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Abstract

The existence of exact upper bounds for increasing sequences of
ordinal functions modulo an ideal is discussed. The main theorem
(Theorem 18 below) gives a necessary and sufficient condition for the
existence of an exact upper bound / for a </-increasing sequence
/ = (fa : a < A) C On^ where A > \A\~*~ is regular: an eub / with
liminf/cf/(a) = /x exists if and only if for every regular K E (|^4|,/Z)

the set of flat points in / of cofinality K is stationary.
Two applications of the main Theorem to set theory are presented

A theorem of Magidor's on covering between models of ZFC is proved
using the main theorem (Theorem 22): If V C W are transitive models
of set theory with uncovering and GCH holds in V, then /̂ -covering
holds between V and W for all cardinals K.

A new proof of a Theorem by Cummings on collapsing successors
of singulars is also given (Theorem 24).

The appendix to the paper contains a short proof of Shelah's tri-
chotomy theorem, for the reaser's convenience.
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1 Introduction
Shelah's work on Cardinal Arithmetic (see [7], [1] and [4]) introduced the
theory of possible true cofinalities of products of sets of regular cardinals
modulo an ideal and demonstrated the relevance of this theory to set theory
and other branches of mathematics in a series of applications. In this paper
the dual problem is addressed: suppose a set of ordinal functions on an infi-
nite set A has true cofinality modulo an ideal / ; is it equivalent to a product
of regular cardinals modulo the same ideal? And if so, to which product?
Since a set of functions with true cofinality modulo / is equivalent modulo
/ to a product if and only if it has an exact upper bound (see below), the
reformulation of the problem is: under which condition does a </-increasing
sequence of ordinal function on a set A have an exact upper bound.

In Section 3 below we derive the existence of an exact upper bound for a
</-increasing / , and partially determine the shape of the exact upper bound
when it exists, from information which is stored in the sequence / itself, or,
rhather, in the collection of flat points in the sequence. A flat point in / is
an initial segment of / which is equivalent modulo / to a product of sets of
ordinals of constant regular order type.

A necessary and sufficient condition for the existence of an exact upper
bound / such that liminf/cf/(a) = // is given in Theorem 18 below for a
sufficiently long </-increasing sequence of functions / C OnA where / is an
ideal over an infinite set A. The condition is: for every regular K between |J4|
and /x the indices in / of flat points of cofinality K form a stationary subset
of A.

Theorem 18 is useful for set theory. It is useful because it enables a
reconstruction of the exact upper bound — or of the product to which a given
sequence is equivalent — from the collection of flat points of the sequence;
and because the flatness of a point is preserved in extensions in which the
cofinality of the point remains greater than |J4|. TWO applications of the
main theorem in Section 4 illustrate this.

The same theorem serves also as a convenient tool in the presentation of
pcf theory (see the new version of [4]).

The paper is organized as follows. In Section 2 the main definitions
are introduced, notation is established and a few easy facts concerning true
cofinality and exact upper bounds are collected. Section 3 is devoted to
the proof of the main theorem. Section 4 presents two applications: an



unpublished theorem of Magidor and a theorem by Cummings are proved
using Theorem 18. A common feature of both proofs is the use of the fact
that flat points are upwards hereditary between transitive models of ZFC
which agree on the relevant cardinals. In the first proof the assumption that
a transitive model V2 agrees on cofinalities with a transitive model Vi C V2

that satisfies the GCH is utilized to show, via Theorem 18, that certain eubs
remain eubs in V2l this fact leads, in turn, to ^-covering between Vi and V2

for all K — provided that u covering holds. In the second proof the fact
that the cofinality of a singular ji is coded in the eub of a /i+-scale is utilized
to show that one cannot collapse /JL+ to become a successor of a cardinal of
cofinality different than cf/JL without severely damaging the structure of the
scale (Lemma 3.1 in [2]). This has several corollaries, as Cummings shows in

[2].
A short proof of shelah's trichotomy theorem is found in the Appendix

to the paper.

2 Exact upper bounds modulo an ideal

The basic object we are examining is the following: let A be some infinite
set and / be an ideal over A. Let / = (fa : a < S) be a sequence of functions
from A to the ordinals which is increasing modulo / , where S is some limit
ordinal. The question we address is the existence and structure of an exact
upper bound modulo / for this sequence. In this Section we establish notation
and prove a few basic facts about exact upper bounds modulo an ideal which
are needed to facilitate the rest of the discussion.

2.1 Basics
Let A be a fixed infinite set. By OnA we denote the class of all functions
from A to the ordinal numbers. Given an ideal / over A, we quasi order OnA

by defining f <i g for f,g e OnA iff {a e A : f(a) > g(a)} G I. Similarly,
= / and </ are defined.

In the special case that / = {0}, the relation </ is the relation of domi-
nation everywhere and is denoted by <.

For subsets FUF2 C On'4 write Fx ~ j F2 if for every f € Fx there is
g £ F2 such that f <i g and for every g € F2 there is / G F\ such that
g </ F. The relation ~ / is an equivalence relation.



We shall investigate the relation between the following two properties of
subsets of On"4:

Definition 1. 1. F C OnA has an exact upper bound iff there exists
g G OnA such that:

(a) ( V / e F ) (/<,<?)

(b) g'<i g => (3f e F)(g'<j f)

A function g which satisfies (a) and (b) is an exact upper bound (an
eub) ofF.

