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Abstract:
We shall prove the following results concerning effective reduction and conversion
strategies for combinators
(1)There is an effective one-step cofinal reduction strategy (answering a question of
Barendregt [2] 13.6.6). :
(2)There is no effective confluence function but there is an effective omne-step
confluence
strategy (answering a question of Isles reported in [1]).
(3)There is an effective one-step enumeration strategy (answering an obvious
question).
(4)There is an effective one-step Church-Rosser conversion strategy ("almost"
answering
a question of Bergstra and Klop [3])
1.Preliminaries
We work in the set I' of applicative combinations (below called combinators) of S
and K.
'=', '->>'. '<->', and '->' denote resp. conversion, reduction, one-step conversion, and one-
step reduction, in all cases (weak) beta, of combinators. In [ 2 ] Barendregt defines a
reduction
strategy as a map ¢ : I' -> I such that, for all combinators M, M ->> ¢(M). ¢ : T ->T is a
con-
version strategy if , for all combinators M, M = ¢(M). In each case, we say ¢ is one-step
if we have M -> ¢(M) resp. M <-> ¢(M), and ¢ is effective if ¢ is a total recursive
function,
after encoding.
Although we shall state our principal results for combinations of S and K ,they
remain .
true for other choices of bases. Our main results do not automatically carry over to
lambda '
calculus; this is because we shall make heavy use of the principle
Residuals of redexes are disjoint .
Below = is used for syntactic identity.
We define the depth, d(M), of a combinator M recursively as follows:
dS) =dK) =1
d(MN) = 1+ Max{d(M),d(N)}.



We shall assume that the combinators are linearly ordered by -< so that d(M) < d(N) =>
M -< N. Let D be the digraph of the one step reduction relation, and D(m) the
subdigraph induced by all combinators of depth < m. Let D(M) be the weakly
connected component of D(d(M)) containing M (weakly connected = connected in the
undirected sense). Similarly, _
define D*(M) to be the weakly connected component containing M of the subdigraph
of D
induced by all combinators -< M In addition, let p(M) be the -< least element of D(M).
If o is a reduction from M to N we write 6 : M ->> N. We also consider pairs (M,F )
where F 1is a set of disjoint (non-overlapping) redexes of M and we write F/c for the
set of residuals of F under o. F/o is also a set of disjoint redexes and we write G :
(M,F ) ->> (N,F/c) to show the action of o on F . We shall adopt for the most part the
notations of [ 2 ], especially those of chapters 6 and 12. (adapted to combinations of S
and K). In particular, n is the combinatory integer representing n, and the
combinatory integer representing the Godel number of X is 'X'.
[x] is the usual abstraction (of x) algorithm for combinators.
2.An Effective One-step Cofinal Reduction Strategy

We say that the pair (N,F ) is in D(M) if N belongs to D(M). The pair (N,F ) in D(M)
is said
to be active for M if there is a o contained in D(M) such that o : (N,F ) ->> (M,F/c) but
there
is no reduction 1 contained in D(M) with 1 : (N,F ) ->> (M,9$). A o of this sort, with F/c
as small as possible, is Said to be minimal witness to the activity of (N,F ).
Remark: If there is no pair (N,F ) active for M then M is recurrent ( [ 4 ]). This is
because if
for each disjoint set of M redexes F there is a reduction T : (M,F ) ->> (M,$) then by
induction M ->> N => N ->> M.

The pairs (N,F' ) can be ordered in type w* (the type of the non-positive integers).
We
refer to the non-positive integer corresponding to (NF ). as its priority.

