinuous function. Then
the following assertions are equivalent:

1)
g q g
L*():=inf{d c;L(v;) : g€ N,c; >0,Y c;i=1,> cv; = -}
i=1

i=1 i=1

s a convezx continuous function;

2) there exists | € R™ and c € R such that
L(v) > (l,v) + ¢,Yv € R™;

3) there ezists a point F' € R™ such that

q q q
inf{ZciL(vi) :q € N,¢; > 0,v; € R",Zci = 1,Zcivi =F} > —o0.
i=1 i=

=1 =1



Proof

If L** : R* — R is a convex continuous function then L**(0) # 0, and,
as a consequence, for [ € L**(0) we have

L(v) — L*(0) > L*(v) — L*™(0) > (I, v).

Hence, 1) implies 2). The implication 2) = 3) is obvious.

Let us prove the last assertion of the lemma. Without loss of generality
we can assume that F' = 0. Consider auxiliary functions Ly : R* — RU{oo}
defined as follows: Ly = L in B(0,k), Ly = oo - otherwise. Let also L}* be

convexification of Ly.
Then, for each k the function L;* Bo) is a lower semicontinuous convex

function, which is locally continuous in B(0, k). Note also that Li*(v) is a
nonincreasing sequence for each v € R". Moreover the sequence L;*(0) is
bounded from below. Hence, if Iy € OL;*(0) then supy |lx| < co and for each
limit point ly of Iy (lp = lim;_, lk;) and each v € R™ we have

Jim {Li* () = L (0)} = (o, ) = lim {33 (0) — Z55(0) — (b, 0)} 2 0.

Since L;*(0) is bounded from below, the function L** := limg_, Li*
majorizes L**(0) + (lp, v) everywhere. Note that L** is convex as a pointwise
limit of nonincreasing sequence of convex functions. Since it is also locally
bounded, it is continuous.

The proof of Lemma 2.1 is complete.

Corollary 2.2 Lower semicontinuous function L : R* — R has nonempty
subgradient at F € R" if and only if 3.1, ¢;L(v;) > L(F) for any ¢ € N,
% ERY, ¢;>0(i=1,...,q) suchthat ¢, =1, 3L cvi=F.

Proof
Let | € OL(F). Then for all ¢; > 0, v; € R™ such that 30, ¢; = 1,
Y% . cv; = F, g € N, we obtain

q

iciL(vi) - L(F) = i ¢;L(v;) — L(F) = > _ci(l,vi— F) =

i=1

ic,'{L(vi) — L(F) - (l,v,- - F)} Z 0.

i=1



To prove the converse note that by Lemma 2.1 L** is a convex continuous
function. Since L(F) = L*(F), 0L**(F) # 0, and L > L** everywhere, we
infer that OL(F') # 0.

The proof is complete.

Lemma 2.3 Let L : R® — R be a lower semicontinuous function. Let
v1,...,V, be such points in R™ that Y., civ; = F for some ¢; > 0 with
g:l C; = 1.
Then, there ezists a bounded in WH®(Q) sequence uy such that u’“'an =
lp, and J(ux) = YL, ¢;L(v;) meas Q.

This lemma is a version of the well-known relaxation theorem (see [ET,Ch.10]).
The main difference is that here we have a lower than usual regularity of in-
tegrands.

Proof

Without loss of generality we can assume that ¢; > 0 for all 7.

Consider first the case when F' has unique representation as a convex
combination of {vy,...,v;}. In this case vy, ..., v, are extremum points of a
compact convex set.

In the case F' € intco{vy,...,v,;} the claim was proved in Introduction
since there we proved existence of a function ug such that Duy € {vy,...,v,}
uolan = lr. Indeed, in this case we have

g q
/QDu(x)d:c = (c;meas Q)v; = Fmeas Q,) & =1, > 0.
i=1 i=1
Since the representation of F' in the form of a convex combination of v, ..., v,
is unique, we obtain that ¢; = ¢; for each 7. Hence, defining u; as u for all
k € N we obtain that J(ux) = Y., ¢;L(v;) meas Q.