2. F C OnA has true cofinality iff there exists some Ff C OnA such that
F1 rsjj F and F1 is linearly ordered by </ and has no last element.

If F has true cofinality then the true cofinality of F is denoted by tcf F
and is the cofinality of the order type of some (of every) linearly ordered
Ff that is equivalent to F.

The following points should be noticed: first, each of the properties de-
fined below is invariant under ~ j . Second, neither property implies the other.
Third, eubs are also least upper bounds, except in the trivial case where F
has an upper bound which assumes the value 0 on a positive set, and is
therefore an eub vacuously.

Fact 2. 1. A set F C OnA without a maximum with respect to </ has
an eub f iff F is equivalent to a copy of a product of regular cardinals,
namely there exists sets S(a) C f(a) for a & A such that otpS'(a) =
cf/(o) w

2. A set F C OnA has true cofinality X iff it is equivalent to a </ increas-
ing sequence (fa : a < A).

Both properties above are preserved when the ideal / is extended. We
shall be using the following fact freely:

Fact 3. Suppose /i C J2 are ideals over an infinite set A and F C OnA.
Then:

1. If g is an eub of F modulo /i then it is also an eub of F modulo /2 .



2. IfF has true cofinality X modulo I\ than F has true cofinality X modulo
h-

A particular instance of this fact is when /2 = I\ \B for some B e I*.
The following is a simple, yet important example of a set of functions

which has both an eub and true cofinality regardless to which ideal I over A
is involved:

Fact 4. Suppose A is regular and A > \A\. Then tcf(XA, <) = A. Conse-
quently, tcf(AA, </) = A for every ideal I over A, by Fact 3.

Proof. Let gi(a) = i for 7 < A and a e A. The sequence g = (g7 : 7 < A) is <-
increasing. It is also cofinal in (XA, <) by the following "rectangle argument":
Let g G XA be arbitrary. Since A > |J4| is regular, 7 := sup{#(a) : a G A} < A
and therefore g < g>y. •

Claim 5. Suppose that X > \A\ is regular and f = (/a : a < 5) C OnA is
< 1-increasing. The following are equivalent:

1. There is an eub f of f such that cf/(a) = A for all a £ A.

2. There are sets S(a) for a £ A with otp5(a) = A such that f ~iYl *^(a)-

3. There is some <-increasing "g = (g7 : 7 < A) and some increasing,
continuous and cofinal subsequence (a (7) : 7 < A) C A such that

/a(7) <

Definition 6. 1. A <i-increasing f = (fa : a < S) C OnA w flat ^0/
cofinality X) mod I if and only if one of the equivalent conditions in 5
holds for f.

2. a < S is a flat point in a <j-increasing f = (fp : (3 < S) if and only if
f \a is flat.

The third of the three equivalent definitions for flatness makes the follow-
ing remark obvious:

Remark 7. / / / C OnA is flat of cofinality X > \A\ in some transitive
universe V of set theory, then f is flat of cofinality X in every transitive
extension V ofV in which X is regular > \A\.

Let us state now an easy property of flat sequences:



Fact 8. Suppose f = (fa : a < S) C On"4 is /k£ 0/ cofinality A. Tften
25 a c/o^ed unbounded set E C 8 such that every point in E of cofinality > \A\
is a flat point for f.

Proof Suppose that / = (fa : a < S) is flat of cofinality A and that {g1 :< A)
and (a (7) : 7 < A) are as in clause 3. of Claim 5. Every limit point 6 < A of
(a(7) : 7 < A) of cofinality greater than | A\ is flat. •

In the next section we shall see that this property characterizes flat se-
quences except in the case that A is a successor of a singular.

2.2 The structure of eubs

The question we are addressing is the following: given a set of functions
F C On"4 which has true cofinality modulo / , determine whether F has an
eub, and, in case an eub exists, determine to which product of regular order
types F is equivalent.

An example to this is the equivalence between conditions 3 and 2 in
definition 6 above: If F = (fa : o. < A), is a <-increasing sequence of regular
length A > \A| then F is flat, that is equivalent to a product of a constant
order type.

But this case of a flat sequence is hardly the interesting case, of course.
However, the structure of the set of flat points in a given </-increasing / is
quite revealing about the existence and shape of an eub of / .

We defer the existence problem for later and start with a preliminary
simple classification of eubs. Assume for the moment that F C On"4 with no
maximum is given and has both true cofinality A and an eub g. Since F itself
matters only up to ~ j , we assume wlog that F is a </-increasing sequence of
functions / = (/a : a < A). We assume that A > \A\. There are interesting
questions involving true cofinality A < |^4|, but we do not address those here.
To avoid trivialities, we assume also that g{a) > 0 and is limit for all a 6 A.

Let Aa be the cofinality of g{a). We examine now the constraints on
a H-» Aa which follow from tcf(flaGA ^ a ' <I) = ^- ^ e a r e interested, of
course, in a H> Aa only mod / .

Lemma 9. Suppose f = (/Q : a < A) C OnA is increasing modulo I, A >
|J4| is regular and g is an eub of of f. Then for every regular 9 satisfying
\A\ < 9 < A, the set {a 6 A : Xa = 9} is measure zero.