We shall now describe an algorithm for one-step reduction which will generate a
cofinal reduction sequence.
The Algorithm A
Input; a combinator M
Output; a combinator A(M) such that M -> A(M) unless M is normal in which case
AM) =M.
Begin;
(1) Decide whether there is a pair in D(M) active for M.
(2) If the answer to (1) is yes then find a pair (N,F ) of highest priority in D(M) which
is
active for M and a minimal witness ¢ to the activity of (N,F ) contained in D(M). If
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the
answer to (1) is no then go to (4).
(3)If F/o is a singleton [R} then set A(M) = Cpl(M,{R}) (see [ 2 ] pg 292). Otherwise
select R
in F/o so that d(M) < d(Cpl(M,{R})) (such R exists since residuals of redexes are
disjoint)
and set AM) = Cpl(M,{R}). ‘
(4)If M is normal then set A(M) = M else set A(M) = any immediate reduct of M.
End.
Proposition: A is an effective one-step cofinal reduction strategy.
Proof: We must show cofinality. Consider the itertions M -> AM) -> A*2(M) ->... of the
A on M.If this reduction sequence does not leave D(M) then it must cycle ; in other
words it
contains a segment of the form N -> A(N) -> ... -> A*n(N) -> N. Let k be the largest < n
so that
d(A*k(N)) = max { d(AMNN)) : i =0,1,...,n } and set N(i) = A*k+i (mod n) (N). Thus the
reduction
sequence N(0) -> N(1) ->...-> N(n) -> N(0) is contained in D(N(0)). By our previous
remark, if :
instruction (4) in A is executed for any of the transitions N(i) -> N(i+1) then the
coresponding
N(i) is recurrent and the sequence of iterations of A on M is certainly cofinal.
Otherwise, for
each i = 0,1,...,n, we can find a pair (P(i),F (i)) in D(N(i)) and a o(i) : (P(), F (i)) ->>
(N@),F 1)/
o(i)) contained in D(N(i)), obtained in the execution of instrucxtion (2) in A on N(i).
We
make the following observations.
(1) d(N(0)) = d(N(i)) and for the reduction 1(i) = N(i) -> N(i+1) -> ...-> N(0) we have
(F (1)/o(i))/z(i) is not empty.
This is proved by induction on i. For i = 0, F (0)/6(0) has residuals in N(O) since
(P(0),
F (0)) was active for N(0). For i > 0, since F (i-1)/5(i-1) has residuals in N(0) we have
d(N(@i)) > d(N(i-1)). In particular d(N(i)) = d(N(i-1)) = ... = d(N(0)). If F (i)/c(i) has no
residuals
in N(0) then the reduction o(i) -> N(i+1) -> ... -> N(0) -> ... -> N(i) is contained in D(N(i))
and
contradicts the activity of (P(i),F (i)).
(ii) For each i = 0,1,...,n, (P(i), F (i)) = (P(0),F (0)).
For let k be smallest so that (P(k),F (k)) and (P(0),F (0)) are distinct. Then (P(k),F
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(k))
has higher priority than (P(0),F (0)) since (P(0),F (0)) is active for N(k). But then
(P(k),F (k)
cannot be active for N(0) and there is a reduction 1 : (P(k), F (k)) ->> (N(0),¢) contained
in
D(N(0)) witnessing the inactivity of (P(k),F (k)). But then the reduction t -> N(1) ->
N@2) ->
... => N(k) is contained in D(N(k)) contradicting the activity of (P(k),F (k)) for N(k).
(iii) For each i = 0,1,...,n-1, | F (i+1)/0(i+1) | < | F (i)/c(i) I.

This is easily seen.

Thus the reduction o(n) -> N(0) leaves fewer residuals of F (0) in N(0) than o(0)
does and
this contradicts the minimality of ¢(0). Thus we conclude that the sequence of
iterations of
A on M is cofinal by cycling in D(M), or it exits from D(M) at some stage A*m(M) with
d(A*m(M)) > d(M).

Now let us set M(i) = A”i(M) and suppose that the sequence M(0) -> M(1) -> ...
M(m) -> ...
never cycles. Say that M(i) is well situated if M(0) -> M(1) -> ... ->M(i-1) is contained in
D(M(i)). The subsequence of well situated M(i) is infinite.
(iv) Any given (P,F ) is active for at most finitely many well situated M().

We prove this by induction on | priority(P,F ) |. Suppose that this is true for all pair
of
priority higher than (P,F ). Find a well situated M(i) so that all pairs of higher priority
are
inactive for any well situated combinator past M(i) If (P,F ) is active for the next well
situated combinator M(j), then it is of the highest priority and the number of residuals
in
F is reduced by the transition M(j) -> M(j+1). Moreover, d(M(j)) < d(M(j+1)) if any
residuals )
reman after the transition and M(j+1) is the next well situated combinator after MJj).
This
remark can be repeated for M(j+1), M(j+2),...,etc. and thus (P,F ) will be inactive for
any well

- situated combinator past M(j+ the number of residuals of F in M())).

We can now prove cofinality.
(v) Suppose that ¢ : M ->> N then, for some m, N ->> M(m).

