NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Calculus and a System Architecture for
Extensional Higher-Order Resolution

by

Christoph Benzmiiller
Department of Mathematical Sciences

Carnegie Mellon University
Pittsburgh, PA 15213

Research Report No. 97-198 P
June, 1997

1

Many mathematical problems can be expressed shortly and elegantly in higher
order logic whereas they often lead to unnatural and inflated formulations in

A Calculus and a System Architecture for
Extensional Higher-Order Resolution*

Christoph Benzmiiller
Department of Mathematical Sciences
Carnegie Mellon University, Pittsburgh, USA
chrisb@cs.cmu.edulchris@cs.uni-sb.de

June 2, 1997

Abstract

The first part of this paper introduces an extension for a variant of
Huet’s higher-order resolution calculus [Hue72, Hue73] based upon classi-
cal type theory (Church’s typed A-calculus [Chu40]) in order to obtain a
calculus which is complete with respect to Henkin models [Hen50]. The
new rules connect higher-order pre-unification with the general refuta-
tion process in an appropriate way to establish full extensionality for the
whole system. The general idea of the calculus is discussed on different
examples.

The second part introduces the LEO system which implements the
discussed extensional higher-order resolution calculus. This part mainly
focus on the embedding of the new extensionality rules into the refutation
process and the treatment of higher-order unification.

Introduction

first-order logic, e.g., when coding them into axiomatic set theory.

On the other hand automated theorem proving in higher-order logic is much
more complicated than in first-order because of additional challenging problems
like the undecidability and complexity of higher-order unification, the need for
a special treatment of predicate variables (e.g., by primitive substitution) or
the handling of equality and extensionality. Nonetheless, proof systems using
higher-order logic like TPS [ABI*96, AINP90], PVS [ORS92] or HOL [GM93]

*This work was supported by the HOTEL project of the Deutsche Forschungsgemeinschaft

(DFG) and the ‘Studienstiftung des deutschen Volkes’.

have demonstrated that automated higher-order theorem proving is feasible in
practice (e.g., see theorems proved by TPs discussed in [ABI*96]). But higher-
order theorem provers still have not reached the same power in handling huge
and deep search spaces as advanced first-order provers. Among the most suc-
cessful first-order provers are resolution style provers like OTTER [McC94], the
Boyer-Moore theorem prover [BKM] or the recently developed system SPASS
[WGRY6).

Unfortunately many of the advanced techniques introduced in first-order
systems, like sort systems [SS89)], indexing [Gra95] or rewriting techniques are
either not fully examined and adapted to the higher-order setting or are still not
used in many systems. And even if the resolution approach was very successful
in first-order, there is still no higher-order prover known to the author which
uses a resolution style calculus.

Therefore the LEO! theorem prover for classical higher-order logic builds
upon a variant of Huet’s higher-order resolution approach [Hue72, Hue73] and
tries to adapt as many as possible of the advanced first-order techniques (sorts,
indexing, equality, strategies) to the higher-order setting. Hence LEO wants to
demonstrate that higher-order resolution can be an alternative to other higher-
order approaches.

Two of the main problems for higher-order resolution are the undecidability
of higher-order unification and the need for a special treatment of predicate
variables. To handle the first problem LEO uses, like TPS, higher-order pre-
unification [Hue75] which is sufficient within a refutation approach. Because of
the undecidability of higher-order unification (and pre-unification) LEO delays
unification in resolution and factorization rules by adding unification constraints
to the resulting clauses. To tackle the second problem LEO uses a primitive
substitution rule which allows instantiating any predicate variable occurring at
head position in a literal by a general binding that imitates a logical connective
or quantifier.

Concerning the adaption of techniques from first-order resolution to higher-
order resolution some important cornerstones have been established by the
sorted higher-order resolution calculus described in [Koh94a, Koh94b] or the
higher-order indexing techniques examined in [K1e97). Indeed, the treatment of
equality and extensionality is still a challenging problem for all higher-order the-
orem provers. In fact there is no automated higher-order theorem prover known
to the author which can effectively and without using the ‘right’ extensionality
axioms handle full extensionality and which is complete with respect to Henkin
models [Hen50]. Thus easy looking examples like Vpo_,0, @0, bo . p(aAb) = p(bAa)
or VDo—0, G0, bo « (pa A pb) = p(b A a) can often not be proven automatically by

existing systems.
In the first part of this paper we introduce an extension of the Huet style cal-

1Logical Engine for Omega. The LEO project is strongly connected to the OMEGA project
[BCF*97] and LEO’s main intention is to become a powerful subsystem of OMEGA.

culus introduced in [Koh94a, Koh94b]? in order to establish full extensionality.
Although a formal proof for this conjecture is still lacking, the different exam-
ples discussed in this paper provide strong evidence for the Henkin completeness
of the extended resolution calculus.

LEO wants to reach a considerable power on its own, but this prover is mainly
intended to be used as a subsystem and logical engine for the OMEGA proof
development environment [BCF+97, HKK*94b]. Within the OMEGA system,
LEO will be called on specific higher-order subproblems or it will be used within
other components, e.g., the proof planner. As a subsystem of OMEGA, LEO
will have to cope mainly with subproblems which presume an appropriate and
powerful treatment of equality and extensionality in higher-order logic.

2 Preliminaries

We consider a higher-order logic based on Church’s simply typed lambda cal-
culus [Chu40] and choose the set of basetypes BT to consists of the types ¢ and
o, where o denotes the set of truth values and ¢ the set of individuals. The set
of all types T is inductively defined over BT and the type constructor —. We
assume that our signature ¥ contains a countably infinite set of variables V,
and constants C, for every type 7 € 7. Additionally we postulate the existence
of the logical connectives —o—0, Voso—0, H(ams0)—o (in short II*) and =4 a—0
(in short =%) for every type a € T in X. These constants denote their intuitive
semantical counterparts.

The remaining logical connectives are defined as abbreviations of the given
ones (AAB=-(-AV-B),A=>B=-AVBA=B=(A=B)A(B=>
A), VX Ap = I(as0)—0(AXaA), IX0.Ap = VX 0mA,).

If the type of a symbol is uniquely determined by the given context we avoid
its explicit mention.

To ease readability we assume right-associativity for the type constructor —
and left-associativity of function application (Aq—g—yBaCs = ((Aa—sp—+Ba)
Cp)). Sometimes we abbreviate function applications by ha,—...a,—sUg,
which stands for (--- (hal_,..._,a"_,ﬁUf,l) ---Ug,). A dot “ occurring in a A-
term stands for a left bracket whose mate is as far to the right as consistent
with all other brackets and the construction of the term. We allow further to
avoid brackets in every case, where the construction of an expression is uniquely
determined by the context.

Different from many other notational conventions we write variables in upper
case letters and constants in lower case variables. As metavariables for A-terms
we use bold capital letters.

2[Koh94a, Koh94b] introduced a sorted variant for Huet’s higher-order resolution approach.
Note that we are not interested in sorts here and therefore we discuss an extension of the
unsorted fragment of the calculus introduced [Koh94a, Koh94b)].

We introduce a-, - and 7n-conversion rules and refer to [Bar84]. It is also
well known for the typed A-calculus (e.g., [Bar84]) that each A-term can be
transformed into a unique 8-, 5- or Bn-normal form.

The definitions of free and bound variables, substitutions and the application
of substitution are according to [Bar84].

When we speak of a Skolem term s, for a clause C and {X},---XZ.} is
the set of free variables occuring in C, then s, is an abbreviation for the term
(f;‘,_,_“_)a,._le --- X™), where f is a new constant from Cy1_,..._,qn o and
n specifies the number of necessary arguments® for f.