Consider now the case when F' ¢ intco{vy,...,v,}. In any case F €
reint co{vy, ..., v,}. Let P be the largest subspace of R® perpendicular to all
vectors v; — F', i € {1,...,q}. Assume that dimP = m and vgy1, ..., Vgtmi1
are such points in P that co{vg41,. .., Um+1+¢} has nonempty interior in P
and 0 belongs to this interior.

For each § > 0 consider the function

wss() = | _max (0~ F,)—s,
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where
v; =v; fori € {1,..-,(]}:

; = F + bv; forze{q+1,,m+q+1}

It is clear that for each § > 0 the inclusion F' € intco{¥1,...,Umt1+q}
holds and @4, . .., Ug+m+1 are extremum points of a compact convex set.
Moreover,

meas{z € P; : Dw,5 £{vi — F,...,v,— F}} 0
meas {z € P, : Dwss € {v1 — F,...,v,— F}}

as d — 0 uniformly with respect to s.

For a k € N consider Vitaly covering of €2 by the supports €; := z; + P;,
of the functions min{0, w,, 1/k(- — ;) } and define @y = lp + w,, 1/k(- — ;) in
Q; (i € N), i = lp -otherwise. In this case

meas {z € Q: Dy £{v1,...,v5}} =0
as k — oo. Therefore, if for a subsequence of 4y (not relabeled)

x _ meas{z € Q: Dil, = v;}

-

measQ _)61)16{177Q})
then 3¢ =1, Y ¢;v; = F, and because of uniqueness of the representation
of F in the form of a convex combination of v; (¢ = 1,...,q) we infer that
¢ = c;i. Hence, cf — ¢; as k — oo for the original sequence cF.

But we can not assert yet that J(@x) — i, ¢;L(v;) since L can be
unbounded in the set {F + dvgy1,..., F + 0Ugimi1;0 € [0,1]}. In order
to overcome this difficulty notice that for all § > 0 sufficiently small the
vectors U; :=0v; + F (i =¢q+1,...,m+ g+ 1) lie in the interior of the set
co{vy, ..., Vg+m+1}. Hence, for all k sufficiently large the function @ can be
redefined by the above described procedure in each set {z € 2 : D = 9;},
i€{g+1,...,m+q+1}, (we denote the new function as uy) in such a way
that Duy € {v1,...,Vg4m+1} a.e. on this set and ux = @ on the boundary
of this set. Since ux = @ a.e. on the set {x € Q: Dug(z) € {v1,...,v,}}
and |L(Dug)| < ¢ < oo we infer that J(ux) = Y1, ¢;L(v;).

The general case can be reduced to the one discussed above. We can
assume without loss of generality that v; # F, ¢; > 0 for all 7 € {1,...,q}.
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For ¢ = 2 we can assert that there exists a sequence of piecewise affine
functions u; such that ukl = lp, meas{z € Q : Duy = v;} — c; meas (2
(¢=1,2), and J(ux) = ¥ ¢;L(v;) meas (2, since F' has unique representation
in the form of a convex combination of vy, vs.

Let this claim be valid for ¢ = s. To prove it for ¢ = s+1, consider vectors
U1,...,0s such that 9; = v; for i < s — 1, ¥ = (Csvs + Cs+1Vs41)/(Cs + Cs41)-
Then F = Y;_, ¢;v;, where ¢; = ¢; for t < s —1 and & = ¢ + ¢s41. By the
induction assumption there exists a sequence of piece-wise affine functions
ug such that wuyg - lp, meas{z € Q : Dug(z) = %;} — ¢;meas Q (z =
1,...,8), and J(ux) = X &L(0;) meas Q. For a k € N let 4 := int{z €
Q : Dug(z) = vs}. We can find a sequence uf such that uf = uy in O,
|[u¥lwieo () < € < 00, and

meas {z € Q : uf # v;} - ?meas Q (i=s,5+1),j — oo,
S

s+1 . s+1
J(uf, Qk) — Z ?L(’Uz) meas Qk = Z CiL(’Ui) meas Q>.7 — 0.

i=s S i=s

Then, for a subsequence wy, := uf(k) (k — oo) we get the convergence
J(wg) = Y1, ¢;L(v;) meas Q.
The proof of the theorem is complete.

