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Introduction
The set theoretic connection between functions and

partitions is not worthy of further remark. Nevertheless,
this connection turns out to have deep consequences for the
theory of the Ershov numbering of lambda terms and thus
for the connection between lambda calculus and classical
recursion theory. Under the traditional understanding of
lambda terms as function definitions , there are morphisms
of
the Ershov numbering of lambda terms which are not
definable.
This appears to be a serious incompleteness in the lambda
calculus. However, we believe, instead, that this
indefinability
is a defect in our understanding of the functional nature of
lambda terms. Below, for a different notion of lambda
definition,
we shall prove a representation theorem (completeness
theorem)
for morphisms. This theorem is based on a construction
which
realizes certain partitions as collections of fibers of
morphisms
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defined by lambda terms In the classical sense of definition.
Our notion of definition begins with a Curried context F

and
ends with another G. We think of a combinator M printed in
the
righthand part of our screen and F printed in the lefthand
part

FM
We convert this screen to others by beta conversion and we
ask
which screens of the form

GN
will appear. We also ask whether this relationship between
Mand
N is functional (modulo conversion). When this relationship
is
functional we obviously have an Ershov morphism. We shall
show
that every morphism can be represented in this way.

We shall also present a number of related results about
morphisms and partitions.
Preliminaries

For notation and terminology concerning lambda calculus
we refer the reader to Barendregt [1]. For terminology and
notation conerning recursion theory we refer the reader to
Rogers [2] especially for the notions of e-reducibility and
e-degree. In addition, for a discussion of DRE sets
(Difference
of RE sets sets) the reader should see Soare [3].
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A combinator is a closed lambda term. A V-set Is a set
of
combinators which is both recursively enumerable and
closed
under beta conversion. We have elsewhere called these sets
"Visseral" ([5]) and HVarieties"([4]) hence the name
"V-set11.
# is the Godel numbering of combinators from Barendregt
[1]
page 143. If X is a V-set then #X = { #M : M e X }.
M = (X,M) is the Ershov numbering introduced by Albert
Visser in [7] 1.6. Here M is the set of equivalence classes
of
combinators under the equivalence relation of beta
conversion
and X: N -> M satisfying X(#M) = (M/=(3). A partial function

M -> M is said to be a partial morphism if there is a partial
recursive function <|> with dom((|)) = { #M : M/=(3 e dom(n) }
such that the diagram

JLl X <|) X
M <- M <- N -> N -> M

commutes. The relation ~M is defined by
#M ~M #N <=> M =p N.

Given a V-set X a partition P of X is said to be V if the
blocks of P are V-sets. Given a V-partition P of X, a set
of natural
numbers is said to be a (multi-) representation of P if it
contains
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(at least) exactly one RE index for each block of P and
nothing
else. P is said to be RE if it has an RE multi-representation
and
p is said to be recursive if it has a recursive
representation.
The V-partitions of X form a lower semi-lattice whose
meet
operation is the usual meet in the lattice of partitions. The
largest
element in the semi-lattice is {X} here denoted ' 1 ' and the
smallest element is { M/=p : M e X } here denoted '01. When
0
is the subject of concern it is convenient to talk about
systems
of distinct representatives (SDR's) instead of
representations.
Indeed, for each representation R of 0 there is an SDR of <
e-degree obtained by taking the first member in the domain
of
{e} for each e in R . Similarly for each SDR S of 0 there is
a
representation of <. e-degree obtained by taking an index for
the
function which converges on precisely those N such that
N =p M, for each M e S . We define the degree of X, deg(X

to be the infinum of the e-degrees of the SDR's of 0, if this
exists.
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Morphisms
If you read Visser's paper [7] carefully you learn

enough to
prove the following.
Theorem 1 (Visser fixed point theorem): Suppose that S is
an

RE set, X is a V-set not including all combinators,
and G is any combinator. Then
there exists a combinator F such that