For a general introduction to higher-order unification and especially for the
definition of a set of general bindings ngr‘ for a type 7 and a (head-)constant h
we refer to [GS89].

Our calculus will be defined on clauses which are disjunctions of literals (e.g.,
[9as0Xa]T V [PasoXa]F V [ca = Xa]F). For literals we differentiate between
pre-literals and proper literals. A pre-literal consists of an arbitrary A-term N,
with type o and a polarity T or F stating if this literal is positive or negative
(e-g., VX a-Pa—oX]F). We call a literal proper iff it contains no logical constant
beside = at head position.

We further differentiate between positive literals, negative literals and unifi-
cation constraints. Unification constraints are special negative literals and their
atoms are equations. We sometimes call unification constraints also unification
pairs, especially if we want to focus on the two terms - the left hand side and
the right hand side of the equation - defining the unification problem.

A clause C is in clause normal form iff it is a proper clause which means
that all literals of C' have to be proper. A clause which is not in clause normal
form is called pre-clause. Clauses which consists only of unification constraints
are called almost empty.

Any unification constraint U = [X, = Na]¥ or U = [Ny = X,o]F is solved
iff X, is not free in N,. In this case X is called the solved variable of U.

Let C = L'Vv---VL*VU!V---VU™ be a clause with unification constraints
U'V.--vVU™ (1 <m). Then a disjunction Ut V---V U (i; € {1,---,m;1 <
j < k) of solved unification constraints occuring in C is called solved for C iff
for every U% (1 < j < k) holds: the solved variable of U% does not occur free
in any of the U for | # j;1 <1< k.

Note that each solved set of unification constraints F for a clause C can
be associated with a substitution substg which is uniquely determined by the
solved variables of E and their dedicated unification partners.

For a discussion of standard models, Henkin models and general models see
[Hen50]. For a discussion of the role of Leibniz equality within general models
see also [And72].

The functional extensionality principle says that two functions are equal
iff they are equal on all arguments, which can be formulated by the following

3See discussion of skolemization in subsection 3.1.

basetypes t,0,a, 3

functional types a— B,0,08,7,6

variables Xay M0, Py, Qaso

constants @y, by, My, fasps Po

applications (Pria0a.X.), (hay—s-—an ~,gU_z,‘")
abstractions (Ao faspX), AXa-APyso. PX)
metavariables for ho-terms A,B,,M,3

positive literals VX0-QanoX]T,[ca = famaXa]t
negative literals PasoXa)®, [(AXa-APasor PX)baQuso]”
unification constraints [ca = famaXalF,[Po = 3X5.7pg—oX]F
proper literals [Qa—08alT, [Po)F, [Po = 3Xp.mpp—0o X]F
pre-literals VXaQanoX]T, [po = go)F

proper clauses [Po]T V [PasoXa]F Vca = Xa]F
pre-clauses ‘ VP,.P|T V [pa—soXa = ¢o]F V [po]T
metavar. for clauseparts C,D

metavar. for uni. constr. parts | E

Figure 1: Examples for some notational conventions

schematic A-term: VMy 3V Noog(VX.(MX) = (NX)) = (M = N). This
term is schematic with respect to the (arbitrary) types @ and 8. The exten-
sionality principle for truth values states that on the set of truth values equality
and equivalence relation coincide: VP,.VQ,.(P = Q) = (P = Q). Note that in
Henkin models both principles are valid.

Figure 1 provides some examples for the introduced notational conventions.

3 The calculus

In this section we will introduce the calculus forming the theoretical foundation
of the LEO-System. The basis of this calculus is given by the unsorted fragment
of the Huet style calculus discussed in [Koh94a, Koh94b]. We will introduce an
extension for this fragment in order to obtain Henkin completeness. Note that
we assume commutativity and associativity of V for all our rules.

3.1 Clause normalization

Clause normalization is very similar to the first-order case, except for the treat-
ment of skolemization. If skolemization is handled in the intuitive first-order
way one can prove the axiom of choice [Mil83]. A solution due to [Mil83] is
to associate with each Skolem constant the minimum number of arguments the
constant has to be applied to. As we assume that the reader is familiar with
the rules for clause normalization from first-order logic we do not introduce
these set of rules here and assume that each given higher-order proof problem

P can be transformed by these rules into a set of clauses CNF(P). A more
detailed discussion of clause normalization in higher-order logic can be found in
[Koh94a, Koh94b]. :

We allow clause normalization to be applied also on pre-clauses like [pt_,oaL]F Vv
[P.—ob. A g5]T. The result is a set of proper clauses. For the above pre-clause
we get [pyoa]F V [Piosob,]T and [pi—oal]” V [go]T.

We introduce the following convention: clause normalization replaces in
every given input problem each equality symbol =% by its Leibniz definition
AXoYo VP, 0. PX = PY. Therefore a result of applying clause normalization
to any given set of formulas results in a set of clauses containing no equality
symbol and therefore no unification constraint.

Clause normalization of partial-clauses differs from this and equality symbols
in unification constraints are never replaced but remain unchanged instead.

3.2 Higher-order pre-unification

For this section we refer to the (pre-)unification rules discussed in [Koh94a,
Koh94b]. But deviating from the rules presented there we are not interested in
sorts here and we do not introduce extra-logical variable conditions*. Addition-
ally we lift the pre-unification rules as shown in figure 2 on clauses level. They
work directly on the unification constraint parts of the clauses. For all the rules
in figure 2 we assume the symmetry of =.

The first four rules (o, 1, Dec and Triv) in figure 2 define the deterministic
part of higher-order unification, namely simplification. Rule a eliminates the
top A-binder of both sides in the unification constraint and replaces the variables
of the A-binders by a Skolem term® s, for this clause.

The 7-rule is applied in cases when only one hand side is a A-abstraction®.
The A-abstracted term is again modified by removing the A-binder and by sub-
stituting a Skolem term s, for the bound variable X. The non-abstracted side
is simply applied on s,.

4[Koh94a., Koh94b] introduces these extra-logical variable conditions, for example, to treat
higher-order skolemization in a special way. See also footnote 5.

5 In [Koh94a, Koh94b] instead of a Skolem term sq a new special variable Z9 is introduced.
This is because the author wants to avoid an infinitive set of constants in the signature and
the construction of Skolem terms. In an extra-logical form (variable conditions) he takes
care of the relationship between the different variables occuring in each clause and therefore
he can judge based upon this variable condition which substitutions are legal in a given
context and which are not. Thus each new symbol introduced by one of the inference rules
in [Koh94a, Koh94b] becomes a variable, either of positive character (usual new variables),
negative character (usual new constant) or of a special 0-character (close to Skolem terms,
but weaker in some sense since they are not allowed being bound against any other variable).
Consequently with each new introduced variable the extra-logical variable condition has to
be updated. Here we are not interested in such an extra-logical approach and the reason we
especially introduce a Skolem term here will be clarified in subsection 3.4 when we discuss the
extensionality rule Func.

6Note that this rule is superfluous if we presuppose aB-normal forms. But since we do not
do that this rule is necessary, for example, to show the n-equality of two terms.

CV[(AXaA) = (\Ya.B)]F s, Skolem term for this clause

CV [[s/X]A = [s/Y]B]F ¢

CV[(AXaA) =B}f s, Skolem term for this clause

CV[[s/X]A = (Bs)|F ’
CV [hT” = hV7IF CvlA=Al"
: — . — Dec —— Triv
CV[U'=VIFv. v[U"=V"] ¢
CV[F,U"=rV)F GegB! -
- ————— Flez — Rigid
CVI[F =G)* V[G/F|(FU = hV|F)
CV[F,U" = H;V|¥ G € GB% for some constant gs Flex — Flez

CV[F = G}f V[G/F|([FU = HVJF)

Figure 2: Higher-order (pre-)unification rules

Decomposition is analogous to the first-order case and the rule Triv allows
to remove reflexivity pairs. Rule Dec will be discussed again in connection with
the extensionality rules in section 3.4.