Proof. Suppose to the contrary that \A\ < 0 < X and that B = {a G A :
Xa = 9} is positive. Replacing / by I\B, g remains an eub, and A remains the
true cofinality. But modulo I\B, f is flat of cofinality 9 — a contradiction,
as 9 < A. •

Since the set of a G A for which Aa > A is clearly measure zero, we
may assume it is empty by changing the eub p o n a measure zero set. Now
partition A as follows: A = Ao U A\ U A2 where:

• A0 = {aeA:\a< \A\}

• Ai = {a G A : \A\ < Aa < A}

• A 2 = {aeA:Xa = X}

Corollary 10. J / t c f (n Aa, </) = A and Ax G J + , then X > |i4|+add(7).

Proof. S u p p o s e A G ( \ A \ , \ A \ + M W ) . T h e n A = U e ( | A | , A ) ( a e A : X a = K}.
Therefore one of the cardinals K G (|^4|, A) satisfies {a G A : Aa = K} e / + ,
contrary to Claim 9. •

The following example shows that each of the Ai-s can indeed be positive:

Example 11. Let V be a model of set theory obtained from a ground model
which satisfies GCH by ccc forcing, such that V f= "MA + 2H° = N^+i. Let
A{ = {i} x u) for i G {0,1,2} and let A = Ao U J4I U ^42- £e< A(jtfl) 6e a; i /
i = 0; Hn, ifi = l and ^ + 1 , ifi = 2. The ideal I over A is the ideal of finite
sets. The product of the A(t,n) has true cofinality N^ + 1.

The subset ^2 in the decomposition above is not particularly interesting
— if we augment / to I\A2 then the sequence becomes flat, and is then well
understood. The subset Ao is slightly more interesting, but there is little
one can say about it. It is A\ which is more interesting in the context of pcf
theory, of course.

In what follows we shall see that it is possible to find out from the struc-
ture of flat points in a </-increasing sequence whether indeed Ao and A2 are
null and some facts about which cardinals appear as Aa on A\.

Definition 12. For a function f G OnA and an ideal I over A,

• a is an accumulation point of f modi iff for all (3 < X, f~l[{/3, a]] G I + .
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• liminf/ / := min{a G On : f~l[a + 1] G J + } is the smallest accumula-
tion point f mod I

• l imsupj / := sup{a G On : / "
point of f mod I

G /*} is t/ie largest accumulation

• / / lim inf/ / = lim sup7 / then limj / is defined and equals both.

Fact 13. / / tcf(nAfl ,</) = A, \A\ < Xa < A for all a G A and \i is an
accumulation point of Xa mod I then add(J) < cf/x < |A|.

Proof Suppose that ji is an accumulation point of Aa mod I. By 9 we know
that {a G A : Aa = /x} G / , and therefore {a : a < Xa < /i} G / + for for
every a < JA. Therefore {Aa : a G A} n /x is cofinal in /x. The inequality
add(/) < cf/x is obvious. D

What about the possibility A = / Ao, or Aa < \A\ for all a G A? In the
simplest case of A = a;, and 1 < An < u; everything is possible: let A be your
favorite uncountable regular cardinal, and in a model of MA with 2K° = A,
the true cofinality of ([\ An, </) is A with / being the ideal of bounded sets,
and hence with / being any non-principal ideal.

A similar case is that of |A| = K inaccessible. Here too there is no bound
to what can occur as tcf(n(Reg n K), </) where / is the ideal of bounded
subsets of K.

Neither of those cases is dealt here.
A fundamental theorem concerning eubs of sufficiently long </ increasing

sequences / C OnA is Shelah's trichotomy theorem, quoted below. Shelah's
trichotomy is Claim 1.2 in Chapter II of [7]. A proof of this theorem is found
also in the appendix to the present paper. The proof in the appendix is a
little shorter that the one in [7].

Theorem 14, (Shelah's Trichotomy)
Suppose A > |A|+ , / is an ideal over A and f = (/a : a < A) is an

<i-increasing sequence of ordinal functions on A. Then f satisfies one of
the following conditions:

• (Good) f has an eub f with cf/(a) > \A\ for all a G A;

• (Bad) there are sets S(a) for a G A satisfying \S(a)\ < \A\ and an ultra
filter D over A extending the dual of I so that for all a < A there exists
ha G and P < A such that fa <D ha <



 



• (Ugly) there is a function g : A —> On such that the sequence t = (ta :
a < A) does not stabilize modulo I, where ta = {a G A : /Q(a) > #(a)}
(notice thatt is Cj-increasing, because f is </-increasing).

3 The main Theorem

Theorem 18 below is the main theorem of this paper. It extends Shelah's
trichotomy and provides a necessary and sufficient condition for the existence
of an eub for a sequence / that satisfies the hypothesis of the trichotomy
theorem. It also determines the shape of such an eub when it exists.

We need 3 preparatory Lemmas. The first Lemma gurantees existence
of an eub from the existence of a stationary set of flat points. The second
Lemma is needed to gurantee that flat points of cofinality larger than the
lim inf of the cofinalities of values of the eub are not stationary, the last
Lemma shows that for every cofinality between |J4| and the lim inf the set of
flat points of that cofinality is stationary.

Lemma 15. Suppose f C 0nA is </ increasing of length A = cfA > |A|+.
If there is a stationary set of flat points of cofinality K in f for some \A\ <
K < A, then f has an eub f with cf/(a) > \A\ for all a G A.

Proof Since A > |A|+, the trichotomy theorem applies to / . The existence
of an eub as required can be derived from the trichotomy theorem once we
show that Bad and Ugly fail.