G#F a if n e S
Fn =p {

does not belong to X otherwise.
Proof: Let E be the Kleene enumerator constructed in [1]
page
167. Let O be the usual partial recursive enumeration of
the
partial recursive functions of one variable so that if $ has
index e then O(e,x) = §(x). By Visser's theorem [7] 1.6.1.1
there exists a total recursive function \\f such that
whenever
O(x,x) converges we have O(x,x) ~M \j/(x). Now let ty be
partial
recursive with index e. Kleene proved ([1]) that there is a
combinator F such that

c|)(n) if c|)(n) converges
Fn=p{

a term with no normal form else
Now the map e l-> #F is total recursive and thus has an
index
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i. This i Is also mapped to a combinator F here denoted 'J\.
Thus
for any e and F with e l-> #F we have E(Je) =p F. We shall
also
use the following notation 'M' = #M a few times. Now define
the
total recursive a by a(x,y) = #G ' \z. E(E(Jx) z) ' y and
define the
partial recursive <|> by

a(x,y) if yeS before \j/(z)e #X
in some given enumerations of S

andX
<Kx,y,z) = {

k if y(z)eX before yeS
for k any natural number not in #X . By the S(m,n) theorem
([2])
there exitsts a total recursive £ such that <|)(x,y,z) =

Let £(x,y) = v(£(x>y))- We observe that
yeS => c|)(x,y^(x,y)) converges => C(x,y) ~M <|)(x,y,£(x,y,))

cc(x,y)
~(yeS ) => c|)(x,y,^(x,y)) diverges => £(x,y) does not belong
to #X.
Now by the recursion theorem there exists an e such that
£(e,y) = O(e,y). We now set F = \z. E(E(Je)z) and we claim
that this is the desired combinator. Suppose first that yeS
•

We have



O(e,y) = £(e,y) ~M a(e,y) so
EO(e.y) =p Ea(e.y) and
E(E(Je)y) =p G ' \z.E(E(Je) z) ' y thus
Fy=pG#Fy .
On the other hand If ~(yeS ) then
O(e,y) = C(e>y) which does not belong to #X , so
Fy =p E(E(Je)y) =p EO(e.y) which does not belong to X .
This completes the proof.
Theorem 2 (morphism extension): Suppose that \i is a
partial

morphism and X is a V-set. Then there exists a
total

morphism v extending jx such that if M/=p does not
belong to dom(n) then v(M/=p) is disjoint from X .

Proof: Suppose that \i and X are given together with the
partial
recursive function $ which makes the morphism diagram
com-
mute. Now we can construct a combinator H such that

Ex#N if N =p M & #N < #M & N is the
f i rs t

such found in some enumeration
of

Hx#M =p { the beta converts of M
E(|)(#M) if <|)(#M) converges before

such N is
found.

Where E is the Kleene enumerator constructed in [1] page
167.
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Thus by the Visser fixed point theorem there exists a
combinator
F such that

H#F #M if there exists N =p M with #N
<#M

F#M =P { or c|)(#M) converges
does not belong to X otherwise.

Finally let \j/ be defined by \j/(#M) = #F#M- Clearly y is a
total
recursive function. Moreover it is easy to see that
(1) if M =p N then y(#M) ~M y(#N)
(2) if (K#M) converges then (|>(#M) ~M \|/(#M).
(3) if (|)(#M) diverges then A,(\j/(#M)) does not belong to X .
Thus there is a total morphism v with the desired
properties
which makes the above diagram commute for \j/.
End of proof.

Each combinator M induces a morphism via the
recursive
map #N l-> #MN. However, there are morphisms not induced
by such combinator application. For example, take a left
invertible
combinator such as C* = \xy.yx with left inverse C*l.
Given X
define X+ by
x+ = x
(XY)+ = C*I(X+)(Y+)
(\x.X)+ = C*(\x.(X+)).
Then the map M l-> M+ induces a morphism which is not
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induced
by combinator application ( just assume that FQ. =p Q+).
Theorem 3 (morphism representation): Suppose that \i is a
morph-

ism. Then there exist combinators F and G such
that for

any M and N we have
H.(M/=p) = (N/=p) <=> FM=pGN.