Unfortunately the Flez-Rigid and Flez-Flez rules for higher order unification
are not deterministic. Both rules have to deal with the problem of function or
predicate variables at head position. In the flex-rigid case it is sufficient to
instantiate this headvariable by a most general binding specified by the type
of the headvariable itself and the rigid head. Fortunately the sets of general
bindings are finite for any type and any rigid head and consequently the Flez-
Rigid rule is only finitely branching. In contrast to this the Flez-Flex rule is
infinitely branching since there are infinitely many constant functions which can
be substituted for both heads and which make both terms equal. Additionally
the Flez-Rigid rule introduces redundancies and it is no longer the case that
every successful branch of the unification search tree leads to a distinct solution.

The intention of a theorem prover like LEO which uses refutation principle
is not to enumerate all unifiers for a given unification problem but to seek for
one possible instantiation of a given problem which leads to the contradiction.
This makes it possible to use pre-unification instead of general unification and
thereby to avoid the usage of the Flez-Flex rule in LEO.

INI*VC MPVD a#p aBe{T,F}
€

S
CVvDV[N=M)F

[N*VIM]*VC a€{T,F} CVE E solved for C

F b
NFVCVIN =MJF ¢ NFwbsta©)

[Q»,F]a vC Pe ggil"»v}u{n"lﬁeﬂ
[P/Q)([Q,U**vC vV [Q = PIF)

Prim

Figure 3: Higher-order resolution rules

The four simplification rules together with the Flez-Rigid rule and the con-
vention that flez-flex pairs can be viewed as pre-solved define the calculus

PREUNT.

3.3 Higher-order resolution

The core of the higher-order resolution calculus is given by the three rules
shown in figure 3. As in first-order we introduce the resolution and factorization
rules Res and Fac. But instead of solving the unification problems immediately
within a rule application we delay their solution and incorporate them explicitly
in form of unification constraints in the resulting clauses. Note that the reso-
lution rule as well as the factorization rule is allowed operating on unification
constraints.

Delaying the unification problems until we reach an almost empty clause is
nice in theory but does not work in practice as the search space explodes. In-
stead we are interested in solving the unification constraints as soon as possible.
Most important is that with premature unification all clauses with an unsolvable
unification constraint can be filtered out’. Additionally unification might spe-
cialize our clauses and probably instantiate flexible literals with constant heads
and hence decrease the search space. Therefore rule Subst® allows applying
the substitution substg determined by a disjunction of unification constraints
E which are solved for C' V E back to the other literals in C. Since applying
a substitution substg might result in pre-clause C' we have to apply clause
normalization in order to obtain a proper clause.

7As we will see later this solution is too strong if we want to be complete in Henkin models
since an unsolvable unification constraint might be solvable by using the extensionality rules.
8Note that this rule is more of practical interest, since theoretically in can be avoided.

To find a refutation for a given problem we might have to instantiate some
predicate variables at head positions of some literals in the given clauses by
certain formulas. But unfortunately these instantiations can not be generally
determined by pre-unification within the refutation process. Therefore we intro-
duce the primitive substitution rule Prim. This rule permits to instantiate each
headvariable @, of a flexible literal with a general binding P of type v which
imitates one of the logical constants in {-,Vv} U {IT1?|3 € T}. By substituting
P for @ in a clause C we obtain a pre-clause on which we have to apply clause
normalization to get proper clauses. Note that the rule prim-subst is infinitely
branching.

3.4 Extensionality

The set of rules introduced so far is not able to deal with extensionality in
general and as a consequence examples like E1-E5 are not provable without
using additional axioms for functional extensionality and/or extensionality on
truth values. We want to emphasize that these problems are not specific for the
resolution approach and that other higher-order theorem provers will find them
at least very difficult or tricky.

ao = b, = (VP,,o.Pa = Pb)
VP, 0.P(a, Ab,) = P(bAa)
VP, 0.(Pa, A Pb,) = P(bAa)

(VX VP P(MX) = P(n5.X))) = (VQuoymoQ(AX.mX) =
Q(AX,.nX))

(VX VPis 0 P(Mus X)) = P15, X)) = (YQ(is1)s0@m = Qn)

In Problems E1,E2,E4 and E5 we have used Leibniz definition of equality to
remove the intuitive equality symbols. E1 formulates the extensionality property
for truth values: if a, is equivalent to b, then a, is equal to b, (a, = b, =
a = b)°. E2 states that any property which holds for a, A b, also holds for
bo A a, (or simply that a, A b, = b A a). E3 says, that any predicate P,_,,
which coincidently holds for a, and b, also holds for their conjunction. E4
can be interpreted as an instance of the &-rule!® ((VX,.m,, X = n,,,X) =
(AX,.mX) = (AX,nX)). E5 is an instance of the functional extensionality
axiom for type ¢t = ¢+ (VX,.(m,~.X) = (n,,X) = m =n)!L,

9This is the interesting direction of the extensionality principle for truth values.
10gee [Bar84].
11 This is the interesting direction of the functional extensionality principle.

CV[Mysp =N a_,g]p s new Skolem term for this clause

Func
CV [Ms = Ns]¥ ¢

CV M, =N,F
CNF(C V [M, = N,JF)

Equiv

CVv[M, = Na]F a € BT, pa—so new Skolem term for this clause
c v [pM]T
CV [pN)F

Leib

Figure 4: Extensionality rules

LEO shall especially deal with equality- and extensionality problems and
hence should be able to solve such elementary problems like E1-E5 very fast.
Therefore our goal is to find an extension of the given resolution calculus which
on the one hand introduces full extensionality and on the other hand is useful for
an implementation. Surely, the introduction of axioms for functional extension-
ality and and the extensionality axiom for truth values can solve the problem
in theory but this will lead to an explosion of the search space which can not
be handled very well in practice. Instead we do not change the purely nega-
tive resolution calculus by introducing axioms but introduce the rules shown in
figure 4 for dealing with extensionality.

The first rule Func reflects the functional extensionality property but in a
negative way: if two functions are not equal then there exists an argument s,
on which these functions differ. To ensure soundness s, has to be a new Skolem
term which contains all the free variables occuring in the given clause.

We are interested in adding Skolem terms to arbitrary terms of functional
type with this rule, especially if the unification constraint is not unifiable. But
note that we already introduced two rules — a and 7 in simplification (see figure
2) — which are very similar to this one. Therefore we can restrict this rule here
to the case were N and M are non-abstractions. Or, to turn it around, we can
remove the a and 7 rules from simplification if we consider the rule Func as
purely typed-based and apply B-reduction to both hand sides of the modified
unification constraint.

The second rule Equiv allows to replace each negated equality on type o by
an equivalence. Therefore this rule reflects the extensionality property for truth
values but like Func in a negative way: if two formulas are not equal then they

10

are also not equivalent.

The third rule Leib just instantiates the equality symbol by its Leibniz def-
inition. Thereby we obtain a pre-clause C V [VPy—0.PM, = PN,|F and by
applying clause normalization we get two proper clauses CV[pM|T and CV[pN]¥
where p,—;, is a new Skolem term.

We want to point out that the necessity of rule Fquiv in connection with the
pre-unification rules for dealing with extensionality is also discussed in [Koh95).
But the rules introduced there are not sufficient for full extensionality and, e.g.,
examples E4 and E5 are not provable.