We are assuming that A > K > \A\ and the collection of flat points of
cofinality K for / is stationary in A.

Assume first, to the contrary, that Ugly holds. Fix g G OnA such that
letting ta = {a G A : / a(a) > g{o>)} the sequence t = (ta : a < A) does not
stabilize mod / . Let E C A be a club of A such that a < (3 in E implies
ta § / tp. Choose a flat point a < A, cfa = K and a is a limit of E.

Fix a <-increasing sequence (gi : i < K) such that (gi : i < K) ~I f\a .
Since a is a limit point of E we may assume, by passing to a subsequence of
~g, that for every i < K, there are /? < 7 in E for which gi </ fp </ / 7 </ gi+1.

Let Si = {a G A : <ft(a) > g{a)} for i < K. By the above, Si Cr ta ^ / i7 C7

Si+1. In particular we have for i < j < K that si ^ / Sj. Since (gi : i < K)
is <-increasing, (si : i < K) is also C-increasing. But now this is absurd,
because to increase in both C and Cf means to increase in g; and there is
no ^-increasing sequence of subsets of A of length K > \A\.



 



Assume now that Bad holds with respect to sets S(a) with \S(a)\ < \A\
and an ultra filter D. Find a club E C A such that for a < /3 in E it holds
that fa <D ha <D fp- Choose a flat point a G accE of cofinality K in accE1

and choose an eub / of / fa with cf/(a) = K for a G A Since 5(a) n /(a)
is bounded below /(a) for all a e A no subset of I~J S(a) can be cofinal with
/fa, contrary to a being a limit of J51.

Thus Bad and Ugly fail, and hence Good holds by the trichotomy theo-
rem, namely there exist and eub / for / with cf/(a) > \A\ for all a G A •

Lemma 16. Suppose f is as in the previous lemma and f is an eub of f. If
for regular K G (\A), A) the set of flat points in f of cofinality K is stationary
in A then {a G A : cf/(a) < K} G / .

Proof First we observe that if {a G A : cf/(a) = K} G / by 9. Suppose that
B = {a G A : cf/(a) < /c} is positive, and consider JfjB. Every flat point
is flat with respect to this ideal as well. Modulo I\B, we may assume that
cf/(a) < K for all o G A

Fix a set S(a) C /(a) which is cofinal in /(a) and of order type cf/(a).
Since / ~j riaeA^(a)> there is a closed unbounded E C A such that for
every a € E, there is some sequence h = (hi : i < cfa) C fJaeA S(a) with
/ fa ~/ /i.

Since there are stationarily many flat points of cofinality /̂ , we can choose
some a G E of cofinality ft so that / fa is flat, and let g be an eub of / fa
with cfg(a) = K for all a G A Let h = (hi : i < K) C flaeA ^(a) be chosen
so that h ~j /fa. Since for every i < K, we have /i; </ #, we may assume
that for all a G A, hi(a) < g(a)

Let h(a) = sup[5(a) Dg(a)]. Since otpS'(a) = cf/(a) < K, h < g. There-
fore there is some 7 < a such that h </ /7 . But /7 </ /i7 G fLe^ ^
hence h7 < h — a contradiction. •

Lemma 17. Suppose that f is as above, f is an eub of f and \i — lim inf/ cf/(a).
Then for every regular K G (|A|,/X) the set of flat points of cofinality K in f
is stationary in A.

Proof. It is obvious that /x < A. Let K be any regular in
Correcting / on a null set we may assume that cf/(a) > K for all a G A.

To establish stationarity of the set of flat points of cofinality K, let M —
(J^<K M^ be an elementary chain of sub-models of if (x) for a sufficiently large
regular x such that for every £ < AC, (Mf : f < C) € Afc+1, the cardinality of
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each Mc is K and / , / G Mo. Let M = \Ji<K. We show that s u p M n A is
a flat point (of cofinality K, of course). This guarantees stationarity, as the
heights sup AfnAof such models form a stationary subset of A.

For every a e A and ( < K define x<(a) = supM c n/ (a ) . Since cf/(a) > K
and \M\ < K it follows that xc < /•

XQ G Mc+i and M c + 1 f=_V is an eub of / " so there is some a c G Mc+i n A
for which xc <i /ac- Since / 6 M c + i also /Cc G Mc + 1 and hence fa< < xc+i-

Conversely, if /3 < a then by increasing (3 we may assume that /3 G M
and therefore there is some £ < /c+ for which /? € M(. So also f@ e M^ by
elementarity and fp < Xc+i-

The sequence (xc : C < ^) is thus <-increasing and equivalent mod / to
f\a mod / , proving that a is a flat point in / . •

Theorem 18. Suppose A > \A\+ is regular, I an ideal over A and f = (/Q :
a < A) is <i-increasing. Let S be the set of regular cardinals K for which the
set of flat points of cofinality K in f is stationary in A.

The following conditions are equivalent for a cardinal /x G (|^4|+, A];

1. there exists an eub f of f and liminf/cf/(a) = fi

2. (i = SUP{AC+ : K e S}

3. S = Regn(\A\,ii)

Proof 1 => 3: Suppose 1. holds. Lemma 17 gives S C Regn(\A\,fi). Lemma
16 provides the converse inclusion.

