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ON CARDINALITIES IN QUOTIENTS OF INVERSE LIMITS OF
GROUPS

SAHARON SHELAH AND RAMI GROSSBERG

ABSTRACT. Let A be Ko or a strong limit of cofinality No. Suppose that
(Gm,7Tm,n : m < n < u) and ( # m , 7 i 4 n : m < n < u) are
projective systems of groups of cardinality less than A and suppose that
for every n < LJ there is a homorphism o : Hn -» Gn such that all the
diagrams commute.

If for every \i < A there exists (fi £ Gu : i < fj) such that
i ^ j => fif~l £ (Tu(Hu) then there exists (fi G G^ : i < 2A) such

1

1. INTRODUCTION

The main result of this paper was motivated by our interest in the
structure of the group Extp(G, Z) for G abelian torsion free. For basic
results about the structure of Ext(G, Z) the reader is refered to sections 47
and 52 of Laszlo Fuchs book [Fu], however all we need is Definition ??
below. Since Shelah's proof of the independence of Whitehead's problem
of ZFC (see [Sh 44]) much was done since that paper, for a summary see
the introduction to [GrSh] and Chapter XII of Eklof & Mekler's book is
dedicated ([EK]) to the structure of Ext.

In [GrSh] we have dealt with the cardinality of Extp(G, Z). The
main Theorem of [GrSh] states that for a strong limit A of cofinality Ko for
every torsion free G of cardinality A either

\Extp{G, Z)| < A or \Extp{G, Z)| = 2A.

In section 2 of [GrSh] we indicated that the proof of the main the-
orem can be adapted to give a result concerning cardinalities of inverse
systems of abelian groups subject to certain conditions (See Theorem 1.1
below). We did not include a proof there. Recently we were asked to supply
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2 SAHARON SHELAH AND RAMI GROSSBERG

a complete proof to that theorem. Charles Megibben in a widely circulated
preprint [Me] (which to our knowledge did not appear yet in print) even
claimed that he proved a result that contradicts Theorem 1.1.

The aim of this paper is to present a complete proof of Theorem 1.1
below.

Notice that we do not make any assumptions on the groups, in par-
ticular the groups need not be commutative and can be even locally finite.
See more on the subject in [Sh 664].

Theorem 1.1. [The Main Theorem] Suppose A is No or it is strong limit
cardinal ofcofinality No.

(1) Let (Gm^m^n : m < n < cu) be an inverse system of groups of
cardinality less than A whose inverse limit is G^ with iTn^ such that
\Gn\ < A. (i^m^n is a homomorphism from Gm to Gn, a < /3 < 7 <
u =^ Kafi o 7T/?J7 = TTQ)7 and TTQ)Q is the identity).

(2) Let I be a finite index set. Suppose that for every t G I, (H^, ^ n
 :

m < n < UJ) is an inverse system of groups of cardinality less than A
and Hl

u with 7r^w be the corresponding inverse limit.
(3) Let for every t g l , ^ : Hl

n —>> Gn be a homomorphism such that all
diagrams commute (i.e. 7rm>n o <r£ = a^ o 7?^ for m <n <u), and
let a^ be the induced homomorphism from H^ into Gw.

Assume that for every // < A there is a sequence (fi G G^ : i < /i)
such that for i / j and t G I => fifj"1 £ Rang(al). Then there is
(fi G Go, : z < 2A) such thati / j andtel=> fofr1 £ Rang(al).

Notation 1,2. Since A has cofinality No we can fix Xn < A forn < u such
that A = J2n<u; ^n, for all n < u,\n is regular and 2An < An+i < A and

Denote by eGot, eHta the unit elements. Without loss of generality the
groups are pairwise disjoint.

Definition 1.3. (1) For a < u let Ha = JJtei H« a n d H<« = Up<a
 HP>

(2) For g e HQ let lev(p) = a, for g e Hl
a let lev(p) = a (without loss

of generality this is well defined).
(3) Fora < p < u,g G H\ let ^ \ H*a = ir^g) and we say 5 \ H^ is

below g and g is above g \ Hl
a or extend g \ Hl

a.
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(4) For a < p < u, f G Gp let / \ Ga = TTQ)/3(/).

We will now introduce the rank function used in the proof of Theo-
rem 1.1, it is a measure for the possibility to extend functions in Lemma 1.7
we show that it is an ultrametric valuation.

