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Abstract. We define relations and their composition in a category with (£,.M)-
factorization structure, with M consisting of monomorphisms, but S not restricted
to epimorphisms. We obtain an associativity criterion for composition of relations,
and we study functional and induced relations.

Introduction

This paper presents the main results of the first author's thesis [9], with
some related new results.

A relation p : A —> B in a category is usually defined as a subob-
ject of a product A x B. Relations in this sense were introduced by
S. MAC LANE [12] and D. PUPPE [15] for abelian categories, and by
M. BARR [2] and P.A. GRILLET [3] for regular categories. A. KLEIN
discussed in [11] the general case of categories with an (£,A4)-factor-
ization structure in the sense of [1], with £ consisting of epimorphisms
and .M consisting of monomorphisms. In this generality, composition
of relations is not always associative; Klein obtained a necessary and
sufficient condition for this associativity. Relations and functional rela-
tions in this generality were also discussed by G.M. KELLY [10].

Subobjects and relations in a category can be used to obtain an inter-
nal logic. For topological categories over sets, with subspaces of a space
X as subobjects, given by subsets of the underlying set of X, topo-
logical structures are completely lost in this process, and the resulting
internal logic is classical two-valued logic. This is particularly embar-
rassing for the categories of fuzzy sets and "crisp" maps considered by
various authors. These categories are topological over sets, and with
subspaces as subobjects, their internal logic is classical two-valued log-
ic, with no fuzzyness left.

L. STOUT [16] showed a way out of this dilemma, and it was shown
in [18] that Stout's theory postulates an (£,M)-factorization struc-



2 Romaine Jayewardene and Oswald Wyler

ture with £ not consisting of epimorphisms. The results of [18] axe
generalized in [9] and this paper, with strictly categorical proofs.

Throughout the paper, we work with a category C, not neces-
sarily locally small, with finite limits, and with subobjects given by
an {£,M)-factorization structure, with minimal added assumptions.
We define subobjects in 1.2 as special morphisms in M\ this avoids
using large equivalence classes of morphisms, and several related com-
plications. We discuss relations in C and their composition in Sections
1 and 2. Prom Section 3 on, we assume that M consists of monomor-
phisms, and that C is leg-regular, i.e. £ is stable for pullbacks by
legs r and s of relations (r, s). Composition of relations is associative
in this setting. We define functional and induced relations and obtain
their basic properties in Sections 3 through 6. Section 7 discusses some
useful examples.

The most important examples in Section 7 are categories of fuzzy
sets, with an appropriate lattice of truth values, and "crisp" maps.
Thus our paper can be regarded as a contribution to a satisfactory
mathematical theory of fuzzy sets. In the theory of fuzzy sets, there is
strong evidence that functional relations rather than "crisp" maps are
the appropriate morphisms; see e.g. [14] and [8], and from a categorical
viewpoint [7] and [13]. These functional relations are obtained from
factorization structures defined in Section 7 of this paper.

Notations: Superfluous parentheses are sometimes omitted; we may
write Fx instead of F(x), especially if F is a functor. For a product
A^—AxB-^B and morphisms f : X —> A and g : X -> i?, we denote
by (/>g) • X -> A x B the unique morphism h : X -» A x B such that
ph = f and qh = g.

1. Subobjects, Spans and Relations

1.1. Assumptions. Throughout this paper, we work with a category
C with finite limits, and with an (£, M)-factorization structure, in the
sense of [1], This means that £ and Ai are classes of morphisms of C
with the following properties.

(i) Every morphism / of C factors / = me withe £ E and m E M .
(ii) Every commutative square mf = ge in C with e € £ and

m € M has a unique diagonal d with / = de and g = md in C.
(iii) Compositions ue in C with e € E and u isomorphic are in £,

and compositions mv with m € M and v isomorphic are in M.
It follows (see [1], Section 14) that £ and M are closed under com-

positions, £ DM consists of all isomorphisms of C, and M is closed
under pullbacks and products.
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We usually assume that M consists of monomorphisms of C, and
that C is leg-regular in the sense of 1.9 below, but we do not assume
that £ consists of epimorphisms. We note without proof the following
variation on [1] 14.11.

1.1.1. Proposition, The following are equivalent.
(i) All strong monomorphisms of C are in M.
(ii) All equalizers in C are in M.
(iii) For every pullback square fu = gv in C, the morphism {u,v)

of C is in M.
(iv) All morphisms (id,/) of C are in M.
(v) All morphisms (id A, id A) of C are in M.
(vi) £ consists of epimorphisms of C .

1.2. Subobjects. Subobjects of an object A of C are usually
defined as equivalence classes of morphisms in M with codomain A.
Subobjects in this sense are usually proper classes. We avoid this and
related nuisances by postulating the existence of a subclass Mo of M
with the following property.

(i) Every morphism / of C has a unique factorization / = me with
e in £ and m in Mo-

Morphisms in Mo with codomain A in C will then be called subob-
jects of A. We note that / G M in (i) iff e in the (£, Mo)-factorization
/ = me is an isomorphism.

Examples of classes Mo axe subset insertions for sets and subspace
inclusions for topological constructs. In these examples, Mo is closed
under composition and contains all identity morphisms of C, but we
shall not need these properties. Other examples are given in [18] and [9];
some of these are discussed in Section 7 of this paper.

1.3. Spans. A span (u, v) : A —>• B in C is a pair of morphisms u, v
of C with codomains A for u and B for v, and with the same domain.
Spans (u, v) ; A —> B are the objects of a category Span(A, B), with
/ : (u, v) -» (uf,vf) in Span(A^B) if u = v!f and v = vff in C. Com-
position in Span(A, B) is composition of the underlying morphisms
of C. We say that spans a and ar are span-equivalent, and write
a ~ ol, if a and a1 are isomorphic in a category Span(^4, B).