Proof: We shall actually prove a stronger result. Suppose
that P
is an RE V-partition of the V-set X . We shall construct a
comb-
inator H such that HM =p HN <=> M =p N v M and N belong to
the
same block of P (and thus belong to X). Given this we get
the
theorem as follows. Suppose that \i is given. Let X = {
<0,M> :
all combinators M } U { <1,N> : N/=p e rng((x) } and let P =
{ { <Q,M> : n-(M/=p) = (N/=p) } U {< 1_,N> } : for all N/=p e
rng(|x) } where <,> is the pairing function in [1 ] pg 133.
Then P is RE.
Given H as above we set F = \x. H<0,x> and G = \x.H<l,x>.
Now
FM =p GN <=> H<O,M> =p H<1,N> <=> <0,M> and <i,N> belong
to
the same block of P <=> |i(M/=p) = (N/=p).

Suppose now that X and P are given. Fix an RE
represent-
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ation of P . By Kleene's enumerator construction ([1] pg
167)
there exists a combinator E such that
E (2r+1)*(2As) =p the s-th member of the r-th block of P
where of course the same block of P may occur many
times
in the enumeration because P is only assumed to be RE. We
make
the following definitions; let a be a new free variable
S_= \xyz. y(xyz)
T =. \xyz. xy(xyz)
Y = (\xy. y(xxy))(\xy. y(xxy))
A = \fgxyz. fx(a(Ex))[f(Sx)y(g(Sx))z]
B = \fgx. f(Sx)(a(E(Ix))(g(S))(gx)
G = Y(\u. B(Y(\v.Auv))u)
F = Y(\u. AuG)
H = \xa. Fl(ax)(Gl).
We now calculate for k>0
H(Ek) -> \a. Fl(a(Ek))(Gl) - » \a.
Fl(a(El))[F2(a(Ek))(G2)(Gl)]

\a.Fl(a(El))(F2(a(E2))(...Fk1l(a(Ek1l))[Fk(a(Ek))(Gk)(Gkil

\a.
Fl(a(El))(F2(a(E2))(...FkIl(a(Ek1l))[Fk
(a(Ek))[Fk±l(a(E(I k))(Gk±l)(Gk)](GkJ_)]...)(G2))(Gl) -
\a. F1 (a(E1 ))(F2(a(E2))(...Fk-1 (a(Ek-1 ))[Fk (a(Ek))[Fk+1
(a(E(2k))(Gk±l)(Gk)](Gkzl)]...)(G2))(Gl) « - H(E2k).
Thus we conclude that if M and N belong to the same block of
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p
then HM =p HN. Next we prove that if HM =p HN then either
M=p
N or M and N belong to the same block of P . Suppose that
Fk(aM)(Gk) =p Fk(aN)(Gk). Then by the Church-Rosser and
standardization theorems there exists a common reduct Z
and
standard reductions M : Fk(aM)(Gk) - » Z and N :
Fk(aN)(Gk)
- » Z. The proof is by induction on the sum of the lengths of
these standard reduction sequences. The following facts
about
the definitions are easy to verify and will be used below.
(1) Fxyz is an oreder zero unsolvable
(2) \xy. y(xxy) =/=p A
(3) Y =/=p \u. AuG
(4) Y =/=p AF
(5) \u. AuG =/=p AF.
Basis; the sum of the lengths of the reductions is 0.
In this case it is clear that M =p N.
Induction step; the sum of the lengths is say r > 0.
For any term X the head reduction of Fk(aX)(Gk) cycles
through
segments which are 8 terms long viz;
Fk(aX)Y = Y(\u.AuG)k(aX)Y ->
(\x.x(Yx))(\u.AuG)k(aX)Y ->
(\u.AuG)Fk(aX)Y ->
AFGk(aX)Y ->
(\gxyx.Fx(a(Ex))[F(Sx)y(g(S))z])Gk(aX)Y ->
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(\xyz.Fx(a(Ex))[F(Sx)y(G(Sx))z])k(aX)Y ->
(\yz.Fk(a(Ek))[F(S k)y(G(S k))z])(aX)Y ->
(\z.Fk(a(Ek))[F(S k)(aX)(G(S k))z])Y ->
Fk(a(Ek))[F(Sk)(aX)(G(Sk))Y]
where Ek becomes the new X and F(S k)(aX)(G(S k))Y
becomes
the new Y. First observe that the head reduction parts of M
and N cannot terminate at different spots in the 8 term
cycle.
This can be seen by tracing the position of aX, which is the
only
component with a head normal form beginning with a. The
positions of aX are resp 5,4,4,5,3,2, and finally not a
component
at all. Only like positions can match up by internal
reductions
by facts 2,3,4, and 5. If neither M nor N completes the
f i rs t
full 8 term cycle then clearly M =p N except possibly in the
8th
case. In the 8th case we have standard reductions from
Fk(a(Ek))[F(S k)(aM)(G(S k))z] and Fk(a(Ek))[F(S k)(aN)(G(S
k))z]
to a common reduct. The sum of the lengths of these
reductions
is < r. By the above analysis of the 8 term cycle and fact
(D
the induction hypothesis applies to F(S k)(aM)(G(S k)) and
F(S k)(aN)(G(S k)). Thus either M =p N or M and N belong to
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the
same block of P . Thus we may assume that M completes
the
full 8 term cycle at least once and its head reduction part
ends
in a term
U((F(S k)(a(Ek))(G(S k))(...(F(S k)(a(Ek))(G(S k)))[F(S
k)(aM)