Definition 1.4. (1) For g G Hl
n,f G Gu we say that (#, / ) is a nice

t-pair if <J*(0) = / \Gn.
(2) Define a ranking function rkt(#, / ) for any nice t-pair. First by in-

duction on the ordinal a (we can fix / G G^), we define when
vkt(g, f) > a simultaneously for all n < u and every g G El

n

(a) rkt(g, / ) > 0 iff (#, / ) is a nice t-pair
(b) rkf(<7, / ) > 5 for a limit ordinal 8 iff for every (3 < 5 we have

Mg,f)>P
(c) rkt(g, f) > 0 + 1 iff (g, f) is a nice i-pair, and letting n = lev(#)

there exists g' € H^+1 extending g such that rkt(g', f)>fi
(d) rk f (<7 , / )> - l .

(3) For a an ordinal or —1 (stipulating — 1 < a < oo for any ordinal a)
we have rk*(#, f) = a iff rk*(#, f)>a and it is false that rk*(#, / ) >
a + 1.

(4) rkj(p, f) = oo iff for every ordinal a we have rkt(g, / ) > a.

The following two claims give the principal properties of vkt(g, / ) .

Claim 1.5. Let (g, f) be a nice t-pair.

(1) The following statements are equivalent:
(a) rkt(gj) = oo
(b) there exists g' G Hl

u extending g such that (J^g1) = / .
(2) Ifrkt(g, f) < oo, then rkt{g, f) < A+.
(3) If g1 is a proper extension ofg and (gl\ f) is also a nice t-pair then

(a) rkttfj) < rkt(gj)and
(b) ifO < rkt(g, f) < oo then the inequality is strict.

Proof (1) (a) => (b): Let n be such that g e H^. It is enough to define
gk G Hi for k < UJ, k > n such that

(i) 9n = 9
(ii) gk is below gk+x that is ̂  fc+1(^+i) = gk and

(iii) r k t ^ + i , / ) = oo:
Let g1 := lu^gk it is as required. The definition is by induction on

k > n. For k = n let g0 = g. For k > n, suppose p* is defined. By
(iii) we have rkt(gk, f) = oo, hence there exists 5* G Hl+1 extending
gk such that rkt(^*, / ) = 00, and let gk+x := 5*.
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(6) => (a): Since g is below p', it is enough to prove by induc-
tion on a that for every k > n when gk '.= gf \ Hl

k we have that
rkt{gj) >a.

For a — 0, since cr*,(#') = / f Gn clearly for every k we have
ai(9k) = f \ Gk so (#*, / ) is a nice £-pair.

For limit a, by the induction hypothesis for every /3 < a and every
k we have rkt(gk, f) > /?, hence by Definition 1.4(2)(b), rkt(gki f) >
a.

For a = P + 1, by the induction hypothesis for every k > n we
have rkt(gk, f) > P- Let k0 > n be given. Since #£0 is below gko+x

and rki(^0 + i , / ) > /?, Definition 1.4(2)(c) implies that rk t(^0 , / ) >
/3 + 1; i.e. for every fc>nwe have rk t(^5 / ) > ot. So we are done.

(2) Let g e Hl
n and / G G^ be given. It is enough to prove that if

xkt(g, f) > A+ then rkt(g, f) = oo. Using part (1) it is enough to
find g! G H^ such that g is below ^' and / = c^(#')-

We define by induction on k < u, gk G i?^+fc such that gk is below
^jt+i and rkt(<7A;5 / ) > A+. For k = 0 let gk = g. For A; + 1, for
every a < A+, as rkt(gk, f) > a by 1.4(2)(c) there is gk%a G 6rn+ib+i
extending gk such that rk t(^>Q, / ) > a. But the number of possible
9k,a is < |i^+jb+1 | < 2An+fc+1 < A+ hence there are a function ^ and
a set 5 C A+ of cardinality A+ such that a G S => gk,a = p. Now
take ^+1 = g.

(3) Immediate. Di.5

Lemma 1.6. (1) Let (g, f) be a nice t-pair. Then we have rk(g, f) <
rk{g-\rl).

(2) For every nice t-pair (g, f) we have rk(g, / ) = rk(g x, / x).