Categories Span(A, B) have finite limits. Pullbacks in Span(^4, B)
are lifted from C, and projections A<^-A x B-^B of a product AxB
define a terminal span (p, q), with

(r, s) : (r, s) -> (p, q)
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for a span (r,s) : A -> B. Products in Span(i4,2?) are called intersec-
tions, with

(r,s)n(u,v) ~ (rh.sh) = (uk.vk)

for a pullback square

AxB

1.4. Relations. For objects J4,J9 of C, we define a relation p :
A -> B as a span p = (r,s) : A -» 2? with (r,s) in A4, and we
denote by Rel(A, B) the full subcategory of Span(A, B) with relations
as its objects. It is often convenient to restrict relations to subobjects
in the sense of 1.2, and we denote by Relo(A, B) the full subcategory of
Rel(A, B) with objects (r, s) such that (r, s) 6 Ato • This is a skeleton
of Rel(A,5). If M consists of monomorphism, then Relo(A,i?) is a
meet semilattice, possibly large.

Theorem and Definition. For objects A and BofC, Rel(A,i?)
and Relo(>l, B) are S-reflective full subcategories of Span(A, B), with
reflections

(1) e:(a,6)->r(a,6)

given by r(a,6) = (r,s) for the (£, A4o)-factorization (a, 6) = (r,s)-e.
Thus Rel(A, B) is closed under limits in Span(A, B).

This follows immediately from the definitions. We shall always use
the notation r(a, b) for this reflection, and we note that e in (1) is an
isomorphism iff (a, b) is a relation, and an identity morphism for (a, b)
in

1.5. Dual spans and relations. For a span (r, s) : A -> J5, we put

and call (r, s)op the duai span of (r, 5). Then clearly

and the dual span of a relation is a relation.



Categories of Relations and Functional Relations 5

Duality defines isomorphisms between the categories Span(A, B)
and Span(J3,A), and also between Rel(A, J3) and Rel(JB, A). We also
note without proof that

(r(o,6))°P ^r((o,6)°P)

for every span (a, 6). If (r,s) € Relo(A,5), then (s,r) need not be in
Relo(i?, A), but (r, 5) »-> r(s, r) provides an isomorphism Relo(A, B) -»
Relo(B, A) with all properties of duality.

1.6. Images and inverse images of relations. For f : A —t B

and a relation (r, s) : A —> C, we put

/ " > , * ) = r ( / r , S ) .

This clearly defines an image functor

for relations, with all values in Relo(B, C).
Now consider commutative squares

(1) \u' \u and

4xC

in C. Then the lefthand square is a pullback iff the righthand square
is one. As Ai is pullback-stable, putting

defines an inverse image relation /*"(u, v) up to equivalence. We make
the inverse image unique by choosing, as we may, pullbacks (1) with
(u',vfr) in MQ. NOW we have a functor

f*~ :Re\{B,C)->Rel{A,C)

for relations, with all values in Relo(A, C).
If gf is defined in C, then it is easily seen that

We also note the following result.
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Proposition. /"*" —( f<~ for f in C

PROOF. Prom (1), we have a natural bijection of span morphisms

h : (/r, s) -> (u, v) and k : (r, s) -* /+~(u, v),

given by ft = /'A;, and from 1.4 a natural bijection of morphisms

h : (/r, 5) -» (u, v) and j : /"*(r, 5) -» (u, v).

1.7. Direct and inverse images for subobjects. For a terminal
object 1 and an object A of C, the projection A x 1 -> A is an
isomorphism; thus there is a natural bijection between subobjects m
of A and relations r(ra,<) in Relo(^4,1). Thus for / : A -> i? in C
and subobjects m of A and mi of 5 , and for morphisms i, i', £", £1
with codomain 1, putting

( / - W ) * ,T(m,t) and ( f f m / ) ^ ^ ( m i . t i )

defines subobjecs /~*ra of B and /*"mi of A, with the usual proper-
ties.

1.8. Legs. For a relation (r,s), we call r and 5 the legs of (r,s).
Legs are compositions pm of a projection p of a product and a mor-
phism m i n M . We note some basic properties of legs.

Proposition. Projections of products, and morphisms in M, are
legs. Legs form a pullback-stable subcategory of C, and a product rxu
of legs r and u is again a leg. If £ consists ofepimorphisms, then every
morphism of C is a leg.

PROOF. The projections of A x B are the legs of the full relation
(p,g) : A -* B. A span (m,t) : A —> 1, for a terminal object 1 of C, is a
relation iff m G M, since the projection A x 1 -> J4 is an isomorphism.

The construction of f^{u^v) in 1.6.(1) shows that every pullback
v! of a leg w is again a leg.

If (r, 5) : A -> B and (n, v) : X —» C are relations with ru defined
in C, then we have a morphism

((r, 5) x idc) • {uy v) = (ru, su,v) : • -» Ax B x C

in .M, and hence a relation (ru, (su,v)) : A -» B x C. Thus ru is a
leg.

If (r, 5) and (u, v) are relations, then (r x u,s x v) is a relation,
since

(r, s) x (u, v) = 7T • (r x u, s x v)
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for a "middle interchange" isomorphism TT in C, with both sides in Ai.
Finally, if £ consists of epimorphisms, then every span (id,/) is a

relation by 1.1.1, and thus every morphism of C is a leg.

1.9. Regular legs. We say that C has regular legs, or that C is leg-
regular, if £ is stable under pullbacks by legs of relations. Since legs are
compositions pm with m E M and p a projection of a product, C has
regular legs if and only if the following two conditions are satisfied.

(i) Every product e\ x e<i of morphisms in £ is in £.
(ii) £ is closed under pullbacks by morphisms in M.

2. Composition of Spans and Relations

2.1. Span composition. Categories Span(A, B) form a bicategory in
the sense of [4]. We compose spans (r, s) : A —» B and (u, v) : B —> C
in C by putting

(u,v) o (r,s) = (ruf,vsf) : A -+ C

for a pullback square
s'

in C. This composition is defined up to span-equivalence.
Composition of spans is clearly functorial and associative, up to

equivalence of spans. For an object A of C, we put

&A = (id A, idyl).

Spans 8A are identity spans, again up to span-equivalence.
It is easily seen that

aopo/?op ^ (/Joa)op,

for spans a, /5, if either composition is defined.