This is proved by induction on o. Suppose that M ->> P -> N. By induction hypothesis
there
exists m such that P ->> M(m). Suppose that

A



P->N
and let F be the residuals of A in M(m). By (v) we can find a well situated M(k) with k
>m
such that (M(m),F ) is not active for M(k). Thus by Barendregt's strip lemma N ->>
M(k),
and we are done.
This completes the proof.
3.Confluence Functions and Strategies
Amap ¢ : T xT ->T is said to be a confluence function if whenever M = N we have
M ->>¢MN) <<- N. ¥ :TxT ->TI'xT is a one-step confluence strategy if whenever
P,Q) = ¥Y(M,N) we have either M -> Pand N=Qor M = P and N -> Q, and, whenever
we have M = N we have, for some m, ¥ m(M,N) has the form (P,P). In 1980 David
Isles asked whether there is a effective confluence function.
Proposition: There is no effective confluence function but there is an effective one-step
confluence strategy.
Remark: the first part of this was proved by us in 1987 but not published
Proof: First suppose that ¢ is an effective -confluence function. Recall the following
definitions;
Q = [x](xx) [x](xx) , and © = [xyl(y(xxy)) [xyl(y(xxy)). For each natural number e we
can construct
a combinator P(e) such that
n if 0 appears for the first time in the
enumeration of
the eth RE set at stage n
P(e) = {

a term with no head normal form otherwise.
This can be done in the usual way. Set M(e) = P(e)Q (©0Q) and N = 6Q. The following
facts are
easy to verify.
(1) It is decidable whether for a given combinator P we have N ->> P.
(2) If N ->> P the for some n we have P ->> Q*n(©Q).
(3) If both P(e) = n and M(e) ->> Q*m(©Q) then n < m.
For (2) Klop's theorem can be used to show the cofinality of the reduction sequence ...
->> Q™ (O0Q) ->>..., and for (3) routine underlining and standardization suffice. Now
consider the following algorithm.
algorithm D '
Input: a natural number e
Output: either "yes" or "no".
Begin;
(1) Compute ¢$(M(e),N).
(2) If N ->> ¢(M(e),N) then go to (3) else return "no"
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(3) Find n such that ¢(M(e),N) ->> Q n(0Q).

(4) Compute n steps in the enumeration of the eth RE set.

(5) If 0 is found by the nth step then return "yes" else return "no".

End.

We claim O belongs to the eth RE set <=> D(e) = "yes". The direction <= is obvious.

The direction => follows from (3) above. Thus we have a contradiction and ¢ cannot
exist.
On the otherhand we can construct a confluence strategy easily from A. Define an
algorithm B
as follows.
Input; a pair (M,N) of combinators
Output; a pair (P,Q) of combinators
Begin;
(1) If there is a reduction M -> N1 -> N2 ->.....-> Nn = N such that for i = 1,2,...,n-1 Ni <
N

pick one which is lexicographically least and set P = N1 and Q = N else
(2) Put P=M and Q = A(N).
It is easy to see that B has the desired properties. This completes the proof.
4. Enumeration Strategies

An effective one-step enumeration strategy is a total recursive function x : " -> T

such that for each M we have M <-> x(M) and there exists an N = M such that the
sequence
N, x(N), x(x(N)),....,x*n(N),... exhausts all the combinators convertible to M. Obviously, if
such
a x exists then N does not depend on M, but only on the weak beta convertibility class
of M.
We say that M is special if it has the form KP('D*(Q)') . We really do not care much
about the details of the Godel numbering except for the fact that coding and decoding
should be effective, that" special " should be distinct from the case KP('N') for any N,
and that P -< 'P', 'D*(P)'.
We shall now describe an algorithm for one-step conversion which yields an
enumeration strategy. The algorithm is defined by recursion on -<
The Algorithm E
Input; a combinator M
Output; a combinator E(M) such that E(M) <-> M.
Begin;
(1)Determine whether M is special. If it is go to (5) else to (2)
(2)For each element N of D*(M), besides M, compute E(N). If E fails to be injective
then exit.

Otherwise each such element N lies in a maximal chain of B iterates beginning with



some
v(N); make a list of these v(N).

(3)If there is some N in D*(M) with v(N) >- v(M) then set E(M) = KM('D*(M)') else

go on to (4)
(4) Set E(M) = KM('M")
O)If M = KP(D*(Q)") execute E on Q and determine whether E(Q) is set by executing
*).
If the answer is no go to (2) for M else find a -< smallest v(N) >- v(Q) in D*(Q), and
a - :
lexicographically -< shortest path R in D*(Q) from Q to v(N).
If P lies on R then, )

if P= v(N) then
*) set E(M) =P
else
(**) set E(M) = K(the next element of R after
P)('D*(Q)")
else if P fails to lie on R then go to (2) for M.