3 => 2: trivial.
2 => 1: The existence of some regular K in S guarantees the existence of

an eub by Lemma 15. Fix an eub / for / . The conjunction of Lemma 16
with Lemma 17 implies liminfj cf/(a) = //. •

The next example may assist in understanding the previous theorem bet-
ter. Work in a model of set theory in which pcf{Kn : n < cv} cintains Nw+w+i.
Such a model is available in [6] or in [3]. There is some ideal / over u) such
that tcf(J7n n̂> < / J = N^+c+i. Also, there is some ideal over (UJ.UJ + U;) such
that tcf (I"In(*Wn><I^) = *Wu;+i- Let / be the ideal over u + CJ obtained by
joining I\ and /2 as follows: X G / <£• X D UJ G h A X n (a;, UJ + cv) G h- Let
/ Q IIa€(a;+(i;) ^ a ^ e </-increasing and </ cofinal in the product. The eub
of / is the function f(a) = Ka for a G (u> + UJ). There are two accumulation

11



points of {cf/(a) : a G (a; + a;)} modulo / : Hu and ftw+w- The set S of
cofinalities for which the flat points in / are stationary is {Nn : n < u}.

Now increase the ideal I be throwing u into I. Modulo the revised ideal
there is only one accumulation point of {cf/(a) : a G (u + u)} and ther are
stationarily many points in / also for cofinality N^+n for all n.

Thus although true cofinality and the eub have not changed, the expan-
sion of the ideal turned many points to flat points.

Theorem 19. Suppose that f C OnA is </ increasing of length A > |.A|+

and has an eub f with cf/(a) > \A\ for all a € A. If X is not a successor of
singular whose cofinality is < \A\, then f has a closed unbounded set of fiat
points in every cofinality K < A iff f is flat.

Proof If / is flat then indeed almost all points of cofinality n in / are flat
for every regular K G (\A\, A), by Fact 8.

Suppose now that / is not flat, and that for every regular K G (|A|,A)
almost all points of cofinality K in / are flat. In the notation of Theorem 18,
S = Reg n (|;4|, A). Since / is not flat, Ax = {a G A : cff(a) < A} G /+. Let
/JL = liminf/cf/(a). By Fact 13 applied to I\Ai, cfy < |J4|, and by Theorem
18, Reg n \i = Reg n A. So necessarily A = ji+ D

We remark that it is possible to have lim inf/ = /x, A = //+ and that for
every K G S the set of flat points in / of cofinality K is not only stationary
but almost all points of cofinality K.

The next lemma describes a condition under which a non-flat sequences
have club many flat points.

Lemma 20. Suppose that f = (fa : ® < A) C OnA is </ increasing, f an
eub of f and lim inf/ cf/(a) = fi. If K = cftz < \i and Q\A\ < K for all 9 < K,
then every point of cofinality K in f is flat.

Proof Suppose that a < A has cofinality K. Since 2^1 < K we have that
K > \A\+. By the Trichotomy Theorem applied to f\a and as 2'A' < K
excludes Bad and Ugly, we conclude that f\a has an eub, say h. Denote
fi = liminf/cf/i(a). We know that ji < K; we easily see that /x > K as
well, since if B — {a G A : cfh(a) < K} G / + , by regularity of K > \A\,
6_= sup{cf/(a) : a e A} < K. Since h is an eub mod I\B we conclude that
f\a ~/fB IlaGB *^(a)' where S(a) C h(a) is cofinal of order type dh(a). This
is absurd, because | YlaeB S(a)\ ^ ^'A| < K- n

12



4 Applications

In this Section we apply Theorem 18 to two set theoretic problems.
First, we present an unpublished theorem of Magidor's about covering

properties between models of ZFC. Then we re-prove a Lemma by Cummings
concerning successors of singulars. In both proofs, some / with an eub / is
fixed in an_inner model Vi, and Theorem 18 is used to argue that / remains
an eub of / in some extension V2 which preserve sufficiently many cofinalities.
One direction of the Theorem is used to encode / by the set of flat points in
Vi and the other direction is used in V2 to reconstruct / .

4.1 Magidor's Theorem

Definition 21. Let On C Vx C V2 be transitive models of ZFC. We say
that n-covering holds between V\ and V2 iff for all X G V2, if X C On and
V2 \=\X\<K then there is Y e Vx such that X CY andV2\= \Y\ < K.

If fc-covering holds between Vi,V2 for all K > No, then Vi and V2 are
"close" to each other in several senses: Vi, V2 agree on cofinalities and hence
on cardinalities; Vi,V2 agree on cf([A]*,C) for all X > K; every singular
fj, > K0 in V2 is singular in Vi and many other useful properties. Such is the
situation between L and V in the absence of 0*, for K = Ki, by Jensen's
Covering Theorem.

It is interesting to reverse the question, and ask: Suppose that two uni-
verses Vi C V2 are "close" to each other in the sense that the agree on
cofinalities and cardinalities which are > K0 for some K0; do they necessarily
satisfy /^-covering for all K > K0?.

An example in which a;-covering fails between Vi C V2 which agree on co-
finalities and cardinal arithmetic is the following: let Kn be a Prikry sequence
in a measurable K. Let Vi := ^ [ (^n : n < u) and let V2 := V[KU : n < u)].
The countable set {K2n+i ' n < cu} is not covered by any set of cardinality
< K, from Vi, although both models agree on all cofinalities.