Proof. (1) By induction on a prove that vk(g,f) > a => rk^"1 , /""1) >
a (see more details in Lemma 1.7).

(2) Apply part (1) twice. n L 6

In the following lemma we show that the rank is indeed ultrametric
(ordinal valued).

Lemma 1.7. Let n < u be fixed, and let (gu / i ) , (p2, J2) be nice t-pairs
with gieHi

n(e= 1,2).

(1) If(gu / i ) and (g2, {2) are t-nice pairs, then (g1g2, / i / 2 ) is a nice pair
andrkt(gl92j fj2) > Min{rkt(g£, ft):£= 1, 2}.

(2) Let n, (fugi) and (/2, p2) ^ ^ ^ v e . Ifrkt(gu fx) ^ r^(^2 , /2),
then r k t ( g i g 2 j f j 2 ) = M i n { r k t ( g i i f e ) : i = 1 , 2 } .
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Proof. (1) It is easy to show that the pair is t-nice. We show by induc-
tion on a simultaneously for all n < UJ and every gu g2 G H^ that
Min{rk(p/, ft):£ = 1,2} > a implies that rk(gxg2, / i / 2 ) > a.

When a = 0 or a is a limit ordinal this is easy. Suppose a = /? + 1
and that rk(ge, ft) > /3 +1; by the definition of rank for £ = 1,2 there
exists p£ G #n+i extending ^ such that (g[, /^) is a nice pair and
rk$(<7j,/*) > /?. By the induction assumption rkt(^p2^/1/2) > /?•
Hence ( / ^ is as required in the definition of rkt(gig2, /1/2) > P + 1 .

(2) Suppose without loss of generality that rk(gufi) < vk(g2, f2), let
ai = rk(p i , / i )andle ta 2 = rkt(^2, J2). Bypart(l),rk t(5ip2,/i/2)
a i , by Proposition 1.6, rkt(g2

l, f2
l) — a2 > ot\. So we have

oil = rkt(gufi)= rkt(gig2g2\fif2f2
l)

> ^ 1

Hence the conclusion follows. Di.7

Definition 1.8. (1) Let /i < A and let a = (at : i G I) where o^ is
an ordinal less or equal to A+. We say that / = (fa : i < JJ) fi-
exemplifies a G Fn (or / is a ̂ -witness for a G Tn) iff
(a) fi G Gu and U \ Gn = eGn

(b) for z 7̂  j and f G l w e have rkt(e#*, fifj1) < <*t (possibly is
-1 ) .

(2) Let

Fn = < a : a = (at : t G I), a* an ordinal < A+,

and for every // < A there is a sequence (/» : i < fi)

which ^-exemplifies a G Fn >.

(3) An =. {a G Tn : for no /? we have P e TnJ < a (i.e. AtGJn ^ ^
at) and/? 7̂  a } .

Claim 1.9. (1) Tn w AZÔ  empty.
(2) An w «o^ empty in fact (Va G rn)(3/5 G An)(/? < a).

(1) Let a* = sup{rkt(^, / ) + 1 : g G Hl
n, f G Gw and rkt(p, / ) <

oo}, by 1.5(2), this is a supremum on a set of ordinals < A+ (as
- 1 + 1 = 0) hence is an ordinal < A4". So (aj : t G I) is as required.

(2) If not, then choose by induction on £ < u a sequence (3e G Fn such
that (3° = a, ̂ £ + 1 < (3e, (3e+l ^ /?£. So for each i G I, the sequence
{Pi : £ < UJ) is a non-increasing sequence of ordinals hence is even-
tually constant, say for some £t < UJ we have £ G [^, CJ) => /?f = A£t

?
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so as I is finite, £(*) = max{£t : t G 1} < u, so £'<*) - ^(*)+ 1 , a
contradiction. Di.g

Claim 1.10. (1) # > < //' a/id (fi : i < p'), tf-exemplify a G Fn a/w/
/i : // —>• //' is one to one, then (fh{%) : i < A*), fi-exemplifies a G F n .

(2) If(fi : i < //), ̂ exemplify a G Fn flfirf fi \ Gn+i = f for i < //,
then {fifo1 : i < //), fi-exemplify a G Fn + i .

(3) If a G Fn, /Ae« a G Fn_+i.
(4) //*a G An, r/ze« ^ome (3 < a belongs to A n + i .
(5) For some n < u there is a G f]m>n An.
(6) In clause (b) of Definition 1.8(1) Tt suffices to deal with i < j .