Proof of Theorem 1.1
Sufficiency of the condition

either OL(F) # O or there ezist vy, . ..,v, € R™ such that F € intco{vy,...,vg}
and N{_,0L(v;) =0

for solvability of the problem
: _ 1,1
/QL(Du)dz — min, u| = lp,u € WH(Q)

has been proved in Introduction.
In order to prove its necessity, first note that

q q q
inf{} ¢;L(v;) : g € N,c; > 0,v; € R",Zc,- = I,Zc,-v,- =F} > —o0. (2.1)
i=1

=1 =1
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Indeed, for each c¢;,v; (i =1,...,¢q) from (2.1) by Lemma 2.3 we get

q
Q =lp,u € Wl,oo} < ZC,L(’U,) (22)

=1

inf{J(u) : u|a

Since solvability of the problem (1.1) implies the inequality
inf{J(u) : |, = lp,u € WH} > —o0,

we infer that (2.1) holds.

By Lemma 2.1 we infer that L** is a convex continuous function. More-
over, if uy is a solution of the problem (1.1) then (2.1), (2.2) imply that
J(up) < L*(F) meas Q.

Let I € L**(F). For each admissible u we have

J(u) — L**(F) meas Q = /Q (L(Du) — L*(F) — (I, Du — F)}dz > 0.

Hence, J(ug) = L*(F) meas Q.
Let
P={ve R": L(v) - L**(F) — (l,v — F) = 0}.

Since J(up) = L*(F)meas Q and [o(l,Dup — F)dz = 0 we infer that
Duy(z) € P, for a.a. z € .

It is obvious that P, is a closed set. Moreover, we claim that F' € int coF,
if L(F) # L*(F). Otherwise by the Hahn-Banach theorem there exists an
a € R™ such that (F,a) > (v,a) for any v € coP,. Then (F,a) > (Duyg,a)
a.e. on . Since [q(Dup, a)dz = (F,a) meas Q we infer that Duy € {v €
R": (v — F,a) =0} a.e. on Q. As a consequence,

8(u0 — lp)
oa

a.e. on . Since ug = lr on 0N we infer that uy = lp a.e. on 2. Hence
F € P, and, as a consequence, L(F) = L**(F). This is a contradiction.

We have proved that either F' € intcoP, or L(F') = L*(F'). In the first
case there exist vy,...,v, € P, such that F' € int co{vy,...,ve}. It is obvious
that in this case | € dL(v;) for any i € {1,...,q}. Hence N’_,0L(v;) # 0.
This completes the proof of Theorem 1.1.

= (DUO—F,LI,):O
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3 Proof of Theorem 1.3

We will need one more lemma with respect to properties of convexifications.

Lemma 3.1 Let L : R* — R be a lower semicontinuous function such
that L(v) > 6(v), where 8(v)/|v]| = oo as |v] = 0. Let F € R™ and
l € OL*(F). Let also

P :={veR":L*"(v) - L™(F) - (l,v— F) = 0}.
Then L = L** in the set of extremum points of P,.

Proof

Assume that vy € extrP,. By Caratheodory theorem there exists cf > 0,
vf € R* (1 = 1,...,n + 2) such that X" 2ck = 1, Y2 ckvf = v and
Y2 R L(vF) — L**(vp) as k — oo.