2.2. Composition of relations. The composition a o p : A -> C
of relations p : A -» B and a : B —> C in C is defined by

a o p = r(cr o p).
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This clearly defines a functor from Rel(B, C) x Rel(A, B) to Rel(A, C),
with all values in Relo(A,C). Thus composition of relations is order-
preserving if M consists of monomorphisms. We note that

(1) <7o(r,5) = r-+s^a

for relations (r, s) : A -» B and a : B -> C in C, and that always

(a o P ) °P - P °P o aop ,

by 1.5, 2.1 and the definitions, if either composition is defined. We also
note that af o p1 = a o p if p1 ~ p and a1 ^ a, and the compositions
are defined.

2.3. Theorem. For a category C with (£,A1) -factorization struc-
ture and finite limits, the following are equivalent.

(i) o o r a = r(a o a) for ali spans a and relations cr for which the
compositions are defined.

(ii) r/3 o p = r(/3 o p) for all relations p and spans (3 for which the
compositions are defined.

(iii) a o r(a, b) = cT^b^G for all spans (a, 6) and relations a such
that the composition is defined.

(iv) e~*e*~p ~ p for all relations p in C and morphisms e in 6
with e*~~p defined.

If these conditions are satisfied, then composition of relations in C
is associative, with identity relations

PROOF, (ii) is clearly the same as (i) for the dual relations; thus (i)
and (ii) are equivalent,

If 6*~cr = (u, v), then

ao(a,b) ^ (au,v) and r(jo(o,6)) = a~*b^a]

thus (i) and (iii) are equivalent.
It follows from (i) and (ii) that

(1) p o T S A ^ p ^ T S B ° P

for a relation p : A ~> J5, with equality iff p € Relo(A,B). Since
r(e,e) = T5A for e in £ with codomain A, (iv) follows from this and
(iii). Conversely, if (a, b) = (r, s) • e is an (£, A4)-factorization of (a, b),
then

(f*tf-G = r - ^ e ^ s ^ c r = r ~ ^ a = a o (r,s)

if a o (r,s) is defined and (iv) is valid; thus (iv)=^(iii).
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If (i) and (ii) are valid, then

ro (or op) = Tor(crop) = r(ro(aop))
= v((roa)op) = r(rocr)op = (rocr)op

for relations p, a, r with a o p and TO<J defined, and composition of
relations is associative.

2.4. Regularity of legs has been defined in 1.9; we note the following
result.

Proposition. If C has regular legs, then

(1) r((6',c)o(a,&)) = r(6',c) o r(a,6)

for spans (a, 6) and (6',c) with the compositions defined and with b a
leg or b1 a leg, and 2.3.(i)-(iv) are valid for C. Conversely, if 2.3. (i)-
(iv) are valid for C and Ai consists of monomorphisms, then C has
regular legs.

PROOF. 2.3.(i) and 2.3.(ii) clearly are special cases of (1).
For (1), let

(a, 6) = (r,s)-ei and (b',c) = (u,v)-e2

be (£,.M)-factorizations, and construct a diagram

}4 J4 }e2
(2) A JU

of pullback squares. Then

(&',c)o(a,6) -

Now 5; and u' are legs, and e[ and ê  are in S if C has regular legs.
If b = sei is a leg, then so is s'e^, and thus ê  is in £ if C has regular
legs. But then

r((6',c)o(a,6)) = r(ru',vs') = (u,v) o (r,^),
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so that (1) is valid. The proof of (1) with bf a leg is exactly analogous.
For a relation (r, s) and a pullback square

e'

in C, we have

e~*e*~(r,s) = r(er',se') = r(re',se').

If 2.3.(iv) is valid, and the pullback shown above exists with e in £,
then we have an (£,M)-factorization

(re', sef) = (r, s) • a .

If M consists of monomorphisms, then ef = e\; thus C has regular
legs.

2.5. Discussion and problems. The system with the objects of C
as objects, Rel(A, B) as the class of morphisms p : A -» B for objects
A and i?, and with compositions defined by 2.2 is almost, but not
quite, a category, because we have span-equivalence instead of equality
in 2.3.(1). We obtain a bona £de category, which we denote by RelC,
if we restrict morphisms p : A —> B to Re\o(A,B). Every relation p in
C is then span-equivalent to a unique morphism vp of Rel C.

The results of this Section are due to A. KLEIN [11] for the case that
£ consists of epimorphisms of C and M of monomorphisms. In this
situation, all morphisms of C axe legs, and composition of relations in
C is associative, up to span-equivalence, iff £ is stable for all puUbacks
in C.

If £ does not consist of epimorphisms, then £ can be stable for
puUbacks by legs, but not for all puUbacks in C. [18] 2.16.1 is an
example for this. This leaves us with two unsolved problems.

— Is it possible for composition of relations to be associative, with
identity relations TSAI but with 2.3.(i)-(iv) not valid?

— Can 2.3.(i)-(iv) be valid if C does not have regular legs?
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3. Induced and Functional Relations

3.1. Induced relations. We assume from now on that M. consists
of monomorphisms, and that C has regular legs. We assign to every
morphism / : A —> B of C an induced relation

Note that [/] is always in Relo(A,2?) for / : A -> B in C, and that
[id î] is an identity relation in Rel C for every object A of C.

Relations [/] were denoted by (/) in [18] and [9]; we changed the
notation for better distinction from morphisms (/, g).

3.2. Properties of induced relations. Using 2.3, and 2.4 for
spans (id,/) and (/,id), we have the following results for morphisms
/ , g and relations p, cr, valid whenever the compositions are defined.

3.2.1. [<//] = [<?] •>[/].

Since the relations

are identity relations, this says that the assignments / >-» [/] define a
functor, from C to RelC.

3.2.2. r(/,,) = Wo[/r.

3.2.3. / > = po [/]op and f^a = a o [/].

Using this for dual spans and relations, we get

3.2.4. [/] o p ~ (/-V°P)OP and [/]op o a ~ (/<-<TOP)OP.