We wish now to obtain a violation of cji-covering without violating o;-
covering between a pair Vi C V2 of universes. For that we use a model of M.
Segal [5] which is constructed by starting from a ground model that satisfies
GCH and collapsing some large cardinal A by adding simultaneously > A+

oj\-Prikry sequences to it. Thus, in the generic extension VrP, A is a singular
of cofinality Ni which violates the singular cardinal hypothesis.
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Note that by Silver's theorem, SCH is violated by many singulars of
countable cofinality below /i, so necessarily many new u sequences are added
below A in Vp.

The property we invoke from Segal's forcing extension is that every subset
of size < A belongs to an intermediate forcing extension obtained by a sub-
forcing notion whose cardinality is A.

Choose now two intermediate models V C Vi C V2 C V p , between the
ground model and the forcing extension as follows: let Vi be a model which
contains all bounded subsets of A and one cofinal uj\ sequence. Thus, Vi
thinks that A is a singular of cofinality Ki (below which SCH is violated in
many singulars of countable cofinality), but that A satisfies SCH. This is
because V\ knows at most A+ many new subsets of A.

V2 is obtained over V\ similarly, by adding one new w\ cofinal sequence
of A which is not covered by any subset of A of cardinality Ki from Vi. This
is possible, since there are A"1"1" many ui cofinal sequences of A in Vp — Vi.
Now Vi and V2 agree on cardinalities, cofinalities and even on the power set
function, but do not satisfy ui covering.

An interesting fact is, that Vi violates SCH in many singulars of countable
cofinality. Is this coincidental?

The following theorem by Magidor sheds some light on this phenomenon,
by showing that if uncovering holds between Vi, V2 that agree on cofinalities
and Vi \= GCH then fc-covering holds for all K. In other words, a violating
CJI covering but still maintaining uncovering between "close" models of set
theory must occur between models that violate GCH.

The relation of this to eubs is the following: if / = (/a : a < K^) is </-
increasing and cofinal in J"J A/" in Vi for some normal sequence (Aj : i < ui) of
cardinals in \i and u;i-covering holds between Vi and V2i then / is increasing
cofinal in V2 as well, because every / G [ ] \ + from V2 is dominated by some
such function from Vi. The main point in the proof is that the converse is
also true if GCH holds in Vi, namely this consequence of covering for eubs
actually implies u^-covering.

Theorem 22. (Magidor) Suppose that On C Vi C V2 are universes of ZFC,
and V\,V2 agree on cofinalities. If V\ \= GCH and every countable set of
ordinals in V2 is covered by a countable set of ordinals from Vi, then every set
of ordinals X 6 V2 is covered by some set of ordinals Y £ V\ with \Y\ = \X\.

Proof The proof goes by induction on \x \— supX.
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If /a is not a cardinal, the claim follows easily from the induction hypothe-
sis via a bijection of n with its cardinality. So we assume that // is a cardinal.
If [i is regular, then \X\ = // and // is the required set. The remaining case
is that fi = sup X is a singular cardinal and we divide it to two subcases.

If fi is singular of countable cofinality then fix in Vi (by GCH in Vi) an
enumeration e of length // of all bounded subsets of fi which belong to V\
and an ^-sequence (an : n < uo) with supremum fi. The set {e{Xf\an) : n <
u} C \x belongs to V2 and since ^-covering holds between V\ and V2 it can
be covered by a countable set of ordinals Y G Vi. Now X C (Jfc'H**) : a e

y A |e~1(a)| < |A"|} belongs to 14, covers X and has cardinality < \X\.
We are left with the interesting case: fi is singular of uncountable cofi-

nality.
Let K := cf/x. Fix in Vi a sequence (A* : i < K) increasing, continuous and

cofinal in //, and assume, without loss of generality, that Ao > |A"|.
Since Vi f= GCH we can fix in Vi a bijection ê  : V(Xi) —> A+ for every

i < K. Suppose that the following claim holds:

Claim 23. for every g £ Yli<n ^? *n ^2 there is h G Yli<K A+ in Vi such
that g <i h, where I is the non-stationary ideal on K in V2; in other words,
( n * t ) V i ( n m V

We shall show that this suffices to cover X. For every i < K we can find,
by the induction hypothesis, a set Yi G V{Xi) n Vi such that X n Ae- C Yi and
|^i| < I-AT I- Let ^(i) be the first index of such Yi in the enumeration e; we have
fixed. Thus g G ILoc ^t a n ^ belongs to V2. Find h G IL<K

 n ^ i which bounds
g mod / . For every i < K there is an injection yrf in Vi from h(i) G A/" into A*.
Let F(Aj) G At be the image of g{i) under this injection for each i such that
g(i) < h(i). Since {A* : g(i) < h(i)} contains a club of K, by Fodor's lemma
there is some 7/(*) < \i and a stationary subset S C K such that F(Xi) < r/(*)
for all i G 5. Now let Z = {F : (3i < /C)(TT£(e^K)) < 7/ A |y | < |X|)}.
Z eVi and by its choice, since {i < K : h(i) > g(i)} is stationary, X C\JZ.
Also, \Z\ < fi. So we have managed to cover X by a set in Vi of cardinality
smaller than /i. This is enough, because fixing a bijection between Z and \Z\
and using the induction hypothesis for \Z\, we can cover X.

