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Abstract

A useful induction measure on A-terms is presented here. Combining leftmost reduction with
subterm reduction, we introduce a new notion called W-reduction for untyped A-calculus. Since
a subterm reduction is only performed on a term when it is in an empty context, the H-reduction
is really a relation in a more rigorous sense. We then prove the equivalence between strong nor-
malisability and Ti-normalisability, which is essentially a bridge linking W-reduction to various
strong normalisation problems. Exploiting the new notion, we present some simplified proofs for
several fundamental theorems such as finiteness of developments, the conservation theorem for
AK-calculus, and the strong normalisation theorem for simply typed A-calculus. Also a simpli-
fied proof of the characterisation theorem on perpetual redexes in [BK82] is included. Compared
with other proofs in the literature, all presented proofs are quite concise and straightforward.
In the case of the conservation therorem, the proof is also quite perspicacious. Finally, we give
a brief comparison between W-reduction and other methods such as perpetual strategies. We
claim ^-reduction is a clean presentation of many similar ideas mentioned in the literature.



1. Introduction

In A-calculus or some other rewriting systems, an induction measure on terms usually plays a
pivotal role in the proofs of various theorems related to strong normalisation or termination.
The current research starts with the following simple observation.

As an example, the conservation theorem in [CR36] states an interesting property for A/-calculus,
i.e., a term is strongly normalisable if it has a normal form. A naive extension of this theorem
to Aii-calculus, namely, the usual A-calculus, would fail. For instance, (Xx.Xy.y)(uu>), where
u = Xx.xx, is not strongly normalisable but has a normal form Xy.y. Nonetheless, there is a
slight modification which makes the theorem valid in A-calculus. Roughly speaking, when a
/3-redex (Xx.u)v is contracted, we have to check that v has a normal form if x does not occur
free in u. A similar idea can also be found in [Bar76], where a perpetual strategy is introduced
to prove the conservation theorem for AK-calculus, and also in [BK82].

With this observation, we introduce a notion of hybrid reduction, or 7Y-reduction. A term t
^-reduces to t1 if either t' is a proper subterm of t or t' is obtained from reducing the leftmost (5-
redex in t. Then we prove the equivalence between strong normalisability and W-normalisability,
which enables us to deal with various problems related to strong normalisation in an innovative
fashion. First a new proof of the finiteness of developments theorem is presented, which is quite
concise and straightforward when compared with other proofs in the literature, though I feel
the one in [Hin78] is more perspicacious. We then demonstrate a short and sharp proof for the
conservation theorem in XK calculus with the help of the finiteness of developments theorem.
Exploiting the very same technique, we give a much simplified proof of the main result in [BK82],
namely, the characterisation of perpetual redexes. Turning our attention to typed system, we
present a syntactic proof of the strong normalisation theorem for simply typed A-calculus.

Lastly, some relation between H and other methods is mentioned. We conclude that W-reduction
is an effective way to handle many problems involved with strong normalisation, and we expect
more applications of this method.

The layout of the paper is as follows.

• The notions and basics are explained in Section 2.

• In Section 3, the equivalence between strong normalisability and W-normalisability is es-
tablished.

• In Section 4, a fundamental theorem in A-calculus, finiteness of developments, is proven
via the notion of H-reduction.

• In Section 5, the conservation theorem for A/^-calculus is presented.

• In Section 6, The behavior of/J^-redexes is investigated, and a related theorem is presented,
which yields the characterisation of perpetual redexes given in [BK82].

• In Section 7, a syntactic proof of the strong normalisation theorem for pure simply typed
A-calculus is given.

• Lastly, some remarks on 77-reduction are drawn, and some conclusions on ^-reduction are
given.



2. Notions, Terminology and Basics

We give a brief explanation on the notions and terminology used in this paper. Most details,
which could not be included here, can be found in [Bar84].

Definition 1 (Pure X-terms) The set A of X-terms is defined inductively as follows.

• (variable) There are infinitely many variables x,y,z,... in A.

• (abstraction) Ift £ A then (Xx,t) € A.

• (application) IftOyti 6 A then (toh) G A.

[u/x]v stands for substituting u for all free occurrences of x in v. a-conversion or renaming
bound variables may have to be performed in order to avoid naming collisions. Also substitution
properties such as Lemma 2.2.16 in [Bar84] will be assumed.