End.
Proposition: B is an effective one-step enumeration strategy.
Proof: First we prove by induction on -< that B is total and defines a 1-1 function. If
either of
these fails for M , by induction hypothesis, the failure must be in 1-1 ness. This can
only happen, by choice of Godel numbering, when there are M1, M2 -:< M, M ¢
{(M1,M2}, EMI1) =P = BE(M2), and B(M1) is set by (*). We distinguish two cases.
Casel; BE(M2) is set by (*).

In case M1 -< M2 we have that v(P) = v(M1) -< P after E(M1) is defined ,so (*)
cannot be
executed w.r.t. P for M2 to set B. Similarly for the case that M2 -< M1.
Case 2; E(M2) is not set by (*).

We have M1 = KP('D*(Q)") and P = KUV for some U and V. Indeed either M2 = U
or there exist L, T such that V="D*(T),L-<T-<V,and M2= KLV -< Ml.
However, if M2 -< M1 then P cannot be a v(N) for M1 and E(M1) is not set by (*).
This completes the proof of totality and 1-1 ness.

Now suppose that N is the -< least element in the convertibility equivalence class

of M. Let Q be any combinator convertible to N but not in the sequence N,
E®N), E(BE(N)),...,BAn(N),....and let P be the -< least element such that Q = B*m(P) for
some m
Since B is 1-1, N is not in the range of B. Thus the above sequence is infinite. Say that

an element L of this sequence is well situated if we have N, B(N),..., BAn-1)(N) -<
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EM(N)=L
and B(L) is not set by (5). The B iterate of N which first has depth > n is well situated
thus
the sequence of well situated combinators is infinite. Let P <-> P1<-> ..<-> Pp <-> N be
any conversion from P to N. There are infinitely many well situated L such that
P,P1,...Pp, E(P), EA2(P),..., BAm(P) -< L. Pick one so that no U -< P appears after it in the
iterates of E on N.
Now P cannot be in the range of E for if E(T) = P we have T = KU('D*(V)') and E(T) is
set by
(5). If B(T) is set by (*) then v(V) -< P and P ¢ { EAk(V) : k = 0,1,2,... } contradicting the
choice
of P. Similarly if E(T) is set by (**) then V -< P and P ¢ { BAk(V) : k = 0,1,2,... } again
contra-
dicting the choice of P. Thus when E(L) is computed it is set by (3) to KL('D*(L)")
which,
after some number of iterations of B set by (**), is set to P by (*). This contradicts the
choice
of P and Q.This completes the proof.
5.Church-Rosser Strategies
In [S] Bergstra and Klop asked whether there is an effective one-step Church-

Rossser reduction strategy. This question remains unanswered. However, here we will
construct an effective one-step conversion strategy which is Church-Rosser. This is, we
will construct a total recursive function y such that
(1)For any M, M <-> y(M)
(2)For any M = N there exist m and n such that M ->> y*m(M) = y*n(N) <<- N
by defining an algorithm C below.

We need to recall from 1. some of the properties of the algorithm A. Either there
are
infinitely many m such that M -> AM) -> ... -> A*m-1)(M) is contained in D(A*m(M))
or there is a single m such that for any n > m we have A”n(M) belongs to D(A*m(M)).
In the first case we call these A*m(M) the well situated reducts of M and in the second
case we call Am(M) a sink for M. If there is a sink in D(M) we let v(M) be the -< least
such sink. Given a finite reduction sequence R = M1 -> M2 -> ... -> Mm we make the
following definitions; 1h(R ) =m, df(R) = Xi=l,...,n max{ dM(i+1)) - d(Mi), 0}, wk(R )

I {Mi : p(Mi) >- p(M1) } |. Now we order the triples trip(R ) = (df(R ),wk(R ),lh(R ))
lexico-

graphically and observe that among all the reduction sequences from M1 to Mm there
are only finitely many paths P with df(P ) < k for any fixed k. This is because any



term

in such a path has depth at most d(M1) + k. We shall assume that all of these paths
have

‘been well ordered by << so that trip(P 1) < trip(P 2) => P 1 << P 2. Given M let p(M) be
the