We prove now Claim 23.
We have fixed (Xi : i < K), an increasing continuous sequence of cardinals

with supremum //. Using GCH in Vi and standard diagonalization find a
sequence / = (fa : a < ^ + ) , </-increasing and cofinal in (fl A/", </), where
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/ is the non-stationary ideal over K. SO d, defined by d(A+) = A/", is the eub
of h mod / .

From GCH in Vi it follows that 9K = 9 for all regular 0 > ft. Thus every
point of cofinality 9+ for regular 0 > K is flat in Vi by 20. As Vi, V2 agree on
cofinalities and cardinals (by Remark 7), all points of cofinality 9+ are flat in
V2 as well. By Theorem 18 there is in V2 an eub / of / with lim inf/ cf / = //.
Since / C fj A+, without loss of generality, / < d.

We argue next that / = / d. If / ^ / d then the following set is stationary
in V2: B = {i < K : f(a) < \+}. Let G{i) := cff(i) and let F(z) =
min{j < K : G(z) < Xj}. Since without loss of generality every i E B is
limit, cf/(z) < Ai and hence F is regressive. By Fodor's lemma we assume
that F is constant on B with constant value j < K. We have shown that for
all i £ B the cofinality cf/(i) is bounded by \j+\. Since B is positive this
contradicts liminf/cf/(z) = //. D

4,2 Cummings' Theorem
Next we apply Theorem 18 to give a new proof of the main Lemma in Cum-
mings [2]. Cummings discusses the constraints which are enforced on a pair
of universes of set theory V C W with the property that some successor of
singular in V has different cofinality in W: W cannot be a ccc extension
of V, cannot violate the SCH at that singular, and more. We remark that
the existence of such a pair of universes is not known. As with the proof of
Magidor's theorem, here too the preservation of flat points plays a crucial
role.

Theorem 24. Suppose that V C W are inner models of set theory, and ji
is singular in V. Suppose that fa : i < cf/i) is increasing and cofinal in /i
and that f = (fa : a < /i+) C fl^cf/x^ ^s <*-increasing and <*-cofinal in
rii<cf/i^- Suppose that fj,y = v^ and W \= cf/i ^ civ. Then there is some
p < v such that for all K e RegwD(p, v] the set of flat points in f of cofinality
K is not stationary in W.

Proof Let 5 = cfy// and let 9 = cfvr/x. Clearly, 9 =
The relation <* is </ where / is the ideal of bounded sets on 5. If

cfjy^ < cfy<5, fix a cofinal set C in 6 or order type 9, and work with I\C.
Thus, wlog, 5 = 9.

Work in W from now on. The sequence / C \\i<e K* is <* increasing of
length A+. Also, sup{«» : i < 9} < X+. If for unboundedly many regulars
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< A there are stationarily many flat points in / , then, by Theorem 18, /
has an eub / with liminf/cf/(z) = A. Since ran/ C sup{^ : i < 0}, the
cofinality if each f(i) is at most A. The set {i < 9 : cf/(z) = A} is clearly
null (or else tcf / = A); so cf/(z) < A for all i < 9.

By Fact 13, add(/) < cf A < 9. Since the additivity of the ideal of bounded
sets of 9 is 9, it follows that cf A = 9 — contrary to W f= cf/c ^ cf A. •

5 Appendix

Theorem 25. (Shelah's Trichotomy)
Suppose A > \A\+, I is an ideal over A and f = (fa : a < A) is an

<j-increasing sequence of ordinal functions on A. Then f satisfies one of
the following conditions:

• (Good) f has an eub f with cf/(a) > \A\ for all a G A;

• (Bad) there are sets S(a) for a G A satisfying \S(a)\ < \A\ and an ultra
filter D over A extending the dual of I so that for all a < A there exists
ha G [I S(a) and (3 < A such that fa <D ha <

• (Ugly) there is a function g : A -> On such that the sequence t =. (ta :
a < A) does not stabilize modulo I, where ta = {a € A : fa(a>) > g(a)}
(notice that t is CT-increasing, because f <j-increasing).

Proof of the Trichotomy Theorem, We argue first that Good can be weak-
ened in the Theorem to the existence of a lub / : By the next claim either
Ugly holds or every lub of / is an eub. If / is an eub and lim inf cf/(a) < \A\
then Bad is witnessed by any ultra filter D extending the dual of I\{a G
A : cf/(a) < \A\}. Thus if Ugly fails, either Bad holds or / is an eub with
liminf/cf/> \A\.

Claim 26. / / / is not Ugly then every lub of f is an eub.

Proof of Claim. Assume to the contrary that / is a lub to / which is not an
eub. This means that there is some function g : A -> On with g <i f but
such that for all a < A it holds that g <£i / a . Let t = {tQ : a < A) be defined
by ta := {a G A : /Q(a) > g(a)}. This sequence is increasing in C/, because
/ is increasing in </. Since / is not Ugly, there is some a(*) < A at which i
stabilizes, namely for all a(*) < a < A it holds that ta(*) =/ ta. If ia(*) =7 A
then g </ /«(*), which we assume does not happen; thus A \ ta^ G I + .
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Let / ' be defined as follows:

{ / (a) if a e ta(*)

g(a) if a G A \ ta{*)

Since A\ta^) € / + , it holds that / ' ^ j / . But / ' is still an upper bound
of / because for all a > a(*) the definition of / ' implies fa </ / ' . This
contradicts / being lub. •

Now it is enough to prove the following weaker form of Shelah's Tri-
chotomy:

Claim 27. For f as in Theorem 25, either f has a lub, or f is Bad or f is
Ugly.