3.3. Special relations. With terms borrowed from set theory,
we say that a relation p : A -> B is

single-valued if p o p°P <

total X p°v o p>[idA],
injective if p o p o p <
surjective if p o p°P >

We also say that p is functional if p is single-valued and total, and
bijective if p is injective and surjective. We shall see in 3.7 that func-
tional relations are the same as the maps of G.M. KELLY [10].

Clearly p is single-valued if and only if pop is injective, and p is
total if and only if pop is surjective.

An identity relation [id^], span-equivalent to its dual, satisfies all
four conditions. It is also easy to verify that each of the four classes
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of relations defined above is closed under span-equivalence, and under
composition of relations.

3.4. Theorem. Every relation [/] induced by a morphism f of C
is functional.

PROOF. By 3.2 and 1.6, we have

*•[/]• [/n = rr° < *
for every relation o with f*~a defined; thus [/] is single-valued. Total-
ity of [/] is obtained similarly.

3.5. Our next result shows that the pre-order of relations becomes
span-equivalence when restricted to functional relations.

Proposition. If p < a for a total relation p and a single-valued
relation a, then p~o.

PROOF. We have

o < a o pop op < (jo aop o p < p

since [id] < pop o p, pop < aop, and a o <jop < [id].

3.6. The following result does not use regularity of legs. Similar
characterizations of single-valued, injective and functional relations will
be obtained in 4.3.

Proposition. For a relation p = (r, s) : A -* B, the following are
equivalent.

(i) p is total.
(ii) cr o p> [idyi] for some relation o : B -> A.
(iii) reS.

PROOF, (i) =*• (ii) trivially; use o = pop.
If (u,v) o (r,s) = {a,o!) and (a, a') > [id^], let su' = tx '̂ be a

pullback square. Then ruf factors ae with e G f , and there is < in C
with at = id>i• If mf = pr in C with m in A l̂, then mfu1 = gae,
and thus ga = md for a morphism rf. Now p = mdt. Since m is
monomorphic, this determines dt uniquely, and / = dtr. Thus r has
the diagonal property of (£,M)~factorizations, and r e £ follows.

Since pop o p ~ (rsf,rs/r) for a pullback square ss* = ss", there
is a morphism /i : (r,r) -> pop o p in Span(;4,i4). If r is in f, then
r(r, r) = [id>i], and [id^] < pop o p follows. This completes the proof.

3.7. P r o p o s i t i o n . A relation p : A-> B is functional if and only if
there is a relation a : B - » A such that o o p > [idA] a n d p o a < [ i ]
and then a ~ p o p .
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PROOF. If p is functional, then a = pop satisfies the inequalities.
Conversely, it follows from the first inequality, by 3.6 for p and aop,
that p is total and a surjective. But then

o < pop o p o a < pop

with the second inequality, and also

p < p o a o <jop < aop .

It follows that a ~ pop , and p is functional.

3.8. Isomorphisms. We say as usual that relations p : A -+ B and
a : B —> A are inverse isomorphisms of relations if

a o p = [idyi] and p o a =

It follows that inverses of relations axe only determined up to equiva-
lence if they exist. Inverses in Rel C are unique.

Theorem. A relation p is an isomorphism of relations if and only if
p is functional and bijective, and then the inverses of p axe the relations
span-equivalent to pop .

PROOF. If p is functional and bijective, then pop is an inverse of p
by the definitions. Conversely, if p and a are inverse relations, then p
and a are functional, and a ~ pop , by 3.7. But then p and a are also
bijective.

3.9. Proposition. The following two statements are logically equiv-
alent,

(i) £ consists of epimorphisms.
(ii) If [f] = [g], for morphisms f and g of C with the same domain

and the same codomain, then always f = g.

PROOF. Consider f,g : A -> B. If (i) is valid, then [/] ^ (id^,/)
and [g] ̂  (id^,^). These clearly are span-equivalent only if / = g.
Conversely, suppose fe = #e,with e G £. Then

Applying e~"* to both sides, we get [/] = [g] by 2.3.(iv). If (ii) is valid,
then / = g follows, and e is epimorphic.

4. Surjective-Injective Factorizations

4.1. Proposition. Every relation p factors p ^ [m] o e, with e sur-
jective and m in Mo, hence [m] injectivey with e total if and only if
p is total, and e single-valued if and only if p is single-valued.
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PROOF. Put p = (r,$) and factor s = me with me M and e € £.
Since (r,s) = (id x m)(r,e) with (r,s) and id x m in M, this defines
a relation e = (r, e), with p ~ [m] o e by 3.2.4, and e is surjective by
3.6 for £°P. By 3.6, e is total iff p is total. We have e ~ [m]op o p,
and [m] and [m]op are single-valued. Thus e is single-valued iff p is
single-valued.

4.2. Theorem. For a commutative square \i o p = cr o e of rela-
tions, with e single-valued and surjective, and fj, injective and total,
the following four statements are logically equivalent, and each of them
determines r up to equivalence:

P ~ T o £ , T ~ p o £Op , C T ~ / i o r , T ~ / i ° P o (J .

In this situation, p and r axe single-valued if a is single-valued, and
o and r are total if p is total

PROOF. If p ~ r o e, then r ~ p o e°P since e o e°P = [id], and then

jj, o T = fJ, o p o £°P = <j o £" o £°P Ĉ  (7 .

Similarly, a ~ /i o r ==^ r ^ /xop o a ==^ p ~ r o e, using /iop o ̂  = [id],
and the last part follows immediately from the assumptions and the
displayed statements.

4.3. Theorem. An induced relation [/] is surjective if and only if
f is in £.

A relation (r, 5) in C is total if and only if [r] is surjective, single-
valued if and only if [r] is injective, and functional if and only if [r] is
bijective. Dually, (r, s) is surjecive, injective or bijective if and only if
[s] has the same property

If fu = rg is a pullback square with r a leg, and if [r] is injective
or surjective or bijective, then so is [u].