where F(S k)(a(Ek))(G(S k)) appears t > 0 times and
Fk(a(Ek))
head reduces to U in < 7 steps. We distinguish two caes.
Case 1; N does not complete the full cycle of the first 8
head
reductions. In this case the head reduction part of N ends in
V(Gk) where Fk(aN) head reduces to V in the same < 7
steps.
If the number of steps is indeed < 7 then clearly N =(3 Ek.
Suppose
then that
U= \z.Fk(a(Ek))[F(S k)(a(Ek))(G(S k))z] and
V= \z.Fk(a(Ek))[F(S k)(aN)(G(S k))z].
Then Z = Z'Z" with standard reductions of U and V to Z of
total
length < r. By our previous analysis of the 8 term cycle and
fact (1) above the induction hypothesis applies to the pair
F(S k)(a(Ek))(G(S k)) and F(S k)(aN)(G(S k)). Thus in any
case
N =p Ek. In addition the argument of U and Gk have a
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common
reduct by standard reductions whose lengths are less than
resp. M and N .Since the t+1 components of the argument
of U are of order 0, we have Z = Z0(Z1(...(Zt(ZIZ"))...) and for
i= 1,...,t
F(S k)(a(Ek))(G(S k)) - » Zi and
F(S k)(aM)(G(S k)) - » Z
all by standard reductions of length less than M. In
addition, the
head reduction of Gk begins
Gk = Y(\u.B(Y(\v.Avu))u) k ->

(\x.x(Yx))(\u.B(Y(\v.Avu))u) k->
(\u.B(Y(\v.Avu))u) G k ->
BFG k ->
(\gx.F(S x)(a(E(Ix)))(g(Sx))(gx)) G k ->
(\x.F(S x)(a(E(Ix)))(G(Sx))(Gx)) k ->
F(Sk)(a(E(Ik)))(G(Sk))(Gk)
and none of the heads of any of these terms except the last
is
of order o. Thus the head reduction part of the standard
reduc-
tion of Gk goes at least this far. Indeed, we may assume
that
t = 0 and the induction hypothesis applies to the pair
F(S k)(aM)(G(S k)) and F(S k)(a(E(I k)))(G(S k)). This
completes
the proof for case 1.
Case 2; both M and N complete the full cycle of the first 8
head reductions. W.l.o.g. we may assume that the head
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reduc-
tion part of N ends in
V((F(S k)(a(Ek))(G(S k))(...(F(S k)(a(Ek))(G(S k)))[F(S
k)(aN)