We can assume also that ¢f — ¢; and either v¥ — v; or |[vf| — oo as
k — oo. Since cF|vF| — 0 in the case |vf| — oo (recall that 8(v)/|v| = oo
as |v| — o0), we obtain that for all s € {1,...,n + 2} such that ¢; > 0 the
convergence v¥ — v; holds and 3" ¢;v; = vy. Because of lower semicontinuity
of L we have Y ¢;L(v;) = L*(vp). Since L(v) — L*(vp) — {l,v — ) > 0
everywhere, we infer that L(v;) — L**(vp) — (I, v; — vo) = 0 for each v;. Then
v; € P, for each i. Because vy € extrP, we obtain that v; = vy for all 7 under
consideration. Hence L(vp) = L**(vp).

The proof is complete.

Lemma 3.2 Let ug € C(B(xzo,7)) be differentiable at zy in the classical
sense. Let U be a convex compact subset in R", and let vy, ...,v, € extrU be
such that

Duy(zo) € intco{vs,...,vq}.

Then, for all s > 0 sufficiently small the function
&s(+) = ws(- — o) + uo(zo) + (Duo(20), - — Zo),
where w,(T) := mMax;<i<q(vi — Duo(xo), ) — s, has the properties:
¢s < U, T € To + Pyjo; ¢s > uo, T € To + 0Py, where

P,={z€eR": 112%)2(1),- — Duy(zo),z) < s}.
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Proof is straightforward. We have
up(z) — ¢5(x) = up(z) — (Duo(xo), — To) — uo(To) — ws(T — 20) =

o(|z — zo|) — wo(z — To) + 5.

Since |wo(- — zo)| < s/2 inside ¢ + P,/ we obtain that uo — ¢, > 0 inside
zo + Py/2 if s > 0 is sufficiently small.

Since wy(x — o) = 2s for = € xo + Pas, we infer that ug — ¢, < 0in OPs,
if s > 0 is sufficiently small.

The proof is complete.

Proof of Theorem 1.3
By Theorem 1.1 solvability of all problems (1.1) with linear boundary
data implies that

for each F € R" either OL(F) # O or there exzist vy,...,v, € R™ such
that N_,0L(v;) # 0 and F € intco{vy,...,vg}

We need to prove that this condition suffices for solvability of all problems
(1.1) with boundary data f admitting at least one function u € W*(Q) such
that J(u) < oo.

First note that the function L** : R* — R is a continuous convex function
satisfying the growth condition L** > a|-IP+ b, a > 0, p > n.

Let ©2 and f be of the described above type. Let uy be a solution of the
problem

/QL**(Du(x))d:v = min, ulaQ = f,u € Wh(Q). (3.1)

We will construct a solution @ of the problem (3.1), for which the inclusion
Dii(z) € {v: L(v) = L*(v)} holds a.e. in §, as a limit of a sequence of
perturbations of ug, each of which is also a solution of the problem (3.1).
Note that @ is automatically a solution to the original problem (1.1).

Let Q be the set of those points z € €2, where ug is differentiable in the
classical sense and L(Dug(z)) # L*(Dug(z)). Note that u is differentiable
in the classical sense almost everywhere in 2 since u € W1?(Q) with p > n
(cf. [EG, p.234)).

Let zo € 2. There exist v;,...,v,, which are extremum points of a
compact convex set, and [ € R" such that Dug(zy) € intco{vy,...,v,},
| € M;0L(v;). Note that L**(-) = L(v) + (I,- — v1) in co{vs, ..., vq}.
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By Lemma, 3.2 for all sufficiently small s > 0 the function

¢s := (Duo(20), - — zo) + uo(zp) + ws(- — zo), where

ws(z) = 1n<1?<)g(vi — Duy(2), z) — s,
satisfies the inequalities:

(}53<'U,0,IL'E.’IJ0+P3/2, s > ug, T € To + 0Py, (32)

with P, := {z € R" : max;<;<q{vi — Duy(zp),z) < s}.

Hence, the function u;, which is equal to uy outside the set =g + P, and
to min{¢s, uo} inside this set, is well defined and is an element of WP((Q).

Since problems (3.1) with integrands L** and L** + (I,-) + ¢ have the
same solutions, we can assume without loss of generality that L** = 0 in
U :=co{vy,...,v} and L** > 0 otherwise.