PROOF. If we (5,M)-factor (id,/) = (a,6) • e, then f = be is in
£ iff b G £, and so the first part and the first claim of the second
part follow immediately from 3.6 for [/]op and (r, s). For the second
claim, factor s = me as in 4.1, with (r,s) single-valued iff (r,e) is a
single-valued relation. We have

(r,e) o (r,e)°P = [ i f • [e] . [ c f • W = W°p ° [r],

by 3.4 and 4.1. Thus (r,s) is single-valued iff [r] is injective. The third
claim and the dual statements are now obvious.

For the third part, let r be a leg of (r,s), with (r,s) o [f] ~ {u,sg)
by 3.2.3 and 1.6. If [r] is injective, then (r,s) is single-valued, and so
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axe the composition (r, s) o [/] and (u, sg). But then [u] is injective.
The proof for surjective or bijective [r] is exactly analogous.

4.4. For injective functional relations fj,\ and /i2, we put //i < ^2
if /jLi ~ \i2 o T for a relation r . This determines r ~ /ziop o /i2 up to
span-equivalence, and r is single-valued. Prom

r°P o T = rop o JI2°P o jx2 o r = /iiop o ̂  = [id]

we see that r is also total and injective.

Proposition. For mi and rri2 in M with the same codomain,
we have mi < rri2 if and only if [mi] < [7712].

PROOF. We have [mi] ^ [7712] ° (a, 6) for a relation (a, 6) iff

(id, mi) = (a,m2&) • e

for a morphism e in £, and then mi = m^be. Conversely, if mi = m2/i,
then [mi] = [m2] ° [h].

4.5. Proposition. If fi ~ [m] and a ~ [g] in 4.2, with m 6 M,
then r ~ [t] for a morphism t of C with mt = g.

PROOF. If we (£,.M)-factor # = miei, then [m] o r ~ [mi] o [ex],
and [mi] < [m] follows by 4.2. But then mi = ms for a morphism 5
by 4.4, and g = mt for £ = sei. Now r ~ [t] since [m] is monomorphic
in RelC.

4.6. We shall need the following result in Section 5.

Proposition. For a functional relation p: A-> B, compositions

r = po[m]o [m]°p 1

with m in A ô with codomain A, define an order preserving bijection
between morphisms m in Mo with codomain A, and relations r < p
in Relo(A,5).

PROOF. For p = (r, s), a composition p o [m] ~ (e, sh) is obtained
from a pullback square

I- I -
m
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with he M, and e e £ since r € £ by 3.6 and m is a leg. Prom these
data, we get a relation

r = m"~*(e,r7i) ~ (me,rh) = (rh.sh) < p.

We get m back from r by (5, Mo)-factoring rh = me.
If T ~ (rft, sh) is given, with ft in M, then we obtain m from an

(£,.Mo)-factorization rh = me. In this situation,

{sh,rh) = (m x id)(e,5/1)

in C. It follows that (e, 5/1) is a relation, total since e E £. Prom the
construction of p © [m] by a pullback, it follows that

(eysh) < p o [rn].

Since (e, sh) is total and p o [m] single-valued, the two relations are
equivalent by 3.5. But then r is a composition po [m] o [m]op for this m.

If m' < m in Mo, with common codomain A, then hr < h for
the pullbacks /i and ft' of m and m; by r. Conversely, if (rh',shr) <
(rh,sh) in Rel(A,i?), then h1 = /m for a morphism w, and (£,A4)-
factoring rh = me and rh1 = mV produces a commutative square
men = mV. With 1.1.(ii), m! <m follows.

4.7. The following result complements 1.1.1, 1.8 and 3.9.

Proposition. The following are equivalent.
(i) £ consists of epimorphisms.
(ii) An induced relation [f] is injective if and only if f is monomor-

phic in C.
(iii) A relation (r,s) is single-valued if and only if r is monomorphic

in C.
(iv) A relation (r, s) is injective if and only if s is monomorphic

in C.
(v) An induced relation [f] is bijective if and only if f is monomor-

phic and in £.
(vi) A relation (r, 5) is functional if and only if r is monomorphic

and in £.
(vii) A relation (r, 5) is bijective if and only if s is monomorphic

and in £.

PROOF. We have (ii) ==> (iii) ==^ (vi), and (ii)=^(v)=*(vi), by 4.3
and 3.6, and (iv) and (vii) are (iii) and (vi) for the dual relations.

If (i) is valid, then (id,/) is a relation. If fu = fv is a pullback
square, then (u,v) is a relation by 1.1.1. It follows that

[/]°P o [/] = (/, id) o (id, f)^(u,v).
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Again by 1.1.1, this is an identity relation iff u is isomorphic and u = v,
and thus iff / is monomorphic.

Now consider r ^ = (a, b), with ae = be = id^ for a morphism e
in £. If (vi) is valid, then a is monomorphic, and then a and e are
inverse isomorphisms, and b = a. But then 5 A is a relation, and thus
(vi)=>(i) by 1.1.1.

5. Finite Limits for Functional Relations

5.1. Definitions. We denote by FunC the subcategory of RelC with
functional relations as morphisms, and by IndC the subcategory of
Fun C with induced relations [/] as morphisms. The aim of this Section
is to construct finite limits in these categories.

5.2. Terminal objects. A terminal object 1 of C is also a terminal
object of Fun C and of Ind C.

PROOF. Since the projection A x 1 —¥ A is an isomorphism, a span
(ra, t) : A —>• 1 is a relation iff m G .M, and a functional relation
iff also m E £, hence iff m is an isomorphism. Thus there is exactly
one morphism [LA] = i^id^,^) : A —> 1 in FunC, for the morphism

5.3. Binary products. If A-^—A x B-^+B axe the projections of
a product in C, then A<—A x B-^B are the projections of a product
in Fun C and in Ind C, with

(1) . M = [pr°pn[?F
Po[a]:C-)4xB

in Fun C, for morphisms p: C -* A and a : C -> B of Fun C.

PROOF. For a relation <p : C -± Ax Bywe have

\ p ] o ( p < p <==> ¥ > < [ p ] ° P ° P >

by 3.2.4, and 1.6 for the dual relations. In the same way,

[q]o (p < a <=> ip < [q]op o a.