Note that none of three new extensionality rules introduces any flexible literal
and even better, they introduce no new free variable at all.

As mentioned before the new rules strongly connect the unification part of
our calculus with the resolution part. In some sense they make the unifica-
tion part extensional since they allow to modify unification problems which are
not solvable by pre-unification alone in an extensional appropriate way and to
translate them back into usual literals.

We will illustrate this idea by our five examples:

ao = by = (VPsey0.Pa = Pb)

Clause normalization leads to (p is a new Skolem term):

ot: [fpa]"| ez || e [T VEIF] et [T V)"

By resolving c1 against c2 we get:

¢5: [[(pa) = (pb)]*

Even if this is a non-unifiable unification constraint we can apply decom-

position rule Dec:
c6: I [a=08F |

This is still a unification constraint of type o and we can apply rule Equiv:

c7: |[a]T v)T c8: |[a]F v [p)F

The rest of the proof is obvious and we get the contradiction by the clauses
¢3, ¢4, ¢7 and c8.
O (LEO can find this proof within 0.5 sec. on a Sparc Workstation Ultra)

VP,_,0.P(a, Ab,) = P(bAa)

Clause normalization to leads to (p is a new Skolem term):

11

cl: [[p(anb))T c2: | [p(b A a))F

By resolving c! against c2 we get:

c3: [[p(a A b) = p(b A a)]F

On c3 we apply rule Dec:

c4: |[(anbd) = (bAa)F

Rule Equiv is applicable and we get:

c5: | [a)F v [B)F c6: |[a]T c7: | [6])T c8: |[a)T v [b]T

Resolving c6 and c7 against c5 leads to the contradiction.
O (LEO can find this proof within 0.3 sec. on a Sparc Workstation Ultra)

VP,_o.(Pa, A Pb,) = P(a Ab)

By clause normalization we get (p is a new Skolem term):

cl: |[pa)T c2: | [pb)F c3: | [p(a A B))F

We resolve between clauses ¢8 and ¢! and between ¢ and c2:

c4: |[p(a A b) = pa]F c5: | [p(a A b) = pb)F

We can apply the decomposition rule Dec:

c6: [[(a Ab) = a]F c7: |[(a A D) = b)F

Rule Equiv applied on c6 leads to:

¢8: |[a)F v B)F c9: |[a)T v [B)T cl0: | [a)T

Similar for ¢7 we get:

cl1: |[a)F v [b)F c12: l[a]T v B} c13: @

The rest of the refutation proof is obvious: Resolve c10 and c13 against

c8 (or c11).
O (LEO can find this proof within 0.5 sec. on a Sparc Workstation Ultra)

12

(VX VP P(Mi X) = P(n5.X))) = (VQuon—e@(AX,mX) =
Q(AX.nX))

By clause normalization we get (¢ is a new Skolem term.):

cl: | [PmX))F v [P(nX)|T

c2: | [gOX.mX))T 3 | [gAX.nX))F

Unfortunately the idea to resolve c2 and ¢3 immediately against c1 does
not lead to successful refutation. The resulting unification constraints are
not solvable. Therefore we choose another way and resolve between c2
and c¢3:

c4: | [gAXmX) = g(AX,.nX)|F

The decomposition rule Dec is applicable:

c5: L[(/\XL.mX) = (AX,.nX))¥ l

With rule Func we can add a witness s, (skolem term) for the inequality
of these two functions and by S-reduction we get:

F

c6: | [ms, = ns,]

With rule Leib we can derive the clauses ¢7 and ¢8 (note the difference in
the types of constant p,—,, and g(,,,)—,, above):

c7: | [piso(ms)]T ¢8: | [piso(ns)]F

We made a detour to the pre-unification part of the calculus and modified
the clauses ¢2 and c¢8 in an extensionally appropriate way and ¢2 and ¢3
have now their counterparts in ¢7 and ¢8. But in contrast to ¢2 and ¢3
the new clauses can successfully be resolved against c1.

O (LEO can find this proof within 2.5 sec. on a Sparc Workstation Ultra)

(VXVP o0 P(Mis X) = P(15.X)) 2 (YQ (i) »0@m = Q)

By clause normalization we get (g is a new Skolem term.):

cl: [[P(mX)]F v [P(nX)]T c2: |[gm)T c3: | [gn])F

In analogy to example E4 and resolve c2 against c3:

13

c4: |[gm = gn)F

Decomposition rule Dec is applicable:

]F

¢ |lm=n

With rule Func we can add witnesses for the disequality of these two

functions:

The rest of the proof — as the proof so far — is similar to example E4.
O (LEO can find this proof within 2.5 sec. on a Sparc Workstation Ultra)

Note the order in which the extensionality rule were applied in the above
examples. For a practical implementation these examples suggest the following
extensionality treatment of unification constraints: First decompose the unifi-
cation constraint as much as possible. Then use rule Func to add as many ar-
guments as possible to both hand sides of the resulting unification constraints.
And last use rule Leib and/or Egquiv to finish the extensionality treatment. In
this sense the above rules can be combined to form only one rule Ext-Treat.

3.5 Soundness and Completeness

The pre-unification rules in figures 2 are discussed in [Koh94a, Koh94b]!2.

The same holds for the soundness of the resolution rules in figure 3.

Concerning the soundness of the additional extensionality rules and concern-
ing the completeness of the whole introduced calculus with respect to Henkin
models we will state the following remarks.

It is very important for the soundness of the whole system to make sure that
higher-order skolemization is sound. In contrast to [Koh94a, Koh94b] we use a
skolemization technique which is similar to first-order skolemization but which
introduces some additional restrictions as discussed in [Mil83]. This additional
restrictions are necessary since otherwise some instances of the axiom of choice
are provable [And73]. The soundness of this skolemization technique is discussed
in [Mil83].

For the rules Leib and Equiv the soundness is obvious since if we assume
Henkin semantics it is on the one hand allowed to replace each primitive equality
symbol by its Leibniz definition and on the other hand to replace an equality on
type o by an equivalence. For rule Equiv we have further to ensure the soundness
of the clause normalization rules CVF (see [Koh94a, Koh94b]). And for rule Leib

12There are slight differences since we do not deal with sorts here and do not introduce an
extra-logical treatment of skolemization.

14

note that p,—,, is a new Skolem term for the given clause. Rule Func looks very
dangerous and if we are not careful enough and allow an arbitrary constant to
be applied on both hand sides of the equations then we would immediately lose
soundness and we could prove invalid formulas like AX,.X, = AX,.Y,. But by
skolemization with respect to the free variables in the clause we can avoid this
and soundness is guaranteed.

In contrast to soundness the completeness proof is a rather difficult task.
But even if a detailed proof is still lacking the author has worked out a proof
sketch that uses the idea of abstract consistency properties. This proof tech-
nique was introduced by Smullyan [Smu63] and adapted for general models by
Andrews [And71]. Here we need a further extension for Henkin semantic as
described in [Koh93, Koh94a]. With a slightly modification in the definition
of extensional abstract consistency properties in [Koh94a, Koh94b] the proof
seems to be straightforward. But first we have to ensure that the necessary
modification in the definition of extensional abstract consistency properties is
sound.

Further evidence for the Henkin completeness of the introduced calculus is
given by the examples discussed so far.

4 The LEO System

The introduced calculus is implemented in the LEO theorem prover for clas-
sical higher-order logic. This implementation demonstrates that higher-order
resolution can be an alternative to other approaches, e.g., the mating method
[And76, And81]. And it demonstrates strongly that higher-order resolution
might be an appropriate approach to embed full extensionality which is still a
challenging problem for all automated higher-order theorem provers known to
the author.