Definition 2 (/3-redex, ^-reduction and (3-normal form) A term of form (Xx.u)v is called a j3-
redex, and [v/x]u is called the contractum of the redex; t -^p f ort-^> tf stands for a /3-reduction
step where t' is obtained from replacing some redex in t with its contractum; a fl-normal form
is a term in which there is no [3-redex.

"/?-" is often omitted if this causes no confusion or ambiguity. In addition, similar notions
such as other redexes or reductions will probably not be defined explicitly later if they are very
analogous to the previous ones.

Usually there are many different redexes in a term /; a redex r\ in t is left to another redex r2
in t if the first symbol of r i , namely the first A, is left to that of r2.

Given a kind of reduction i2, ~^R stands for a single step of the reduction; ~ ^ stands for n steps
of the reduction, where n could be 0; ̂ ^ stands for some number of steps of the reduction.

Definition 3 (Reduction Tree) Given a term t, a root node n(t) is created to which t is attached;
ift can be reduced to t', then a child node ofn(t) is created to which tf is attached; a tree, possibly
infinite, is constructed in this way, and is called the reduction tree of t; each path starting from
the root of the tree stands for a possible reduction sequence from t.

For different reductions, there are different reduction trees accordingly. All reduction trees in
this paper are finitely branched, namely, each node has at most finitely many children. By Konig
Lemma, we know that a reduction tree must be a finite tree if all of its paths are of finite length.

Definition 4 (Strong Normalisability) A term t is strongly normalisable if every ^-reduction
sequence starting from t is finite. In other words, t has a finite ^-reduction tree.

Let S(t) denote the height of the /^-reduction tree of t. S(t) < oo means t is strongly normalisable
while S(t) = oo conveys that t has an infinite /^-reduction tree.



Definition 5 (Subterm Reduction) A term is reduced to its subterms according to the following
rules.

(\x.to)^s t0

Remark The terminology is abused a little here. The subterm reduction can only be performed
on a term t when t is in the empty context. Besides, no term should be referred to as a redex
with respect to subterm reduction.

Definition 6 (Leftmost Reduction and Hybrid Reduction) A reduction t ^ / t* is called leftmost
reduction if the f3-redex contracted in this step is the leftmost one among all redexes in t; a
reduction is a hybrid reduction ^ ^ if it is either a subterm reduction ^ 5 or a leftmost reduction

Note that the leftmost reduction is different from the head reduction, which will be defined in
Section 7. They coincide only if the reduced term is not in head normal form. "H-" will be
attached to names of notions associated with hybrid reduction. Now we are ready to establish
a relation between hybrid reduction and strong normalisation.

Definition 7 A term t is 7i-normalisable if every hybrid reduction sequence starting from t is
finite.

Similarly, the 7^-reduction tree T of a term t can be constructed according to ^-reduction. T
is a finite tree if and only if every W-reduction sequence starting from / is of finite length. This
time we do not need Konig Lemma since each node in T has at most three children. Let H(t)
be the height of T if T is finite. 7i(t) = oo means that the ^-reduction tree of t is infinite. In
addition, we define Hs(t) = max{H(ts) | t ^s ts} and Hi{t) = H{t*) where t ^ , t*.

Proposition 8 We have the following properties.

1. 7i(x) = 0 for any variable x}

2. H(\x.t)= 1 + H(t),

3. 7i{t) — 1 + max{7is(t)^Hi(t)} for any application t, and

4- if s is a subterm oft then H(s) < H(t).

Notice 1 + oo = oo is adopted.

Proof All these can be proven by straightforward induction on 7i(t). •

In the following presentation, the main strategy to prove H(t) < oo is to show Tis(t) < oo and
Hi(t) < oo.



3. Equivalence between Strong normalisability and H-normalisability

First we prove the easier direction: strong normalisability implies W-normalisability.

Lemma 9 (S-H) A term t is H-normalisable if it is strongly normalisable.

Proof Assume t to be strongly normalisable. We proceed by induction on S(t). The proof is
based on the following observations.

• S(t') < S(t) if * -v>/ /', and

• S(f) < S(t) if * s*3 t'.

Since subterm reduction cannot go on forever, for every term t there is a number n(t) such that
S(ti) < S(t) whenever t - ^ *i f°r s o m e n > n{t). This implies 7i(t) < oo. •

Before moving forward, let us introduce another useful notion, whose formal definition can be
found in [Bar84]. Let 1Z be a set of redexes in a term t, r — (\x.u)v £ 7£, and t ~> tf after r is
contracted. This reduction step affects redexes rf in 1Z in the following way.