It follows that

[p] o (p < p and [q] o tp < a iff (p < (p, a),
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with (p,a) defined by (1). By 3.6, these inequalities become equations
if <p is a morphism of FunC. Thus it remains only to prove that (1)
defines a functional relation (p, a).

Let p = (r, s) : C -> A and a = (u, v) : C -+ B. Then

[p]op o p - (rp', 5 x idB) and [g]op o a ~ (ug', idA x v)

for pullback squares

XxB ~ -̂-> X AxY -5L> y

5 x ida 5 and id,4 xv \v ,

with pf and ?' projections of products. Thus a further pullback

• { s x > y ) , A x y

with x and y given by a pullback

• -JU y

r I" '

gives the desired intersection

By 4.3, [r] and [tx] are bijective in the present situation, and so are
[a;] and [y] in the pullback diagram rx = ny. But then [rx] is bijective,
and (p, a) functional, again by 4.3.

For morphisms / : C -> A and g : C -> J5 of C, we have

[P] - [(/,»>] = [/] and [?]o[(/,j)] = [g].

Thus ([/], [g]) = [(/,ff)], and A x £ with projections [p] and [g] is also
a product in Ind C.
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5.4. Equalizers. For morphisms p — (r, s) : A —> B and a =
(tx, v) : A -» B of Fun C, and for a pullback square

and an (£,.M) -factorization rh = mie = ufe, the morphism [mi] is an
equalizer of p and a in Fun C If p and o are morphisms of Ind C,
this is also an equalizer in Ind C,

P R O O F . For a functional relation £ = [m] o e with codomain A,
factored by 4.1, we have p o £ = 0"o£ iff po [m] = a o [m], since e is
epimorphic. This is the case iff po [m] o [m]op = a o [m] o [m]op, and hence
iff the relations (r/i, 5/1) and (ufc, vfc) corresponding to [m] by 4.6 are
equal. Thus we obtain the desired equalizer [mi], with mi E Af, by
forming a pullback diagram (1) and factoring rh = uk as shown.

If we factor [g] = [mi] o r in Fun C, then r is a morphism of Ind C
by 4.5. Thus [mi] is also an equalizer in Ind C if p and a are induced
relations.

5.5. Pullbacks. For morphisms p= (r, 5) : A —>• C and a = (w, v) :
B -> C of Fun C, we obtain a pullback square

(1) IW U ,
A -£-+ C

in FunC by
a ° P o p = (a, 6)

in Rel C. For morphisms p and a of Ind C, this is a pullback square
in IndC.

5.5.1. Corollary. Every pullback square

P -£-> B

v
c
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in Pun C or in Ind C satisfies the Beck condition

PROOF. By the general theory, the components of the desired pull-
back are the components of an equalizer [(a, b)] of p o [p], and ao[g],
for the projections p and q of A x B. For this, we need the intersection

p o [p] n a o[q] : Ax B -» C.

This is dual to the intersection (p°P, aop) of 5.3, and thus ((rh, uk), sh)
for a pullback square sh = vk in C. Now (a, b) = r(r/i, txfc); this is
aop o p.

For p and a in IndC, we have constructed an equalizer [(a, b)] in
Ind C, and thus a pullback in Ind C.

The Corollary is valid for the pullback (1) since (a, b) = [6] o [a]op,
and hence for every pullback square in Fun C.

5.6. Theorem. The following properties of C are equivalent.
(i) 6 is stable for all pullbacks in C.
(ii) All span compositions (3 o a in C satisfy

(1) r(/?oa) = r/3 o ra

(iii) The functor f H-» [/] : C ~> Fun C preserves pullbacks.
(iv) The functor f H> [/] : C -> Fun C preserves equalizers.
(v) The functor f \-> [f] : C -> Pun C preserves ail finite limits.
If these conditions are satisfied, then [m] is injective for every mono-

morphism m in C

PROOF. If £ is preserved by all pullbacks, then the proof of 2.4
works without any restrictions on b or 6', and thus (1) is valid for all
span compositions. If m : A -» B is monomorphic, then

( id^m^Po^d^rn) ~ 8A,

and [m]op o [m] = [id^] follows if (1) is valid.
Now assume (ii) and consider a pullback square

• -*-> B

1» I '
A M C
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in C, with (h,k) ^ (idB,g)opo(idAJ). Thus

by (1). If we (£,.Mo)-factor {h,k) = (a,b) • e, then [/] o [a] = [g] o [b]
is a pullback square in PunC by 5.5. Now e in £ is monomorphic
since (/i, k) is, and thus [e] is injective as well as surjective. But then
[/] ° [h] = [g] ° [k] is also a pullback square, and so (iii) is valid.

Since / H* [/] preserves finite products, (iii), (iv) and (v) are equiv-
alent. If they are valid and fh = gk is a pullback square in C with /
in £, then [/] o [h] = [g] o [k] is a pullback square, with [/] surjective
by 4.3. But then [k] is surjective by 6.2 below, and k is in £.

5.7. Remarks. If £ consists of epimorphisms, then all morphisms
of C are legs. Thus 5.6. (i) is equivalent to leg regularity of C, and the
functor / H-» [/] : C -> Fun C preserves finite limits.

It does not follow from 5.6.(iii) that the functor / • ->[ / ] : C -* Ind C
preserves puUbacks and equalizers. An isomorphism [/] in Pun C need
not be an isomorphism in IndC; there may be no morphism of C
which induces the isomorphism [/] -1 of FunC.

6. Relations in FunC and in IndC

6.1. Discussion. We have seen in Section 5 that IndC and FunC
have finite limits, and that the embedding IndC —> FunC preserves
them. The functor / « - * [ / ] : C -> Fun C preserves products, but in
general not equalizers or puUbacks. An example for this is given in [18].

By 4.1, 4.2 and 4.5, the categories IndC and FunC have a (sur-
jective,injective) factorization structure, preserved by the embedding
Ind C -» Fun C. We assume from now on that Fun C and Ind C are
provided with this structure.