In this section we will suggest and discuss possible strategies for an exten-
sional higher-order resolution theorem prover. Whereas the first implementation
of LEO was strongly oriented on the standard first-order set of support strategy
as used by OTTER [McC94] and did not deal with extensionality, the current
architectures (Versions 07 and 08) take more and more higher-order specific
demands into account and integrate the extensionality rules.

Before we discuss the basic datastructures of LEO and continue with the
discussion of the strategies, we will focus on the two main problems of LEO’s
implementation: the handling and integration of the pre-unification and exten-
sionality rules.

4.1 The embedding of pre-unification

When shall we apply pre-unification? Delaying it until we reach clauses con-
sisting only of unification constraints would lead to an enormous search space

15

explosion and we could probably never solve any non trivial problem. Instead we
are strongly interested in pre-unifying newly derived clauses as soon as possible
in order to prevent this explosion.

Thus we combine all our pre-unification rules and the rule Subst to one new
rule Pre-Unify. This new rule can be used in every loop of the refutation process
in order to filter out all non-unifiable clauses and to instantiate the unifiable
clauses with their pre-unifiers. But unfortunately higher-order unification (and
higher-order pre-unification) is undecidable and we have to limit the search
space for pre-unification since otherwise our general refutation procedure may
run into an dead end. Hence when applying this rule to any given clause the
search for further pre-unifiers stops as soon as the specified limit'? is reached.
The result of the application is a (possibly empty) set of pre-unified clauses with
respect to the given search depth. Note that we have to take care of the flez-flex
pairs generated within pre-unification. These flex-flex pairs have to be added
as unification constraints to the particular result clauses.

Unfortunately by this search space restriction for pre-unification we lose com-
pleteness. A solution is to store information about each aborted pre-unification
process in a special continuation which can be activated again in a later stage
of the refutation process. The pre-unification algorithm provided by KEIM al-
lows to create such continuations and to proceed with the interrupted search for
pre-unifiers by activating this continuations again.

4.2 The embedding of extensionality

The idea of the extensionality rules is to modify literals by a detour to the
unification part of the calculus. Unfortunately this is opposed to the newly
introduced rule Pre-Unify since the intention of this rule is to filter out all non-
unifiable clauses even if among them are some clauses which are interesting for
an extensionality treatment!4. A second less serious problem is that the exten-
sionality treatment uses decomposition rule Dec, which is no longer separately
available since all pre-unification rules are combined into rule Pre-Unify.

The latter problem can easily be solved and in analogy to the rule Pre-Unify
we combine all rules necessary for extensionality treatment to one rule Ezt- Treat.
Note that we have already discussed the idea of an extensionality treatment at
the end of subsection 3.4.

To tackle the first problem — the conflict between rule Pre-Unify, which tries
to eliminate all non-unifiable clauses from search space and the rule Fzt-Treat
which wants to work on certain non-unifiable clauses — we have to decide very
carefully about the order we want to apply both rules. In LEO this is solved
as follows: before applying rule Pre-Unify rule on a clause, LEO verifies if this
clause is suited for an extensionality treatment. If so, this clause is put into a

13This limit is specified by a flag of LEO.
14gee for example clause cf in Example E4 (or E5) in subsection 3.4.

16

set of interesting extensionality objects EXT from which it can be chosen later
in the search process to be extensionally processed.

Why does LEO not immediately apply rule Ext-Treat to an extensionality
interesting clause? This is because we want to introduce a mechanism which
allows us to delay and control the use of the extensionality rules in order to
prevent the search space from a flooding of extensionally processed clauses.
Additionally we want to have a mechanism to prevent redundancy. To be more
concrete about that, suppose that the following clauses are given:

cl: |L' Vv I?v [‘I(L—n)—mft—n = Q(L—n)—mgt-—)b]F

c2: L*v [T(L-—)L)-)Oft—n = T(L—n)—mgt—n]F

By our extensionality treatment applied on c! we get:

¢8: | L'V L2V [poo(fs.)]T c4: |L'V L2V [p,0(gs.))F

Similar we obtain for c2:

c5: L2V [pl (fs))T| b L2V [p]_,,(g5)]" |

Since p,p’, s and s’ are all new Skolem terms it is obvious that every proof which
can be found with ¢8 and ¢4 — both are derived from ¢! — can also be found
with clauses ¢5 and c6, which are derived from c2. But none of these clauses
subsumes any other and especially c¢2 does not subsume c1.

What we need is a special filter for extensionality objects in the sense of a
special ‘extensionality subsumption’ which works on the set EXT and filters out
all redundant candidates. In the current implementation LEO uses a very weak
filter which applies usual subsumption after decomposing the clauses as much
as possible. Note that after decomposing cI and c2, c2 indeed subsumes c1.

But which clauses are interesting for an extensionality treatment and should
be put into EXT? It is obvious that not every non-unifiable clause is immediately
a candidate for an extensionality treatment. For example the non-unifiable
clause

[PL—mXL]T \ [a:, = fz-—nbz]F

is certainly not extensionally interesting. And on the other hand there are
certain clauses among the unifiable or undecidable clauses which are well suited
for an extensionality treatment, e.g., the clause

[Po—mao = "‘Qo—mao]F v [Qo—)oaa = Ro-)oao]FV
[Ro—wao = _'Sa—boao]p \ [So—mao = Po—mao]F

17

This pre-unification problem can not be solved by pre-unification rules alone!.
Instead pre-unification runs into a dead end and creates by using rule Flez-
Rigid the same problem'® again and again, but does not classify this clause
as non-unifiable. Even so this clause is very interesting for an extensionality
treatment.

Thus to decide which clauses should be put into EXT, LEO uses a predicate
eztensionally interesting which defines a clause to be extensionally interesting
if one of its unification constraints (also called unification pairs) is. And an
unification pair is extensionally interesting if its terms fulfill one of the following
conditions 17:

1. At least one of the two terms has a logical connective at head position.
2. At least one of the two terms is a A-abstraction.

3. Both terms are unequal constants of functional type.

4

. If the decomposition rule is applicable and the common head symbol p is
not a Skolem constant introduced by rule Leib, then one of the decomposed
unification constraints has to be extensionally interesting.

Summing up we can describe the embedding of the extensionality treatment as
follows: On all new derived clauses in each loop of the refutation process we first
apply our predicate extensionally interesting and decide which clauses should
be put into the set EXT for later usage. The integration of the extensionally
interesting clauses is done with respect to a special filter which is a generalization
of usual subsumption. Then the rule Pre-Unify can be used to eliminate all non-
unifiable clauses from the set of derived clauses before we integrate them into
the set of support SOS.

4.3 The implementation platform and the basic datastruc-
tures

LEO is implemented in the object-oriented extension CLOS of COMMON LisP and

is based on the platform KEiM [HKK™*94a, Nes94] which provides most of the

required datastructures to implement a higher-order theorem prover. Building
upon this platform LEO introduces the following special datastructures:

15The pre-unification rules do not know about the fact that we are interested in Henkin
models here, where the set of truth values consists of exactly two elements. This knowledge
is brought into the calculus by the additional extensionality rules. One solution for this
unification problem within Henkin models is: P,S + AXo.Xo; Q,R + AXo.2Xo; a « T.

16Modulo variable renaming.
17This conditions might not be sufficient and it seems to be interesting to examine this

question in detail.