Proof (1) Trivial.
(2) Clearly.

Clause (a):
(fiofo1) t Gn+l = a^ififo1) = (^( /OX^C/o))- 1 =

ff-l = eGn+l.
Clause (b):
For i ^ j and £ € I, note that

so we can use the assumption.
(3) So let \i < A and we should find a //-witness for o: G Fn + i . We

can choose fi' such that // x |Crn+i| < \J < A. As a G Fn , clearly
there is a //'-witness (/; : i < //') for it. Now the number of possible
fi \ Gn+i i s< |Gn + i | (really) even < |Rang(7rn+ijU;)n Ker(7rn?n+1)|)
hence for some / G Gn+i and Y C //' we have: |y | > // and
i € Y => fa r Gn+i = / . By renaming {z : z < //} C y , now
{fifo1 : i < //) is a //-witness by part (1).

(4) Follows by 1.10(2) and 1.9(2).
(5) By 1.10(3) by the well foundedness of the ordinals (as in the proof of

o
(6) Because for i < j , {fjfr1)'1 = (fif~l) and 1.6(2). D

Convention 1.11. By renaming and 1.10(4), without loss of generality a* G
An for every n.

Claim 1.12. Each a^(t G I) is a non-successor ordinal (i.e. limit or zero).

Proof Fix n < LJ.

Assume 5 G I is a counterexample. So a* = /?* + 1, /?* > 0. Let
/? = (A : i € I) be defined as follows: A is at if t ^ s and is /?* if
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t = s. We shall prove that p G F n + 1 thus getting a contradiction. So let
// < A and we shall find a //-witness for J3 G r n + i . Let / / be such that
/ / |Gn + i | < / / < A. As a* G Fn (see 1.11) there is a //-witness (fc : z < / / )
for a* G F n , as earlier without loss of generality i < \i => /» f Gn+i = /
for some / . We shall prove that {fif^1 : i < /x) is a //-witness for /? G Fn+i.

1

Clause (a):

/ ' f Gn+1 = (fofo1) \ Gn+l = eGn+1 because /,- \ G n + 1 = / 0 \

Clause (b):

Let i^j<fji.Ifte l\{s} then

n^ mfj)-1) = rkf(eGn+1, fjr
1) < vkt(eGnJJ-1) < «• = ft.

(Why? By group theory, by 1.5(3)(a), by choice of/ , by choice of /3t9

respectively).

If t = s, then rkt(eGn JJ-1) < rk,(eGn+1, frfr*) by 1.5(3)(/?),
and proceed as above. D1.12

Notation 1.13. For a < u let Ta := n f c < Q
 A ^^ r : = Tln<u, Tn (note: tree-

ness used).

Claim 1.14. There arefor n < u, a sequence {fn^ : i < Xn) and an ordinal
In < at (at ^ *he ordinal from 1.11) such that

(1) fn,i e Gw,/n,i F Gn+i = eGn+l for alii < \n;
(2) ybr e«c/z t G iy^r every h € H^ and i < j < Xn we have:

(3) rkt(eHtn, fn,ifnj) > ti-i
andj^ > 0 ̂  rkt(eH^fn,ifnj) > 7n-i

(4) 7n-i < 7n '/«? > 0 andri = - 1 i/at« = 0.

We delay the rest of proof for a while.

Convention 1.15. Let T£, #„,* (n < a>, i < An) be as in 1.14.

Definition 1.16. We set /,, = ^ - 1 , ^ - 1 ) ^ - 2 , ^ - 2 ) . . . 00,1,(0) for V € Tn.
Then define /,, for rj e Tw as follows: fv is the element of Gu satisfying
In \ Gn = f^n. It is well defined by:
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Fact 1.17. (1) For r) G T^ and m < n < u we have

fr)\n \ Gn+i — frjim \ Gn+\.

(2) For 7] G Tu we have /^ G Gu is well defined (as the inverse limit of
{frtn \ Gn : n < u), so n < u -> fv \ Gn = f^n.