where (F(S k)(a(Ek))(G(S k)) appears s < t times,and
F(S k)(a(Ek)) head reduces to V in < 7 steps. We distinguish
two subcases.
Subcase 1; s=t. In this case, by fact (1), the induction
hypothesis
applies to the pair F(S k)(aM)(G(S k)) and F(S k)(aN)(G(S
k)).
Subcase 2; s < t. In this case, by fact (1), the induction
hypo-
thesis applies to the pair F(S k)(aN)(G(S k)) and
F(S k)(a(Ek))(G(S k)). In addition, Gk and
F(S k)(a(Ek))(G(S k))(...(F(S k)(a(Ek))(G(S k)))[(F(S
k)(aM)(G(S k))(Gk)]...) ,with t-s occurrences of F(S
k)(a(Ek))(G(Sk)),
have a common reduct by standard redution whose total
length
is < r. Here the argument of easel applies so that we may
conclude that there exists an m whose odd part is the same
as the odd part of k such that M =(3 Ek. This completes the
proof
of case 2.
End of proof.

It is interesting to note here that uniformization of the
relation defined by the equation FM =p GN cannot always be
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carried out by a morphism, For example, if F = I and G = E
then
for each M there exists N such that FM =p GN namely N =
#M
but there is no morphism which takes M/=p to the
equivalence
class of one particular #N for N =p M. For, such a morphism
would solve the beta conversion problem effectively.
Recursive partitions

When it comes to the subsemilattice of recursive V-
partitions of X it can be very small including only 1 or
very large including also 0. Our study actually began
with trying to understand the following theorem. This lead
to theorem 6 and then theorem 3.
Theorem 4 (Grzegorczyk-Scott) : The only recursive
V-partit ion

of the set of all combinators is 1.
We know 4 constructions which yield V-sets whose only
recursive
V-partition is 1. Ofcourse if X is such a V-set then the
image of
X under any morphism also has this property.
Construction 1 (direct construction by the recursion
theorem):

It is convenient to formulate this construction in terms
of the
precompleteness of the Ershov numbering. Given partial
recursive
functions <|> and \j/ define another partial recursive function
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which
matches the members of the domain of <|> to the members of
the
domain of y in the order in which they converge. By
precomplete-
ness £ "extends" to a total recursive £. Moreover the index

is a total recursive function f(x,y) of the indicies of <|> and
¥• By
the Ershov fixed point theorem there exists a z = g(x,y)

• which
is a fixed point of £ i.e. z ~M £(z). Now if we let X be the
smallest
V-set such that #M e dom(c|>) => M eX, Y the smallest V-
set such that #M e dom(\|/) => M eY, and #M = g(x,y), then
Me Union(X, Y) => M e Intersect ion^, /) . In other words
g
is a productive function for V-sets. In addition there is a
well
known total recursive function h(x,y) which gives the index
of

- a partial recursive function whose domain is the
intersection
of the domains of {x} and {y}. Finally let j(x) be the index of
the
RE set { g(h(x,y),h(x,z)) : all natural numbers y,z }. By the
recursion theorem there exists an index e such that W(e) =
W(j(e)). It is easy to verify that the beta conversion closure
of
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{ M : #M e W(e) } cannot be partitioned into two RE blocks
which respect beta conversion. It is not clear to us exactly
when this construction yields the set of all combinators. We
leave this question open.
Construction 2 (the Grzegorczyk-Scott construction):

This construction uses the fixed point theorem. We
suppose
that we have a partition { X, Y } with M e X and N e Y.
We define a
total recursive 4 by LeX => <|>(#L) = #N and LeV => (|>(#L) =
#M.
Here we can use the Ershov fixed point theorem ,where
Scott and
Grzegorczyk use Kleene's representation of the recursive
functions
and the traditional fixed point theorem. There exists L such
that
<K#L) ~M #L. This contradicts the choice of the definition
Of (|).
This type of arguement applies to fragnments of lambda
calculus
suitable for representing all recursive functions such as the
lambda I calculus or the combinators hereditarily of order 2
(HOT[6]).
Construction 3 (Visser's construction):

Visser's construction begins like construction (2)
except
we do not assume that X and Y are disjoint; we assume
only
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that M e X -Y and N e Y-X . Let A and B be a pair of
recursively
inseparable sets and let A and B be the beta conversion
closure of the set Church numerals representing the
members
of A and ,resp., of B.By the precompleteness of the Ershov
numbering the partial recursive function $ defined by L e A