18

e Literals'®
The datastructure for literals provide slots for the polarity, the atom, the
weight and the clause-position information. The weight of a (usual) literal
is given by the number of symbols occuring in its atom. By the clause-
position information, which is a pair consisting of a position and a pointer
to a certain clause, each literal is related to exactly those clause in which
it occurs.

o Unification constraints
Unification constraints are special literals. They are differed from usual
literals to assign them a very low weight. This is necessary because oth-
erwise, for example, a unit clause with many symbols in its unification
constraints would get a very high weight and would be chosen very late
as lightest clause from the set of support. Thus in the current implemen-
tation the weight of unification constraints is fixed at 0.

e Extensionality literals

Like unification constraints extensionality literals are treated specially.
During the search process such literals are generated within the rule Lezb.
Since it might be appropriate to prefer clauses obtained by a Leib-step
in the refutation process or to put them at a disadvantage, LEO allows
treating extensionality literals special and for example to assign them a
certain weight. In the current implementation they get the constant weight
1.

.o Clauses

Clauses provide the following slots: positive literals, negative literals, uni-
fication constraints, weight, age, parentl, parent2, justification and some
slots for storing additional information concerning the clauses status with
respect to the rule Prim-Subst and the extensionality rules. The weight
of a clause is computed by summing up the weights of its literals and the
age is given by adding 1 to the maximum age of its parents. Input clauses
get the age 0. Very important in connection with the use of an indexing-
mechanism (see [K1e97] [Gra95]) is that the clause-position info in each of
the literals has to be correct.

LEo is based upon four cornerstones: the set of support (SOS), the usable
set (USABLE) - we assume that the standard set of support strategy is known
to the reader — the set of extensionality objects (EXT) and a set of continuations
for higher-order pre-unification (CONT).

e SOS
The set of support stores all clauses which are waiting to be chosen as

18K 1M already provides datastructures for literals and clauses, but they are too weak for our
purpose. Therefore we introduce special datastructures which are realized as CLOS subclasses
of the KEIM-literals and -clauses.

19

lightest clause in one of the next loops. These clauses are either directly
connected to the negated input theorem or they are derived clauses from a
previous loop in the search process. The set of support is implemented as
an ordinary list-structure. But especially in connection with subsumption
it seems to be appropriate to implement this set similar to the usable set
basing upon literal indices.

e USABLE
The usable set contains all elements which either reflect the input axioms
or which have been chosen as a lightest clause before. The clauses of the
usable set are resolved in each loop against the lightest clause. Conse-
quently the usable set should be kept as small as possible since its number
of elements intensely influences the amount of derived clauses in each
step. Thus LEO uses subsumption to filter out all redundant clauses. But
subsumption!? itself is a very time expensive algorithm and to increase its
speed the usable set is implemented in LEO as a pair of two literal indices:
one literal index for the positive literals and another one for the negative
literals. This makes it possible for LEO to use indexing techniques as in-
troduced in [Gra95] for first-order logic and adapted in [K1e97] for higher
order logic to determine which literal in the index unifies or matches with
which literal of a given clause, e.g., the lightest clause. By doing this for all
literals of a given clause and with the help of the particular substitutions
as well as the very important clause-position information in each literal it
is possible to implement a faster even not satisfyingly fast subsumption
algorithm. Additionally these literal indices can be used to determine
possible resolution partners. But note that as soon as we are interested
in extensionality we want to allow resolution-steps also on non-unifiable

literals.

e EXT

As already motivated LEO stores those clauses which are interesting for
a extensionality treatment in the set of extensionally interesting objects
EXT in order to prevent them from deletion by the pre-unification filter.
The set EXT is implemented as an ordinary list. When a new clause is
inserted into this list a special extensionality subsumption filter is used
to remove redundant extensionality objects. Choosing objects from EXT
can be handled analogous to choosing clauses from the set of support.

e CONT
Every time pre-unification algorithm stops because of the given search
depth limit a continuation is passed back to the main process. This con-

19The currently used higher-order subsumption algorithm is only a very unprecise filter and
the author believes that the question of a fast and precise subsumption algorithm should be
examined.

20

tinuation is put into the set of continuations CONT?° from which it can
be chosen later to activate the search process again with new search depth
resources. The list of continuations can be implemented as a simple queue.

There are several additional clause storing objects: the set of resolved clauses
(Resolved), the set of paramodulated clauses (Paramod), the set of factorized
clauses (Factorized), the set of primitive substituted clauses (Prim-subst), the
set of extensionally modified clauses (Ext-mod) , the set of continued pre-uni
clauses (Uni-cont), the set of processed clauses (Processed) and finally the set
of unified clauses (Unified). They are all used as clause buffers within each loop
and in the current implementation they are all realized by simple list-structures.

4.4 LEO’s strategies

LEO is still in an experimental stage where neither the principle architecture
and strategy nor the adjustment of LEO’s flags are optimized.

In this section we discuss two experimental strategies, LEO07 and LEOOS,
which differ mainly in the integration and use of pre-unification. Both strategies
have different advantages and disadvantages and both are extensions of the
standard first-order set of support strategy. Whereas the first strategy uses
pre-unification and subsumption intensely to keep the amount of clauses in the
search space as low as possible the second strategy tries to avoid the time-
expensive pre-unification as much as possible.

The performance of each of these strategies is further adjustable by a set of
flags which we will not discuss here in detail.

A graphical overview to the strategies LEOO7 and LEOO8 is given by the
figures 5 and 6.

4.4.1 The refutation strategy LEOO7

By reading an input problem the given formulas are normalized with the CNF-
algorithm and the resulting clauses are put either into the set of support or into
the set of usable depending if they are connected to the theorem or to an axiom.
Initially the set of extensionality objects EXT and the set of continuations
CONT are empty.

In each loop of the refutation process LEO chooses a lightest clause from
SOS. The criterion for this selection is either the weight of the clauses or their
age. A flag defines in which loops LEO switches between these two selection
criteria. After selection the lightest clause is put into USABLE and by flags
one can decide if this should be done with respect to forward and/or backward
subsumption. Next the lightest clause is resolved against all clauses in this set

20These ideas are not fully implemented yet. Nonetheless, the KEIM pre-unification package
already provides continuations.

21

USABLE < SOS
Architecture of

LEOO07

L. Paramod | @
© by Paramod | e

=== notimplemented yet

(Factorized J { Prim-subst J ®

(1) Choose lightcst from SOS
light. 1o USABLE
Resolve with USABLE
Paramodulate with USABLE
Factorize lightest

Prim. subst. lightest

Extens. treatm. on EXT
Pre-unify on CONT

Process results

Check if extens. interesting

L o | (J _
Processed Uni
& |

[Ext-mod] [Uni-cont J

@

,
=
(13

[L

©f

4

<~ -~ e -

Store continuation

) Pre-unify processed clauses
Integrate Unified into SOS

EXT CONT

Figure 5: The refutation strategy LEOO7

and the resolvents are collected in the set Resolved. Additionally paramodula-
tion rule can be used to derive all paramodulants between the lightest clause
and USABLE?!. Now factorization and primitive substitution is applied on the
lightest clause. The results are stored in the sets Factorized and Prim-subst.
In the next step LEO operates on EXT and CONT. As previously mentioned
it might not be appropriate to do this in every loop since this could increase
the search space very fast. Instead LEO operates on extensionality clauses and
continuations only in each n-th respectively m-th loop, whereas n and m are
specified by flags. In the n-th loop LEO chooses the lightest extensionality object
from EXT and applies the rule Ext-Treat to it. Analogously in the m-th loop
one object is chosen from CONT and the interrupted pre-unification process is
being continued until the specified search depth limit is reached again®?. The
resulting clauses of the extensionality treatment are put into the set Ext-mod

21paramodulation is not fully implemented yet. The question of how to embed rules for a
primitive treatment of equality will be examined in the next phase of the LEO project.
22The operation on the continuations is not fully implemented yet.