Proof (1) As iTn^ is a homomorphism it is enough to prove
ifvlnifrtm)'1) \ Gn+i = eGn+1, hence it is enough to prove
n < k < UJ => (ffi\kf^\k+i)) \ Gn+i = eGn+1 which follows from
k < u => fv\kf^\k+i) \ Gk+i = eGfc+1, which means
fkrtk) \ Gk+i = eGk+l which holds by clause (a) of 1.11.

(2) Follows by part (1) and G^ being an inverse limit. Do7

Proposition 1.18. Letr], v G Tw. Ifrj / uandt G I, then f^f'1 <£ al(Hl).

Proof Suppose for the sake of contradiction that for some g G #£ we have
oiig) = Uf-1.

Let A; be minimal such that 77 \ k = v \ k, rj(k) ^ u(k), without loss
of generality t}(k) < v{k). For £ > k l e t^berk t (y r ^»Ar«+i)/^(/+i))-
We will reach a contradiction by showing that £ > k =$• 0 < £e < il and

I > k =• it+l < ?.

Note

(*)x if I < a < u, then xkt(g \ H\, f^af^a) > 0 as a\(g \ H\) = a\g) \

For £ = k, we show that £* < 7^. Let i = rj[k],j = v[k\. By
the choice of k,i ^ j . In this case fr,\(t+i)f~t\e+1) = fk,r,(k)fk,l(k) hy t h e

minimality of A; and, of course, fk,n(k)fk,l(k) ~ fk,%fk]> hence ^fc = rkt(g \
Hi fk,ifk~]) < Ik by clause (b) of 1.14. Note: if a* = 0, then 7^ = - 1
for m < to hence £k = - 1 , but (Z^/,71) \ Gk = (fr,\{k+i)f^\k+i)) f Gk
immediate contradiction. So assume a*t > 0 hence 0 < 7^ < ^

Now we proceed inductively. We assume that f * < (* and show that
m < Ze. Let i = v[£+l],j = v[£ + 1], and let
= rkt{g \ H*t+l, ftfv+i)f^\e+l)). Observe:

(*)2 C < Mg r Hl,fvmi)f-\t+l)) = e [why? by 1.5(3) and (*)x

above.]

So
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( * ) 3 e + l = Mg \ H ^ ^

Now:

(*)4 rkt(eHt+i, / m j 7 ? ( m ) ) > 7^ (why? by clause (c) of 1.14)
+i

(*)5 vkt(g \ fl*+ll / , r ( , + 1 ) /^ + 1 ) ) = ^ < £* < 7£ < 71
(why? the equality by the definition of £e, the first inequality by the induc-
tion hypothesis and the second inequality was proved above (for I = k), the
last inequality by 1.14 clause (d)

(*)6 rkt(eHt+i, gi+i^t+i)) > i\ (why? by clause (c) of 1.14).

Hence by 1.5(3)

(*)7 rkt(eHt^(g \ H\+l)eHt^ //+i,»

Together we get the induction demand for I + 1. DL18

Before proving 1.14 and finishing we prove

Claim 1.19. Assume - 1 < (3t < a\fort G I and n < cu and /J, < A. Then
we can find (/,- : i < /i) swc/z

(1) fie
(2) te
(3) telandi</i=

Proof For each s G l w e define /?5 = (/?/ : t G /} by:

= (at ift ^ s
fit ift = 8

So ps < a*, /3s ^ a*, so as a* G xn<a;Ar?l necessarily j3s <£ p n , hence for
some //5 < A there is no //-witness for /?5 and n (check the definition of

r«).
Let Hi < A be > /i + max{/^s : s e I}.
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Let x < A be large enough (so that it will be possible to use the
finite Ramsey theorem when A = Ko and when A > tt0 the Erdos Rado
theorem we require that \ ~> (^1)0 where 9 — 2 ^ 'H«').

Let (fi : i < x) t>e a X"w i t n e s s « e r n and even a 6 F n + 1 . For
each t € I,h e H^ define the two place function Ftth from [x]2 to {0,1}
for i < j < x let

1 Otherwise.

Define the two-place function F from [x]2: For i < j < x let

F{i , j} = ( F t > f c ( t , j ) : * G l ^ G ^ > -

Clearly |Rang(F) | < 2 ^ t l ^ l .

Hence an application of one of the above partition theorems pro-
vides us with a set Y C x, \Y\ — \i\ such that F \ [Y]2 is constant. Without
loss of generality Y = /xi.