• r1 is r. Then r1 has no residual in t'.

• r' is in v. All copies of r' in [v/x]u are called the residuals of rf in t'\

• r ; is in u. Then [v/a:]/ in [v/x)u is the only residual of r' in ^;

• rf contains r. Then the residual of r' is the term obtained from replacing r in rf with

• Otherwise, r' is not affected, and is its own residual in t1.

The following lemma, virtually equivalent to Lemma 13.2.5(i) in [Bar84], is needed in the proof
of the upcoming H-S lemma. I present a proof here since this lemma plays a crucial role in this
paper.

Lemma 10 Ift^i t* and t ~~> tf <^>i t'*, then t* ̂ * if*.

11———Y

Proof Let r; = (Xx.U[)vi be the leftmost redex in t, and r = (Xx.u)v be the redex contracted
in step t ~» t'. We have the following cases.

• (Xx.ui)vi is (Aa;.tt)t;. Then t* ̂ * t'* since t* = t' -^, t'*.
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(Xx.ui)vi is left to (\x.u)v. Now we have the following subcases.

- (Xx.u)v is in v\. After (Xx.u)v is contracted, vi is reduced to some vf. Now (Xx.ui)v'
is the leftmost redex in £', which gets contracted in t1 ~^i tf*. Hence tf* is obtained
from replacing (Xx.ufivi in t with [v'/x]ui. On the other hand, t* is obtained from
replacing {Xx.ui)v\ in t with [vi/x]ui. Reducing all residuals of r we have t* ^»* t'*.

— (Xx.u)v is in m or (Ax.^)t; is separate from (Xx.ui)vi. In this case, tf* can be obtained
from contracting the only residual of r in t*.

Lemma 11 (H-S) Ift is Ti-normalisable then t is strongly normalisable.

Proof We define a measure M as follows.

\A(f\ — J ^\VUJ 1 ^ \ v i j l i t — i / u ^ l )

^ ' [ 0 otherwise.

To make the induction work, WQ show H(t') < 7i(t) for any t ^» t1 and S(t) < oo simultaneously
by induction on on the lexicographic order (H(t),M(t)).

• t is in normal form. Then S(t) = 0 < oo.

• t — Xx.u. This case is easily verified by induction hypothesis.

• t = toh- Let t ~-»/ t* and t -^ t'. By induction hypothesis, S(U) < oo for i = 0,1.

- f = f. Then W(i') = H(t*) < H(t). By induction hypothesis, S(t') < oo.

- t1 = tf
Qt[ where U ~^> t\ and ti_z- = t\_{ for some i G {0,1}. Hence A^(^) < M(t).

Notice for i — 0,1 H(^) < 7^(^) by induction hypothesis. By Lemma 10, there exists
t'* such that tf ^i t'* and t* -^* t'*. Since H(t*) < H{t), induction hypothesis yields
H(t'*) < H{t*). Therefore, we have obtained

H(tf) = 1 + maxiHtfo),W(*i),W(t7*)} < 1 + max{W(t0),W(*i),W(**)} = W(<).

which, with jV((^) < Af(^), yields S(t') < oo by induction hypothesis. Therefore,
S(t) < oo since S(t') < oo for all t ^ tf.

Using 7^-reduction often yields clarity in a proof and, more importantly, brings a great deal
of easiness in thinking. This claim becomes more and more clear when the following proofs
unfold.

4. Finiteness of Developments

The main theorem in this section states that developments, a special kind of /3-reduction se-
quences, are always finite. The theorem plays a pivotal role in some proofs of Church-Rosser
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theorem. A version of this theorem for A/-calculus was proved in [CR36]; for A A"-calculus, it was
proved by Schroer in [Sch65] and independently by Hyland in [Hyl73] and by Hindley in [Hin78].
Since this is essentially a strong normalisation for /^-reduction defined below, we intend to give
a proof based on hybrid reduction, which is close to the one given by Hindley but with a greater
clarity.

Definition 12 (\0-terms)

• (variable) There are infinitely many variables xyyyz,... in Ao.

• (abstraction) Ift £ Ao then (Xx.t) £ Ao.

• (application) Ifto,ti£Ao then (toh) £ Ao.