<< least reduction path from M to a well situated reduct of u(M) or a sink of p(M) which
ever

exists. Also let y(M) be the << least reduction path from M to v(M) if this term exists. It
should be clear that p(M) and y(M) can be effectively constructed from M using A.
Now
let :
Al = S(KK)(S(SKK)(SKK))(S(KK)(S(SKK)(SKK))) (this is just a combinatory fixed point
of K)
A2 = KK(S(KK)(S(SKK)(SKK))(A1).
We now define the algorithm C.
Input; a combinator M
Output; a combinator C(M) such that M <-> C(M)
Begin;
(D) If v(M) exists then :
if M = K(viM))(K”n(A1)) then C(M) = K(v(M))(K”n(A2)) else
if M= K(viM))(K*n(A2)) then C(M) = K(v(M))(KA(n+1)(A1)) else
if M = v(M) then C(M) = KM(A1) else
set M+ = the next point on y(M) and if v(M+) exists and is -< v(M)
then C(M) = M+ else C(M) = KM('M")
else go to (2)
2) If M = K(A(N)('N') where N is a well situated reduct of p(M) and none of the
AN(N)
for j = 1,...,n are well situated reducts of p(M) then C(M) = K(A*n+1)(N))('N') else
go to (3).
(3) If Ih(p(M)) = 1 then
if A(M) is a well situated reduct of p(M) then C(M) = AM)
else C(M) = KM)'M")
else let M+ be the next point on p(M) and go to (4)
@) If p(M+) -< p(M) then
if M = K(M+)('M+') then C(M) = K(AM+))('M+")
else C(M) = M+
else C(M) = KM('M")
End. .
Proposition: C is an effective one-step Church-Rosser conversion strategy
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Proof: First consider the sequence of iterations of € on a combinator M ; viz,

M,CM),C(CM)), ..., Cm (M), ..... . We claim that this sequence is unbounded in
depth.

Indeed if v(N) is defined for any N = C*n(M) then let N be such a member of the
sequence

with v(N) -< smallest. We distinguish two cases
(i) N is v(N), K(v(N))(K*m(A1l)), or K(v(N))(K*"m(A2))

Then C(N) = K(v(N))(A1), K(v(N))(K*m(A2)), or K(v(N))(K*(m+1)(A1)) and v(C(N)) =
v(N).
(ii) Otherwise

Then v(C(N)) = v(N) and y(C(N)) << y(N)
Thus the first case eventually comes up and once it is established it persists forever.
Otherwise, v(CAm(M)) is never defined. Now, let P = CAp(M) be such that p(P) is -<
smallest

and from among these such that p(P) is << smallest. We claim that some well situated
reduct

of u(P) is in the original iterative sequence. Let P1 = P and p(P) = P1 ->P2 > ... >
Pk.If for

any i > 1 we have p(P(i+1)) >- p(P1) then for a smallest such i we have C(P1) = P2,
CP2) =
P3, ..., C(P(i-1)) = Pi, C(Pi) = K(Pi)('Pi'), and K(Pi)('Pi') -> K(P(@{+1))(Pi") -> ...->K(Pk)('Pi")
>
Pk. Thus p(C(Pi)) << p(P1) contradicting the choice of P1. Thus for j = 1,...,k-2 we have
CPj) =
P(j+1). We distinguish two cases here.
(a) C(P(k-1)) = Pk

Then the well situated reduct of p(P) in the original iterative sequence is Pk.
(b) Otherwise.

Then we have C(P(k-1)) = K(P(k-1))('"P(k-1)"). In this case the next well situated
reduct of
pu(P) is in the original iterative sequence. For if this reduct is A”*r(Pk) we have
C(P(k-1)) =
K(P(k-1))('P(k-1)"), C 2(P(k-1)) =K(Pk)('P(k-1)"), ..., CAr+2)(P(k-1)) = A*r(Pk).
Once a well situated reduct of u(P) is found in the original iterative sequence , the
sequence of
interates alternates between instruction (2) and instruction (3) forever. Since v(N)
cannot
exist the sequence must grow unbounded in depth and this proves the claim. Say that
C m(M)
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is a well situated convert of M if the elements M , C(M), ..., CA(m-1)(M) belong to
D(C*m(M)).

Since the sequence of iterations grows unbounded in depth there are infinitely many
well

situated converts of M. Let the well situated converts of M be N1,N2,...,Nn,....Now if
there is a

sink for M then there is some Nn such that that sink belongs to D(Nn) and hence v(Nn)
exists

for all but finitely many n. Thus for all but finitely many n, v(C~n(M)) exists and is the
-< least

sink beta convertible to M. Similarly, for all but finitely many n, p(C*n(M)) is the -<
least

combinator beta convertible to M. Finally if there is some sink for M then for all but
finitely

many n, C*n(M) alternates between KP(K”m(A1l)) and KP(K*"m(A2)) where P is the -<
least such

sink and if there is no such sink then for all but finitely many n, C*n(M) alternates
between

the well situated reducts P of the -< least combinator beta convertible to M and the
terms

K(A*m(P))('P') for all but finitely many such P. It follows that € is a Church-Rosser

strategy.
This completes the proof.
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