22

and those resulting from the continuation of pre-unification are inserted into the
set Uni-cont. This finishes the deriving phase.

Now LEO is interested in eliminating as much redundant clauses as possible
from the newly derived clauses. For this LEO can apply different filter, e.g.,
tautology?3, to the different sets of derived clauses before he integrates the
remaining clauses in the set Processed. Next LEO decides which clauses in
Processed are extensionally interesting and puts them into EXT for a later
extensionality treatment.

The set of processed clauses then becomes pre-unified and thereby all non-
unifiable clauses are eliminated. The result of the pre-unification step is a set
of instances (Unified) for the clauses in Processed. Note that the clauses in
Unified may still contain unification constraints — namely flex-flex pairs. Every
time the unification process is stopped because of the search depth limit the
resulting continuation is integrated in the set of continuations®*.

The last but very time consuming step if subsumption is activated is the
integration of the set of unified clauses into the set of support.

4.4.2 The refutation strategy LEOO8

The main difference between the strategy of LEOO7 and LEOOS (see figure 6)
concerns the integration and usage of pre-unification. The aim of LEOOS is to
avoid the very expensive pre-unification algorithm as much as possible. Whereas
in LEOOQ7 all clauses in Processed become pre-unified before they are integrated
into the set of support, LEOO8 does not filter out the non-unifiable clauses
from Processed. Instead pre-unification is applied on the lightest clause at the
beginning of each loop. If the chosen lightest clause is pre-unifiable all the
resulting clauses are stored in Unified. If instead the lightest clause is not pre-
unifiable LEO0O8 throws this clause away and chooses the next clause from SOS.
LEO proceeds with the clauses in Unified as the clauses of interest in this loop
of the refutation process.

4.5 Experiences with LEO07 and LEOO8

Since the aim of strategy LEOOS is to avoid as much pre-unification steps as
possible, subsumption is used very rarely, e.g., only to keep USABLE as small
as possible.

The examples discussed in this paper are solved faster by LEOO8 but note
that we are still dealing with very simple problems. The set of support in
LEOO8 increases very fast and therefore LEOO8 should not be able to find very
deep and complicated proofs. Additionally, the success of this strategy strongly
depends on the criteria used to choose the lightest clause from SOS. Only if

231n the current implementation LEO uses only a very weak tautology filter.
24Not fully implemented yet.

23

USABLE SOS [,
® Architecture of
------------------------------ : LEO08

1l
i

'

L

:

:

L}

H

1

H —> implemented
' - -~ notimplemented yet
]

'

l

'

+

]

L}

1

L

1}

L}

‘

[Factorized J [Prim-subst] 17

et
@ Processed
& | °

[Ext-mod] [Uni-cont]

(1) Cnoose lightest from SOS

(2) Check if extens. interesting
Pre-unify lightest

Store continuation

Integrate Unified into USABLE
Resolve with USABLE
Paramodulate with USABLE
Factorize lightest

Prim. subst. lightest

Extens. treatm. on EXT

-1 EXT I CONT

Figure 6: The refutation strategy LEOO8

the interesting clauses can be found very early among all clauses in SOS this
strategy has some advantages.

LEOO7 is obviously the right approach for proving more complicated theo-
rems. But when running more complicated examples with fully enabled sub-
sumption LEO spends most of the time for pre-unification and subsumption.

Therefore the efficiency of the pre-unmification and subsumption algorithms
highly influences the efficiency of LEO and consequently any improvement in
these algorithms will be very important for the LEO project.

4.6 The importance of rule Leib

Every refutation which uses the results of the rule Leib can possibly be done
without this rule by resolving against the extensional modified unification con-
straint instead?®. For example the application of rule Leib in the proof of exam-

25This idea is due to Frank Pfenning (Dep. of Computer Science, Carnegie Mellon Univer-
sity, Pittsburgh, USA). He suggested to introduce ‘primitive equality’ and to replace every

24

ple E4 can be replaced by an immediate resolution step between clause c! and
c6:

¢7: | [P(mX))F v [P(nX) = (ms =ns)|F

And by pre-unification (P < AY,.(ms = Y) and X + s) we immediately get
the empty clause.

However, there are two reasons why rule Leib seems to be very appropriate.
First the completeness proof with respect to Henkin models seems to be more
complicated without rule Leib. The second reason is a practical one and very
important. If we avoid rule Leib, we will get an additional control problem
since we would have to allow clauses with non-unifiable unification constraints
in our search space. An example is clause c6 above. Note that in our current
implementation either c¢6 can never become an element of the set of support (in
LEO007) because of the pre-unification filter or ¢6 can not be pre-unified after
being chosen as lightest clause (in LEO0S).

Thus by avoiding rule Leib we can not use pre-unification in this simple
way to prevent any non-unifiable clause from being put into SOS (in LE007)
or from being worked upon (in LEO08). If we use rule Leib instead then any
extensionally modified unification constraint gets transformed back into non-
unification literals and there is no need to treat the resulting clauses in a special
way.

5 Conclusion and further work

5.1 Conclusion

In the first part of this paper we have discussed an extension of Huet’s higher-
order resolution approach and motivated the completeness of the extended cal-
culus with respect to Henkin models. Aside from [Koh95]?¢ this is the first
approach known to the author which tries to embed full extensionality in a
higher-order refutation calculus without using axioms. The idea of the novel
extensionality rules is to combine the power of classical higher-order logic in
an appropriate way with the pre-unification rules in order to obtain full exten-
sionality and Henkin completeness. On different and for current higher-order
theorem prover still challenging examples we have demonstrated the practical

unification constraint between A-terms of functional type by an equation of primitive type.
Note that this is also the intention of rule Func within the extensionality treatment discussed
in section 3.4.

26[Koh95] extends a higher-order tableaux calculus in order to obtain extensionality and
therefore a tableaux rule which is analogous to rule Equiv is introduced to be used in connection
with the other pre-unification rules. Unfortunately the pre-unification rules and « introduce
a special variable Z° (instead of a skolem term s like in our calculus) which can not be
substituted for any other variable. Hence the resulting calculus is to weak to establish full
extensionality (e.g., examples E4 and E5 can not be proven in this calculus).

25

fitness of the extensional resolution calculus and shown that they can be solved
very easily within this approach. In some remarks we have pointed out that
the calculus might still contain theoretical redundancies and that there exist
different ideas for a further improvement.

In the second part we have introduced the LEO system which implements the
introduced extensional higher-order resolution calculus. We have discussed the
main ideas concerning the undecidability problem of higher-order pre-unification
and the integration of the extensionality rules. We have further sketched the
basic datastructures and suggested two slightly different refutation strategies
(LEOO7 and LEOO8) which are both extensions of the standard first-order set of
support strategy.

The general aim of this paper was to demonstrate that higher-order res-
olution can be a reasonable approach and that it provides a suited basis for
embedding full extensionality.

5.2 Further work

Since the LEO project is a very young project, there are many open tasks.

Among these the elaboration of the formal proofs has a very high priority
and in connection with this proofs the theoretical necessity of rule Leib should
be examined in detail.

Another important problem is the theoretical and practical examination of
higher order subsumption. As subsumption is strongly connected to unifica-
tion/matching it might be worth to examine how much profit a change of the
datastructures (e.g., usage of explicit substitutions) can bring. A more techni-
cal problem is the embedding of the higher-order indexing techniques [K1e97] as
their integration in the current implementation is rather poor yet.