• (fio-redex) Ifto,tx £ Ao then (Xox.to)ti £ Ao.

Intuitively, given a /?-redex r = (Xx.u)v, we can mark r to obtain a /?0-redex r0 = (Xox.u)v;
given a A-term t and a set 1Z of redexes in t, tn is the Ao-term obtained from marking all redexes
in 1Z. We often use t to stand for tji if this causes no confusion.

Definition 13 (^-reduction) Given a /3o-redex ro — (\ox.u)v, [v/x]u is the contractum of r$;
t -̂ >o t' stands for a single step of ̂ -reduction in which tf is obtained from replacing a flo-redex
in i with its contractum.

Note that Ao-terms are closed under /^-reductions.

Definition 14 (Development) Given a X-term t and a set 1Z of redexes in t; let t-ji be the Ao-
term obtained from marking all the redexes in 7Z into fio-redexes, then a ^-reduction sequence
starting from t-ji is called a development of (t,lZ); a complete development of (t,7Z) is a /?o-
reduction sequence from tn to some ^-normal form.

Notice that XQX.XX is not a legal Ao-term: the first A cannot get marked since there is no redex
involved. As an example, let t = (Xx.xx)(Xx.xx). Marking the only redex in £, we obtain

.xx)(Xx.xx). Note

t0 = (Xox.xx)(Xx.xx)^o {XX.XX)(XX.XX) = t,

which has no /30-redex.

A leftmost /?0-reduction t ^i0 f is the one in which the leftmost /?0-redex gets contracted;
subterm reduction, denoted by ̂ 5 o here, needs a slight modification:

t = (Aoa\uo)ti -^So Xx.u0

since Xox.uo is not a legal A0-term; the hybrid reduction is called W0-reduction in this section,
and Ho(t), 7io,s(t) and TiOii(t) are defined accordingly.



Observation Given t = toh, where t is not a /^o-redex. It is clear that Ho{ti) < oo for i = 0,1
implies Ho{t) < oo. This is simply due to the fact that there cannot be any interactions between
to and #i.

Since Lemma 10 is still true for /^-reduction, we have the following Tio-So lemma.

Lemma 15 (HQ-SQ) A term t is strongly fio-normalisable if it is TCo-normalisable.

Lemma 16 Given u, v such that HQ{U) < oo and Ho(v) < oo, then H0([v/x]u) < oo.

Proof The proof proceeds by induction on Wo(u).

• u is a variable. Then the case is trivial.

• u = Xy.u®. By induction hypothesis, Tio{[v/fx]uo) < oo. Hence

H0([v/x]u) = H0(Xy.[v/x]u0) = 1 + Ho([v/x]uo) < oo.

• u = (Xoy.uo)ui. Then u ~^i0 u* = [ui/y]u0, yielding Ho(u*) < Ho{u). By induc-
tion hypothesis, HQ([V/X]U*) < oo. Note [v/x]u = (Xoy.[v/x]uo)([v/x]ui), and we have
HQ,S([V/X]U) < oo by induction hypothesis. Notice [v/x]u -->/0 [([v/x]ui)/y]([v/x]u0) =
[v/x]u* according to some property of substitution, yielding WQJ([V/X]U) < oo. Hence

H0([v/x]u) = 1 + max{H0,i([v/x}u),n0,s([v/x]u)} < oo.

• u — UQU\. Notice [v/x]u = ([V/X]UQ)([V/X]UI). Induction hypothesis yields 7io([v/x]ui) <
oo for i = 0,1. By the above observation, Ho([v/x]u) < oo. •

Theorem 17 (Finiteness of Developments) All developments are finite.

Proof It suffices to show that all Ao-terms are strongly /3o-normalisable. By the Tio-So lemma,
this is equivalent to proving l~Lo{i) < oo for every Ao-term t. The proof proceeds by induction
on the structure of t.

• t is a variable. The case is trivial.