For each 5 e I, clearly (/i/o"1 : i < /is) is not a ^-witness
for ^ s , but the only thing that may go wrong is the inequality, i < j <
jis => rk5(e^«, fifj~l) < A?, so for some i < j < ns we have that
rk,(e/y*, /i/j"1) > /?s holds, hence

(*) s € I and i < j < ^ => rk5(e#,

This means clause (b) holds and clause (a) by definition of (/» : i <
x) is a x-witness for a G Fn . Clause (c) follows. So (/* : i < fj) is as
required. Di.i9

Proof of 1.14

Stipulate 7 ^ : if o£ > 0 it is 0, otherwise is it - 1 . Assume n < co
and (7^_x : t G I) is well defined, 7^_x < a j . Let 7^* be: 7n-i + ! i f a i i s

a limit ordinal and 7^_1 = - 1 otherwise (i.e. 0% = 0, see 1.12). Note that
to construct the family {fnyi : i < Xn} we will combine Claim 1.19 with a
second application of the Erdos Rado Theorem.

Let 9 = (2 | / /^ | x |^1) x |I| and x < A be such that x -> (An + 2)3
e

(exists by Ramsey theorem if A = Ko and by Erdos Rado theorem if A >
Ko). Apply Claim 1.19 to get a family {fi : i < x] satisfying:

(1) fi f G n + i = e G n + 1 ,
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(2) for i^jandte I, we have 7 ^ < Tkt(eHk, fifr1) < a*t.

For t € 1,9 = (91,92), 0i, 02 € H^ such that a^g) = eGn define a
coloring Ft>g of [/]3 by two colors according to the following scheme: for
£ < C < f < X, let

if ^fa'fuft1)^
. f l k t G / l i / i t /- i)

By the Ramsey theorem (if A = No)
 o r Erdos Rado Theorem if A > No

there is a set J C x, otp( J) = An + 2 such that each coloring is constant
on [J]3. Let the value of F ^ on [J]3 be denoted ctg. Observe that cttg is
never green as this would produce a descending a;-sequence of ordinals as
if ei e J,s£ < ei+l for t < u, then rkt(#, fej'l,) > &t(9, fe£+J£~el2)> so
(rkt(g, f£2ifr2

l
i+1)

 : i < u)is strictly decreasing.

Let e(*) = Min( J) and Jo = {e G J : otp(e: f l J ) < A} and
a is the An-th member of J, /? the (An + l)-th member of J and let 7^ =
±t(eHtn,fafp

l), by clause (b) above 7^* < jl
n < a? so a* = 0 =» 7* =

- l a n d at* > 0 => ^n_x < 7*.

We claim that {fif~^ : i e Jo} (remember Jo C J, | Jo | = An)
provides a set that can play the role of {fn^ : i < An}. We note

(*)i rk^(p, Z,/"1) < 7t
n for e < C in Jo [why? clearly a < (3 < e < C

are in J hence by the choice of J we have rkt(g, fef^1) < vkt(g,

Now clauses (1), (4) of 1.14 holds by clause (1) above, clause (3) of
1.14 holds by (*)i and clause (4) of 1.14 holds by the choice of the 7t*. We
are left with clause (2). Let h e Hl

n, as above clearly for T < £ < £ < £ in
J we have rkt(h, fef^1) < rkt(h, faff1). Hence for Ye < £ < £ in Jo we
have
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So giving also clause (2) of 1.14. DI .H DL 1

Remark 1.20. The result about the cardinality of Extp(G, Z) can be de-
rived from Theorem 1.1 using the following definition (which constructs an
isomorphic group ot Extp(G, Z)).

Definition 1.21. Given an abelian group G, let G* := Hom(G, Z) and
for a prime p denote by Gp the group Hom(G, Z/pZ). For g e G* let
g H-> g/p be the natural homomorphism from G* into Gp. By G*/p denote
the subgroup of Gp which is the image ofG*/p under g »-» g/p. Finally

Extp{G,Z):=Gp/{G*/p).

Recall that when A is Ho or strong limit of cofinality Ko then AKo =
2 \

The group H^ corresponde to the subgroup G* /p and the a's are
inclusions.

We have learned from Paul Eklof that Christian U. Jensen in his
book [Jen] have a proof of Theorem 1.0 of [GrSh] for the case that A = No.
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