Every injective functional relation is span-equivalent to a relation
[m] with m i n M , and by 4.4 to [m] for exactly one m in Mo - Thus
we can, and shall, use the relations [m] with m in Mo as subobjects
for Fun C and Ind C. With this convention, the functor / »-» [/] also
preserves and reflects subobjects.

Now only one thing is missing.

6.2. Proposition. Fun C and Ind C have regular legs.



22 Romaine Jayewardene and Oswald Wyler

PROOF. It is sufficient to prove this for the pullback square

P ^ B

[[a] [a ,

constructed in 5.5, with (a, 6) = aop o p, and aop surjective since a is
total. If p is surjective, then (a, 6) is surjective. But then b G £, and
[b] is surjective, by 3.6 and 4.3.

6.3. We can now construct categories of relations and of functional
relations in FunC and in IndC, with all the properties obtained in
this paper. However, we get nothing new. Every injective morphism
(p,a) : • -> A x B in FunC is equivalent to exactly one morphism
[(r, s}] = ([r], [s]) with (r, s) : • -* AxB in MQ . Thus the morphisms of
RelFunC are just the pairs ([r],[s]) with (r,s) a morphism of Rel C.

This leads up to the following result.

Theorem. The bijection (r,s) «-> ([r],[s]) from RelC to Rel FunC
is an isomorphism of categories which preserves and reflects order and
duality, and maps Fun C to Fun Fun C = Ind Fun C.

PROOF. For (r,s) : A -» B and (u,v) : B -* C, consider pullbacks

Ju JJL
• ———> • • — > •

\h U and I [a] \[u]

in C and FunC, with (a,b) = [u]op o [s] b 5.6. Then (u,v) o (r,s) =
r(r/i, vfc), and ([u], [v]) o ([r], [5]) is obtained fro an {£,Mo)-factoriza-
tion of ([ra], [vb]), or equivalently of (ra,vb). Now

( M ) ^ (id,u)opo(id,5).

Since 5 and u are legs, we can apply 2.4 to this composition, getting

r ( M ) = Mopo[5] = (a,6).

Thus (r/i, vfc) = (ra, v6> • e with e G £, and r(r/i, vfc) = r(ra, vb)
follows. This shows that composition of relations is preserved, and we
have an isomorphism of categories.
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Since the isomorphism preserves order and duality, it also preserves
the four properties defined in 3.3, and thus maps functional relations to
functional relations. If (r, s) is functional, then [r] is an isomorphism
of Fun C by 4.3, and

(M, W) * ([id], W o [r]-1) and ([r], [a]) = [[a] o [r]"1]

follow. Thus every functional relation in Fun C is induced by a mor-
phism of Fun C ,

6.4. Remarks. The functor / *-> [/] : C -> Ind C is full, and by 3.9
an isomorphism of categories if £ consists of epimorphism. Subobjects
in Fun C are the same as subobjects in Ind C, and thus Rellnd C and
Fun Ind C are the same as RelFunC and Fun Fun C.

We haver seen that every functional relation ([r], [s]) in Fun C is an
induced relation [[s] o [r] ]. However, ([r], [s]) need not be induced by
a morphism of IndC. The relation [r]""1 ~ [r]op need not be induced
by a morphism of C, even if £ consists of epimorphisms.

All monomorphisms in IndC and in FunC are injective by 4.7;
thus the surjective morphisms in these categories are the strong epi-
morphisms We note that not all epimorphisms in Ind C or in Fun C
need be strong.

7. Examples

7.1. Final maps. If C is topological over a category A with finite
limits, with forgetful functor U : C -> A, then a morphism / of C is
called a final map if / by itself is a final sink. With final maps as the
class £, and MQ consisting of all maps of the form ids •' A -> B, for
objects of C with UA = S = UB, we get an (£,Aio)~factorization
structure of C.

A trivial example is given by C topological over itself. In this situa-
tion, every object A has exactly one subobject id^, and there is always
exactly one morphism A -> B in Rel C. Fuzzy sets, discussed below,
provide a non-trivial example.

We have not investigated leg-regularity for topological categories
with this factorization structure.

7.2. Fuzzy sets. Fuzzy sets were introduced by L. ZADEH [19],
essentially as pairs A = (|J4|, SA) , consisting of a set \A\ and a mapping
EA : \A\ —> [0,1], which assigns to every x G \A\ a membership degree
£^(x), a number in the real unit interval.
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Zadeh noted that membership degrees SA{X) can be viewed as truth-
values, with 1 meaning "true" and 0 "false". J.A. GOGUEN [6] pointed
out that truth-values could be taken in any lattice, preferably a com-
plete Heyting algebra H, with mappings EA : |A| -* if defining truth-
values of statements x € A. Goguen also pointed out that if-valued
fuzzy sets, with morphisms / : A-> B given by mappings / : \A\ -> |J3|
such that EA{X) < £#(/#) for x G |-A|, define a topological construct.
These morphisms are called crisp maps.

If we define a fuzzy subset of an if-valued fuzzy set A as an if- val-
ued fuzzy set B with |J5| = \A\, and EB(X) < EA{X) for x € |-A|» then
subset insertions id|^| : B -> A provide the class Mo for an (£,Mo)-
factorization structure of if-valued fuzzy sets, with £ consisting of all
final maps.

7.3. if-sets. For a complete Heyting algebra if, we define an if-
set as a pair A = (|A|, J4) consisting of an ordinary set |-A| and a
mapping 6A ' \A\ x \A\ —> H with the following two properties.

(1) SA{XJV) = SA{y,x) for all x, y in \A\.
(2) SA{x,y) A6A{y,z) < 6A{x,z) for all x, y, z in |A|.

A crisp map f : A -> B is defined as a mapping / : \A\ —> |J5| of the
underlying sets such that £4(0;,y) < Ssifx^fy) for all re, y in |A|.

With composition of the underlying mappings as composition of
crisp maps, if-sets and crisp maps form a topological construct.

For an if-set A, we interpret 5 A as if-valued equality. Putting
SA{X) = 6A{X,X) for x G \A\ defines if-valued membership in an if-
set, and thus an underlying if-valued fuzzy set.