At the same time, if ' := {z € Q : u; # o} then Du, € extrU a.e. in (¥’
and, as a consequence, we have L(Du;) = 0 a.e. in {'. Hence J(u;) = J(up).

Since sets of the form ' form the Vitaly cover of Q (see (3.2)), by the
Vitaly covering theorem we can decompose ) on disjoint closed sets Qj J=
1,2,..., and a set of zero measure such that for each j € N there exists a
function t; € Wy ®(Q;) such that Dug + Dep; € {v : L(v) = L*(v)} a.e. in
Q;, and

/_ L(Dug)dz = /ﬂ L(Duo + D;)dz.
J J

Define u; as up+1); in Qj, J <1, and as ug otherwise. Then u; is a sequence
of solutions of the problem (3.1). Note that this sequence converges strongly
in Wb1(Q). Indeed, in view of the growth conditions on L we have

||Dug — Dug||r, = ||Dur — Du||1,uye; i) <

2 _ (1 L**(Dug) + c2)dz — 0, as k,l — oo.
Uk<j<i§l
Therefore, the function %, which is the limit of u; in Wh(Q), is also
a solution of the problem (3.1). Simultaneously meas{z € Q : L(Du;) #
L**(Duw;)} — 0 and, as a consequence, Da € {v: L(v) = L**(v)} a.e. in Q.
Hence, @ is a solution of the original problem (1.1).
The proof of the theorem is complete.
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4 Some auxiliary facts related to solvability
of boundary value minimization problems
with convex integrands and validity of the
Euler-Lagrange equation for their solutions

In this section we recall some standard facts about solvability of problems
(1.1) with convex integrands. These facts were established in the context of
solvability theory for the Plateau problem (see [Gi]). We also prove a version
of the Euler-Lagrange equation, which is valid for all Lipschitz minimizers of
problems (1.1) with convex integrands.

Recall that boundary data f is said to satisfy boundary slope condition if
there exists M > 0 such that for each point o € 02 we can find I;,l, € R"
such that |l;],]la] < M and (L1, — zo) + f(z0) < f(z) < (l2,x — o) + f(Z0),
Vz € OS2

For the proof of the following theorem see, e.g., [Gi].

Theorem 4.1 Let L : R® — R be a convex continuous function. Let
boundary data f satisfy the boundary slope condition with M > 0. Then
there exists a solution ug of the problem J(u) — min, ulm = f in the class

of Lipschitz functions. Moreover, uy can be chosen satisfying the inequality
|| Duol|L~ < M.

Remark
Let Q be a convex domain with 9Q € C? of positive curvature and let
f € C?(892). Then f satisfies boundary slope condition with certain M > 0.

Solutions of the minimization problems always satisfy a nonsmooth ver-
sion of the Euler-Lagrange equation.

Theorem 4.2 Let L : R* — R be a continuous convezr function. Let
up € WH®(Q) be a local minimizer of the functional J: J(ug) < J(up + ¢)
for all ¢ € C§ () with ||p||cr <€, € > 0.

Then there ezists a function | € L*°(2) such that l[(z) € OL(Duo(z)) a.e.
in Q and

/Q ((z), Dé(z))dz = 0,4 € CL(9).
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Proof

Let M > ||ug|lw1.o(). Define LM to be equal to L for |v| < M + 1 and
to oo for |v| > M + 1.

Let

K :=sup{|l| : 1 € OLM(v), |v| < M} + sup{|LY ()| : || < M}.

Consider convexification G** of the function G := min{L™, K|v|+K(M+1)}.

Because of lower semicontinuity of G, by Lemma 2.1 we infer continuity
and convexity of G**. Note that G** = L for |v| < M. Indeed, for these v we
have |L(v)| < K < K|v| + K(M +1). Then G = L for |v| < M. Moreover,
for each vy € B(0, M) and each | € LM (vy) we have:

L(vo) + (I, v — o) < LM(v),

|L(vo) + (l,v — vo)| < K + KM + K|v|.