Proof. Assume Ugly fails, and we will either produce a lub or find sets S(a)
and ultra filter D D I = 0 that witness Bad.

Define by induction on £ < \A\+ an upper bound g^ to / and functions
/i£ for a < A so that:

1- £ < C =» 9c $i 9z

2. 5c(a) := {g&a) : f < C}

3. hi(a):=min(Sc(a)\fa{a))

Observe that by the definition 3. above the sequence (/i£ : a < A) is
</-increasing in n ^ c ( a ) -

Either g^ will be a lub of / for some a < \A\+ or else we will find an ultra
filter D that witnesses Bad with the sets S^(a) for some (limit) £ < \A\+.

Let go(a) := sup_{/Q (a) + 1 : a < A}. For every a < A, g0 > fa so g0 is
an upper bound of / .

At a successor £ + 1 < \A\+ choose, if possible, an upper bound g^+i to
/ which satisfies #£+i ^ / g^. If this is not possible, g^ is, by definition, a lub
of / , and the Theorem is proved.

Suppose that £ < K+ is limit and that g$ is defined for all f < £. For
every a < /3 < A let ta^ := {a e A : h^(a) < fp(a)}. Since (h^ : a < A) is
</-increasing, taip is C7-decreasing in a and since / is </ increasing, ta^ is
C/-increasing in /?.
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If there exists a < A for which {ta$ : (3 < A) does not stabilize mod /
then Ugly holds. Since Ugly fails, for every a < X there exists /3(a) < A such
that ta,0 = / t ^ for all /3 < (3f < A. By this find a club # C A such that
for all a < (3 < ft in E we have ta,p = ta^. Let £Q, for a € E, be such
that i a = / tayp for all /? > a in £". Thinning E, if necessary, we assume that
either ta € I for all a G J51 or that ta £ I for all a € E.

Utael for all a G # , let a(C) = min£ and define:

£< := ^ ( 0 (1)

The assumption ta^ G / means that fp </ /i^,^ for all (3 < A. Thus
^a(c) = #< ̂ s a n u PP e r bound to / and all we need for verifying the induction
hypothesis for g^ is that g$ ̂ / g^ for ^ < C- Since C is limit and (g^ : £ < C) is
^/-decreasing by the induction hypothesis, it is enough to show that g^ <j g^
for all £ < C Now ̂  G Il^c(a) a n d /a(<) < ^a(c) = Ĉ e Il^c(a)- T h e

definition of h^,^ in 3. above implies that h^,^ <j h for every h G I l ^c ( a )
for which fa < / A — in particular /ia </ ^ .

If ta £ I for all a G Z?, observe first that if a < /? are in E then i^ C7 i a

(because ta =j tan C7 tpn = / i/? for any (3 < j £ E). The sequence
(£a : a G i?) is a Cj-decreasmg sequence of positive sets (a "tower" in
V{A)/I), so in particular {ta : a G E}Ul* has the finite intersection property
and can be extended to an ultra filter D. For every a < (3 in E it holds that
fa ^ ha <r> fp (first inequality by the definition in 3. above, the second
because ta G D). This is Bad.

Failure to find g^+\ when ga is defined gives a lub, and failure to define ga

for limit £ < |^4|+ with g$ defined for f < £ yields Bad. The Theorem follows
then once we establish that failure to find 7^ must occur at some stage before

Claim 28. g$ cannot be defined as in 1 above for all limit £ < |^4|+.

Proof. Suppose to the contrary that the induction goes through all £ < \A\^.
For every limit £ < \A\+ we have, by 3 above, g^ = h^^ = / h^ for all

a > a^. Since A > |^4|+ we can find a(*) < A such that a^ < a(*) and
therefore g^ = / hf^,^ for all limit C < |^4|+-

The sequence (^(*) : C ^ a c c ( l^ l + ) ) is <-decreasing because (5^(a) :
( G acc|yl|+) is C-increasing. Therefore h^,* is fixed for an end segment of
C G acc|A|+, starting, say, at £(*) G accl^l4" (because there are \A\ many
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coordinates a e A and on each a G A the sequence {g^{a) : £ € acc(|A|+)
can decrease at most finitely many times). So for all C(*) < £ < C limit
ordinals in |A|+ it holds that p£ = / h^ = / /i^(+) = / #c. But by condition 3
of the induction, for every £ < C limit points in | A|+ it holds that g^^i g^
— contradiction. •

•
•

Let us make a few more remarks concerning the Trichotomy Theorem.
The condition Ugly in the Theorem implies, in particular, that there are A
sets in I+ whose pairwise intersections lie in / . Namely, / is not A-saturated.
If / is the dual of an ultra filter, than this is impossible (ultra filters are
2-saturated). Thus either Bad or Good must hold.

If I is the dual of an ultra filter, < / linearly orders OnA. The previous
remark tells us in this case that every Dedekind cut of cofinality > |A|+ is
either determined by one element — if Good holds — or else belongs to a
small product, if Bad holds. In the latter case there may or may not be an
eub, namely the cut may or may not be realized.

Finally, the assumption A > \A\+ is necessary and cannot be replaced by
A > |A|. This, however, is not that important for pcf theory, because in a
typical pcf situation A > \A\+U) anyway.
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