For an if-set A, we define an H-subset of A as an if-set B with
|J3| = |A|, and the following properties.

(i) SB{x,y) < 5A{x,y) for all x, y in \A\.
(ii) SA{x,y) A6B{y,z) < 6B(X,Z) for all x, y, z in |A|.

These properties are easily seen to be equivalent to:
(a) SB(X) < SA(X) for all x in |A|.
(b) esiy) < SA(X) A SA(x,y) for all x and y in \A\.
(c) 5B(x,y) = eB(x)ASA(x,y) for all x, y in \A\.

Thus an if- subset J3 of an if-set A is determined by its membership
mapping eB which must satisfy (a) and (b).

With if-subset insertions id^j : B —> A as the class Mo, we get an
{£,Mo) -factorization structure for if-sets. Morphisms in £ for this
structure are called covers in [18] and [9]. It is easily seen that a crisp
map f : A-± B is a cover iff

= V
xe\A\
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for all y in |J5|.

7.4. Discussion. Underlying fuzzy sets define a concrete functor
from if-sets with crisp maps to fuzzy sets with crisp maps. This functor
turns out to be topological. Its concrete left adjoint D assigns to a
fuzzy set A a discrete if-set DA, with \DA\ = |J4|, EDA = £Ai &nd
$DA(X, y) = -L> the bottom element of H, for x ^ y in A. Its concrete
right adjoint assigns to a fuzzy set A an if-set CA with |C-A| = |J4|,
and 8cA{%,y) = £A(#) Ae^(y) for all x, y in A,

Covers for if-sets and crisp maps are stable for puUbacks by legs,
and covers for if-valued fuzzy sets and crisp maps are stable for all
puUbacks. Thus categories Fun C and Ind C are defined for both cat-
egories.

For If-sets and discrete maps, FunC turns out to be the topos of
if-sets and functional relations introduced by D. HlGGS in [7], and
also studied in detail by M.P. FOURMAN and D.S. SCOTT [5]. For this
example, IndC is a quasitopos, introduced independently by G.P.
MONRO [13] and D. PONASSE (see [14]). if-sets were called totally

fuzzy sets by Ponasse. We note that [/] = [g], for crisp maps A zn$ B
9

of if-sets, iff SA(X) < SBUX^QX), for all x in |^4|.
The categories FunC and IndC for if-valued fuzzy sets have also

been studied, but they turn out to be much less interesting and well
behaved that the corresponding categories for if-sets. This is not
astonishing. For fuzzy sets, membership is fuzzy but equality crisp,
with "true" and "false" as the only truth-values. For if-sets, member-
ship and equality both have the same spectrum of truth-values. For
the same reason, categories of functional relations, with fuzzy function
values, are more interesting than categories of crisp maps, with crisp
function values.

References

1. J. ADAMEK, H. HERRLICH, G.E. STRECKER, Abstract and Concrete Cate-
gories. Wyley, New York etc. (1990).

2. MICHAEL BARR, Relational algebras. Reports of the Midwest Category Seminar
IV. Lecture Notes in Math. 137 (1970), pp. 39-55.

3. MICHAEL BARR, P.A. GRILLET, D.H. VAN OSDOL, Exact Categories and Cat-
egories of Sheaves. Lecture Notes in Math. 236, 1971.

4. JEAN BENABOU, Introduction to bicategories. Reports of the Midwestern Cat-
egory Seminar. Lecture Notes in Math. 47 (1967), pp. 1-77.

5. M.P. FOURMAN and D.S. SCOTT, Sheaves and logic. Applications of Sheaves.
Proceedings of the Durham Conference. Lecture Notes in Math. 753 (1979),
pp. 302-401.

6. J.A. GOGUEN, L-Fuzzy Sets. Jour. Math. Anal. Appl. 18 (1967), 145-174.



26 Romaine Jayewardene and Oswald Wyler

7. DENIS HIGGS, A category approach to Boolean-valued set theory. Preprint,
1973.

8. U. HOHLE and L.N. STOUT, Foundations of fuzzy sets. Fuzzy Sets and Systems
40 (1991), 257-296.

9. ROMAINE JAYEWARDENE, Relations and Functional Relations in Categories,
with Examples from Fuzzy Set Theory. Ph.D. Dissertation, Carnegie Mellon
University, 1995.

10. G.M. KELLY, A note on relations relative to a factorization system. Category
Theory, Proceedings, Como 1990. Lecture Notes in Math. 1488 (1991), pp.
249-261.

11. A. KLEIN, Relations in categories. Illinois Jour, of Math. 14 (1970), 536-550.
12. S. MAC LANE, An algebra of additive relations. Proc. Nat. Acad. Sci. U.S.A.

47 (1963), 1043-1051.
13. G.P. MONRO, Quasitopoi, logic and Heyting-valued models. Jour. Pure

AppUed Algebra, 42 (1986), 141-164.
14. D. PONASSE, Categorical studies of fuzzy sets, Fuzzy Sets and Systems 28

(1988), 235-244.
15. DIETER PUPPE, Korrespondenzen in abelschen Kategorien. Math. Annalen 148

(1962), 1-30.
16. L.N. STOUT, The logic of unbalanced subobjects in a category with two closed

structures. Applications of Category Theory to Fuzzy Subsets, pp. 73-105,
Kluwer Academic Publishers, Dortrecht (1992).

17. OSWALD WYLER, Lecture Notes on Topoi and Quasitopoi. World Scientific
Publishing Co., Singapore, 1991.

18. OSWALD WYLER, Fuzzy Logic and Categories of Fuzzy Sets. Non-classical Log-
ics and their Applications to Fuzzy Subsets, pp. 235-268, Kluwer Academic
Publishers, Dortrecht (1995).

19. L.A. ZADEH, Fuzzy sets. Information Control 8 (1965), 338-353.

Address for correspondence: Dr. Oswald Wyler, Mathematics Department,
Carnegie-Mellon University, Pittsburgh, PA 15213-3890, USA



 



Carnegie Meljon_yniyersity Libraries