Hence [ € 0G(vo) and, as a consequence, 8G(vp) = LM (vy) # 0. Then, by
Corollary 2.2 we get L = G = G** in B(0, M).

Since G** = L in B(0, M), the function ug is a local minimizer for the
integral functional with the integrand F', where F(z,v) := G*(v) + |v —
Dug(z)|?. In this case up is automatically a solution of the minimization
problem. To prove this, note that for each nontrivial ¢ € C}(Q2) the function

I(e) == /Q {F(z, Duo(z) + eDé(z)) — F(z, Dug(z)) }dz

is a convex function of € and I(0) = 0. Moreover, for ¢ > 0 sufficiently
small we have I(e¢) > I(0) = 0, since uyp is a local minimizer. Because of
strict convexity of I we infer that I(e) > 0 everywhere. Since ¢ € C;(f) is
arbitrary we obtain that ug is a unique global minimizer.

The proof reduces to finding a function I € L>®(Q; R™) such that [5/(z) €
0y F(z, Duy(z)) for a.e. z € Q and

/Q (s (), D$(z))dz = 0,V € CL(Q). (4.1)
Indeed, since for a.e. = € Q the identity 8,F(zx, Dug(z)) = LM (Duo(z))
holds, we obtain that lp(z) € OLM(Duo(z)) ae. in Q. Note that for
each v € R™ the identity OL(v) = Ny LM (v) holds. Note also that, since
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Uzen@LM (Duo (7)) is a nonincreasing sequence of bounded sets, we infer that
all functions I, are equabounded in L*. Then, by Banach-Mazur theorem
(see, e.g., [ET;Ch.1,Sect.1]) there exists a sequence [y := 2,"1’3;; 41 Cili with
M, — o0, ¢; > 0 such that Zf\i’j\}:ﬂ ¢; =1and Iy = lp in L,. Since l~k(a:) €
OLMk(Dug(z)) for a.a. T €  we obtain that ly(z) € NyOLM(Duy(z)) =
OL(Dug(z)) a.e. in Q. It is also clear that (4.1) holds with [y instead of I,.
This proves the claim of Theorem 4.2.

In order to prove (4.1) notice that in the case F(z,-) € C* for a.e. z €
the identity (4.1) holds with ly(z) = F,(z, Dug(z)). The general case can
be reduced to this one by approximation arguments.

Consider functions F* : Q x R™ — R such that for each zy € €2, vg € R"

F¢(zo,v) = /Rn F(z9,v) * pe(v — vo)dv,

where p > 0 is a usual mollifying kernel, i.e. p is smooth with the support
in the unit ball, [z p =1, and p. = € "p(z/¢).

It is easy to see that F* is convex in v and F¢(z,-) € C* for a.e. z € (.
Moreover,

A1'1)|2 + Bl S FE(IE,’U) S A2|U|2 + Bz,E E]O, 1],A2 Z A1 > 0,

and for a.e. z € Q the family F¢(z,-) converges to F(z,-) uniformly in each
compact set.
Since each problem J¢ — min, ulm = f, u € W12 has a solution u¢ we

infer that u¢ e €]0,1], form a relatively compact set in the weak topology
of Wb2, Then, because of lower semicontinuity of convex functionals with
respect to weak convergence in W12 we infer that

lirerl)ioan (u®) > J(@)

for each limit function @ of u¢ (u®* — @ in L, for some ¢, — 0), see e.g.
[Syc1].

Since ug is the unique solution of the original problem we infer that u¢ —
ug in Ly. Then u¢ — ug in W12, where — denotes the weak convergence.
For strictly convex functionals convergences u¢ — ug in W2, J¢(u€) — J(ug)
imply strong convergence of u to ug in W12 (see [Sycl] for a simple proof,
and [Syc2] for the characterization of this property of integral functionals in
terms of integrands).
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For each € > 0 we have
| (Fe(a, Du(z)), D)z = 0,9 € C3(9), (4.2)

where F<(z, Du¢) (e €]0, 1]) form a relatively compact set in the weak topol-
ogy of L}(Q).