4>(#L) = #M and L e B => <|>(#L) = #N "extends" to a total
recursive
function \|/.lt is easy to obtain a recursive separation of A
andB
using \j/, X, and Y . Indeed Visser's arguement reachees an
apparently stronger conclusion; viz, the set of all
combinators
cannot be covered by two incomparable V-sets.
Construction 4 (a simple set construction):

Let W(e) be a simple set and let $ be the partial
morphism
defined by c|)(#M) = #1 if there exists a member of W(e) ~M
#M.
By theorem 2 there exists a total morphism % "extending" <|>,
and there exists a combinator F representing £. Consider
the V-set
Z which is the beta conversion closure of { E(F#M) : all
combin-
ators M }. Now suppose that { X, Y} is a partition of Z into
V-sets. First note that if E(F#M) eX then there are
infinitely
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many N beta convertible to M such that E(F#N) also belongs
to X and similarly for Y . Now I belongs to one of these sets
say X and let B be the set of all k such that E(Fk) e Y. Since
B
is infinite and RE it must intersect W(e) in, say, the natural
number k. But since k e W(e) we have E(Fk) =p I e X. This
is a contradiction.

0 can be recursive or not recursive. An example of the
first is X = the beta conversion closure of the set of
normal
forms. An example of the second is X = the set of all
combinators.
Indeed, an SDR for this X solves the beta conversion
problem.

If 0 is recursive then there is a clear sense in which
every
recursive partition of natural numbers yields a recursive
partition of X . The cannonical example is the beta closure
of
the Church numerals. In [3] Visser observed the following.
Theorem 5 (Visser) : If 0 is recursive then any morphism
into X

is constant.
The following theorem explains where all the RE

V-partitions
of a V-set come from. It is a corollary to the proof of
theorem 3.
Theorem 6 (partition representation theorem):

Suppose that P is an RE V-partition of the V-set
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X.
Then there exists a combinator H such that HM =p

HN
<=> M =p N v M and N belong to the same block of

P
(and thus belong to X).

Partitions of higher complexity
It turns out that the most natural notion of the

complexity of
an SDR for 0 is the notion of e-degree (partial or
enumeration
degree [2]). The following theorem characterizes those
e-degrees.
Theorem 7 (existence of deg(X)) : deg(X) exists and is the
e-degree

of a DRE SDR for 0. Moreover each DRE e-degree is
deg(X ) for some V-set X.

Proof: Given a V-set X define X * = {<M,N> : M =/= p N for
M,NeX}.
Now let S be any SDR for 0. Define the enumeration
operator O
by {<M,N,<P,Q» : P =p M & Q =p N & M =/= N }. Then O(S)
= X *.
Now fix an enumeration of X. Define a sequence M(1),
M(2)
by M(m) is the first element in the enumeration of X not =p
to
one of the M(1),...,M(m-1). This sequence forms and SDR S
for
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0. Now define the enumeration operator Y by {

<N(1),N(3)>,...,<N(n),N(n-1)>, N(n) >: N(1),...,N(n) appear in
order in an initial segment of the fixed enumeration of X
and the other members of the initial segment beta convert
to one or more of the N(i) }. Then ^(X *) = S . Thus the
e-degree of S = the e-degree of
X * which is less than or equal to the e-degree of any SDR
for 0. In addition, S is the difference of RE sets since it is
the difference of the members of the enumeration and the
members of the
enumeration that beta convert to earlier members. This
proves the first part of the theorem. To prove the second
part let A = A-B be
the difference of the RE sets A and B. By the Visser fixed
point theorem there exists a combinator F such that

Kl if n e B
Fn = {

a term of order o otherwise.
Let X be the beta conversion closure of the set { FQ Q : n a
natural
number}. Now for this X clearly 0 has an SDR consising of
{I}
union with { F n n : n e A & ~(n e B) } since by the
construction of
F no two of the latter set can beta convert. Thus deg(X) is
e-reducible to A. On the other hand, it is clear that A can be
enumerated from X *and thus deg(X) = the e-degree of A.
This completes the proof.
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