A very interesting question concerns the the connection between the in-
finitely branching rule Prim-subst and the new extensionality rules. By gen-
eralizing the resolution and factorization rules in an appropriate way it seems
to be possible to avoid the primitive substitution rule in many examples which
usually presuppose the usage of this rule. Therefore the interesting connection
between the extensionality rules and the primitive substitution rule should be
examined in theory.

Very important for the practical progress of LEO is the refinement of the
discussed architecture and strategies or the development of new and possibly
much better strategies. Additionally LEO should be applied on larger and more
complicated examples.

LEO is intended to become a powerful subsystem of OMEGA. Therefore
many questions will arise concerning the integration of LEO into an interactive
proof development system like OMEGA. E.g., similar to the translation between
the mating calculus and the ND-calculus from TPS to ETPS [Pfe87], it will be
necessary to translate the resolution proofs (with extensionality) back into the
ND-calculus used by the OMEGA-system.

26

5.3 Acknowledgements

I am deeply indebted to Peter Andrews, Frank Pfenning and the researchers
and students around the TPs project at Carnegie Mellon University for the new
insights into higher-order logic they brought to me and the time they spent in
discussing the ideas of this paper with me. My special thanks to Peter Andrews,
Michael Kohlhase and Jorg Siekmann who made my stay in this exceptional
research environment possible. Lastly I want to thank the ‘Studienstiftung des
Deutschen Volkes’ for providing the necessary financial support without insisting
on many paperwork.

References

[ABI*96]

[AINP90]

[And71]
[And72]

[And73]
[And76]

[And81]

[Bar84]
[BCF+97]

[BKM]

[Bun94]
[Chu4o]
[GM93)
[Gra95]

(GS89)

Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfenning,
and Hongwei Xi. TPS: A theorem-proving system for classical type theory. Jour-
nal of Automated Reasoning, 16:321-353, 1996.

Peter B. Andrews, Sunil Issar, Dan Nesmith, and Frank Pfenning. The TPS the-

orem proving system. In Mark Stickel, editor, Proceedings of the 10th Conference
on Automated Deduction, number 449 in LNCS, Kaiserslautern, Germany, 1990.

Peter B. Andrews. Resolution in type theory. Journal of Symbolic Logic,
36(3):414-432, 1971.

Peter B. Andrews. General models and extensionality. Journal of Symbolic Logic,
37(2):395-397, 1972.

Peter B. Andrews, 1973. letter to Roger Hindley dated January 22, 1973.

Peter B. Andrews. Refutations by matings. JEEE Trans. Comp., C-25(8):801-
807, 1976.

Peter B. Andrews. Theorem proving via general matings. Journal of the Asso-
ciation for Computing Machinery, 28(2):193-214, April 1981.

H. P. Barendregt. The Lambda Calculus. North Holland, 1984.

C. Benzmiiller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Ker-
ber, M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaarschmidt, J. Siek-
mann, and V. Sorge. (IMEGA: Towards a mathematical assistant. In William

McCune, editor, Proceedings of the 14th Conference on Automated Deduction,
LNAI, Townsville, Australia, 1997. Springer Verlag.

R. S. Boyer, M. Kaufmann, and J. S. Moore. The boyer-moore theorem prover
and its interactive enhancement. Computers and Mathematics with Applications.

Alan Bundy, editor. Proceedings of the 12th Conference on Automated Deduc-
tion, number 814 in LNAI, Nancy, France, 1994. Springer Verlag.

Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56-68, 1940.

M. J. C. Gordon and T. F. Melham. Introduction to HOL — A theorem proving
environment for higher order logic. Cambridge University Press, 1993.

Peter Graf. Term Indezing. PhD thesis, Universitaet des Saarlandes, Saar-
bruecken, Germany, July 1995.

Jean H. Gallier and Wayne Snyder. Complete sets of transformations for general
E-unification. Theoretical Computer Science, (67):203-260, 1989.

27

[Hen50]

[HKK+94a)

[HKK+94b)

[Hue72]
[Hue73]
[Hue75]
[K1e97]
[Koh93)]
[Koh94a]
[Koh94b)

[Koh95)

[McC94]
[Mil83]
[Nes94]

[ORS92]

[Pfe87]
[Smu63]
[Ss89)

[WGR96)

WY

il

\ Y

Leon Henkin. Completeness in the theory of types. Journal of Symbolic Logic,
15(2):81-91, 1950.

Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan Nesmith,
Jorn Richts, and Jorg Siekmann. Keim: A toolkit for automated deduction. In
Bundy [Bun94], pages 807-810.

Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Daniel Ne-
smith, Jérn Richts, and Jorg Siekmann. 2-MKRP a proof development environ-
ment. In Bundy [Bun94], pages 788-792.

Gérard P. Huet. Constrained Resolution: A Complete Method for Higher Order
Logic. PhD thesis, Case Western Reserve University, 1972.

Gérard P. Huet. A mechanization of type theory. In Proceedings of the Third
International Joint Conference on Artificial Intelligence, pages 139-146, 1973.

Gérard P. Huet. An unification algorithm for typed A-calculus. Theoretical
Computer Science, 1:27-57, 1975.

Lars Klein. Indexing fiir Terme h6herer Stufe. Master’s thesis, FB 14 Informatik,
Universitit des Saarlandes, Saarbriicken, Germany, 1997.

Michael Kohlhase. A unifying principle for extensional higher-order logic. Tech-
nical Report 93-153, Dept. of Mathematics, Carnegie Mellon University, 1993.

Michael Kohlhase. Higher-order order-sorted resolution. Seki Report SR-94-1,
Fachbereich Informatik, Universitdt des Saarlandes, 1994.

Michael Kohlhase. A Mechanization of Sorted Higher-Order Logic Based on the
Resolution Principle. PhD thesis, Universitdt des Saarlandes, 1994.

Michael Kohlhase. Higher-order tableaux. In R. Hahnle P. Baumgartner and

J. Posegga, editors, Theorem Proving with Analytic Tableauz and Related Meth-
ods, volume 918 of Lecture Notes in Artificial Intelligence, pages 294-309, 1995.

W. W. McCune. Otter 3.0 reference manual and guide. Technical Report ANL-
94-6, Argonne National Laboratory, Argonne, Illinois 60439, USA, 1994.

Dale Miller. Proofs in Higher-Order Logic. PhD thesis, Carnegie-Mellon Univer-
sity, Pittsburgh Pa.,USA, 1983.

Dan Nesmith, editor. KEIM-Manual. Version 1.2, 1994. Universitdt des Saarlan-
des, Germany. _

S. Owre, J. M. Rushby, and N. Shankar. PVS: a prototype verification system. In
D. Kapur, editor, Proceedings of the 11th Conference on Automated Deduction,
volume 607 of LNCS, pages 748-752, Saratoga Spings, NY, USA, 1992. Springer
Verlag.

F. Pfenning. Proof Transformations in Higher-Order Logic. PhD thesis,
Carnegie-Mellon University, Pittsburgh Pa.,USA, 1987.

Raymond M. Smullyan. A unifying principle for quantification theory. Proc.
Nat. Acad Sciences, 49:828-832, 1963.

Manfred Schmidt-SchauB. Computational Aspects of an Order-Sorted Logic with
Term Declarations, volume 395 of LNAI Springer Verlag, 1989.

Christoph Weidenbach, Bernd Gaede, and Georg Rock. Spass & flotter, version
0.42. In M.A. McRobbie and J.K Slaney, editors, Proceedings of the 13th Con-
ference on Automated Deduction, number 1104 in LNAI, New Brunswick, NJ,
USA, 1996. Springer Verlag.

28