Locally uniform convergence of F(z,-) to F(z,-) for an z € § implies
that for each sequence vy € R" and each sequence Iy € F*(z,vg) such that
ex — 0, v — v, Iy — I the inclusion ! € 9,F(z,vy) holds.

Without loss of generality we can assume that F (-, Du(-)) converge to
[ € L! weakly in L'. Since for a.e. z € Q all limit points of the sequence
Ffk(z, Du(z)) belong to 0, F(x, Dug(z)) (recall that Du®* — Dug a.e. in )
and 0, F(z, Duy) is a compact convex set, we infer that I(z) € 8,F (x, Duy(z))
for a.e. z € ). Being the weak limit of F¢*(-, Du*(-)), the function I(-)
satisfies (4.2) automatically.

The proof is complete.

5 Proof of Theorem 1.2

In this section we give proof to the last result of this paper - Theorem 1.2.

Proof of Theorem 1.2. Due to Theorem 1.1 solvability of all problems
(1.1) with linear boundary conditions and a fixed 2 implies that

for any F € R™ either OL(F) # 0 or there ezist vy, ...,v, € R™ such that
N_,0L(v;) # 0 and F € intco{vy,...,v,}

To prove the converse, fix Q with dQ € C? of positive curvature and
f € C%09).
By Lemma 3.2 L** : R* — R is a continuous convex function. It is clear
also that L** > 0, where 0(v)/|v| = oo as |v| = oo.
By Theorem 4.1 and the remark to it there is a solution uy € Wh°(Q)
of the problem
J*(u) — min,ulan =f (5.1)

in the class u € WH™(Q).
We can also prove that ug is a solution of the problem (5.1) in Wh(Q).
Indeed, by Theorem 4.2 there exists | € L®(2) such that {(z) € OL(Duo(x))
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for a.e. x € Q and
fﬂ<l(w), Dé(z))dz = 0,Y¢ € Wyl ().

If u|an = uo| = f then we obtain

T (u) — J* (uo) = /Q {L*(Du) — L*(Duo) — (I(z), Du — Duo) }dx.

Since the expression in the brackets is nonnegative in {2 a.e. we obtain
that uo is a solution in W'!. Note also that in the case esssup |Du] is
sufficiently large the expression in the brackets is positive in a set of positive
measure since L** has superlinear growth at infinity, and, as consequence,
J**(u) — J**(up) > 0. Therefore, all solutions to the problem (5.1) in Wh'(Q)
are bounded in WH*(Q).

Let M := ||Dug||r=(q). By Rademacher’s theorem (cf.[EG,p.81]) uo has
classical derivative a.e. in Q. Let Q be the set, where Dug exists in the
classical sense and L(Dug(zo)) # L**(Duo(xo)). There exists M; such that
for each point z € €) there exists vy, ...,v, € B(0, M;) such that Duy(z) €
int co{vs,...,v,} and N{_;0L(v;) # O (as a consequence, L** is affine on
co{vy,...,vs}). Indeed, because of superlinear growth of L** at infinity, the
union of those compact convex sets intersecting B(0, M), on each of which
L** is affine, is a bounded set.

Therefore, for any z, € { we can isolate extremum points v;, i € {1,...,q},

of a compact convex set such that vy, ..., v, € B(0, My), Dug(zo) € int co{vy, ..

and M;0L(v;) # 0. Let w, be functions from (1.2) with F = Dugy(zo). By
Lemma 3.2 we have that for all s > 0 sufficiently small the function

¢s = Uo(IQ) + <DUQ($0), .- l‘o) + ws(- - III())
has properties:
¢s < ug, T € To + Pyja, ¢ > Uy, T € 1o + 0Py,

where P; = {z € R™ : max<i<q(vi — Duo(zo), z) < s}.
Hence, we can define a perturbation u; of ug as follows:

ur =g, Z € (Q\ {zo + Pas}), uy =min{ds,up} — otherwise.
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