• t = Xx.u. By the induction hypothesis, Ho(t) = 1 + TCo(u) < oo.

t = (\ox.uo)ti, where ^o^i are Ao-terms. By induction hypothesis, ^o(^o) < °°
T~io(h) < oo. Lemma 16 yields TCo,i(t) — ̂ o([^i/^]^o) < oo. Therefore, we have

H0(t) = 1 + max{H0,i(t),

# t = toti. By induction hypothesis, ?io(ti) < oo for i — 0,1. The above observation yields
H0(t) < oo. •



The use of W-reduction helps facilitate the proof significantly. Compared with other proofs in
the literature, the conciseness of this proof can certainly be noticed. The theorem can be proven
virtually in the same say if one conducts an induction on S(t). The difference is that one has
to perform an induction on S(u0) and S(ti) in the case t = (Xx.uo)h, which makes the proof
less attractive. Nonetheless, even such a proof is fresh to the author. Later we will mention
that 77-reduction can be handled straightforwardly in the setting of W-reduction, yielding that
all A0-terms are strongly /?o7?-normalisable.

Lastly, I would like to mention that for any (t,TZ) all the complete developments of (t,TZ) end
with the same term. This result will be used in our following proofs, and its explanation can be
readily found in [Bar84].

5. Conservation Theorems

One reason of combining leftmost reduction with subterm reduction is to exploit some useful
properties of standard reduction sequence. The following proof of the conservation theorem is
an example of such an exploitation.

Definition 18 (Standard reduction sequence) Given a reduction sequence t ^n t1
} and let rt- be

the contracted redex in the ith reduction step for i = 1 , . . . , n; if rj is not a residual of some redex
left to r{ for all 1 < i < j < n, then the given reduction sequence is called a standard reduction
sequence; a development is standard if it is a standard reduction sequence.

Remark Given t and a set 1Z of redexes in /, we can always form a standard complete devel-
opment of (t,lZ) by contracting leftmost /?o-redexes first.

Definition 19 (/3j-redex) r = (\x.u)v is a /3j-redex if variable x does occur free in u; t ^»j tf

stands for a f3j-reduction in which the contracted redex is a /3j-redex; t ^ / 7 tf stands for a
leftmost reduction in which the contracted redex is a fii-redex.

Observation For any terms s and v, 7t{s) < H([v/x]s). This is because for any ft-reduction
sequence starting from s there is a corresponding one starting from [v/x]s: v can be treated as
if it were a variable.

Lemma 20 Let H be a set of f3j redex in t and t ~>* tw is a standard complete development of
(tjTZ), then U{tN) < 00 implies H(t) < 00.

Proof Assume t ^>n iff. The proof proceeds by induction on the lexicographic order of
{H{tN),n).

• n — 0. This is trivial since t — t^.

• n > 0. Let r be the first contracted redex in t *v» t' ^n~1 tjv. By induction hypothesis,
7i{t[) < 00. Now we conduct a case analysis on the structure t.
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— t — Xx.u. The case is easily verified by induction hypothesis.

— t — toti. We first prove 7is(t) < oo.

* r is t. Then t - (Ax.ito)^i for some u0 and t' — [ti/x]u0. By the observation, we
know H(u0) < 7i(tf) < oo, yielding H(t0) = 1 + W(uo) < <»• Since r is a /?/-redex,
*i is a subterm of*7, yielding H(t\) < H{t') < oo. Therefore, Hs(t) < oo.

* r is not /. Since the development is standard and complete, tw must be of form
t%tr

N^ where U -^* tfN are standard complete developments for i — 0,1. By
induction hypothesis, H(ti) < oo for i = 0,1. Hence 7YS(/) < oo

Let 77 be the leftmost /3-redex in /, and we show 7i\{t) < oo.

* r/ is r. Then W/(*) = H(t') < oo.
* r/ is not r. By the definition of residuals, it can be readily verified that 77 has only

one residual r^ in *#, which is the leftmost /3-redex in t^r. Let /;v ^1 *//, then
^(^AT) < W(*7v)- Consider the standard complete development of (t,7i U {r/}):
/ -^^ i* -̂ *̂ ̂ ? where ** '^* *^ is a standard complete development of all the
residuals of the redexes in 1Z. It is a routine verification that all the residuals are
/?/-redexes since all the redexes in 1Z are /3/-redexes. By induction hypothesis,
Hi(t) = H{t*) < 00.

Therefore, H(t) = 1 + mas{W5(*),Wj(J)} < 00.

Theorem 21 (Conservation Theorem) Ift -^/ *' ^/ien strong normalisability oft1 implies strong
normalisability oft.

Proof This is just a corollary of Lemma 20, where 1Z is a singleton set. •

Now it becomes clear that an induction on H makes it sufficient to study only the residuals of
inner redexes generated by W-reductions. The essence of the above proof can be summarised in
one sentence, namely, the residuals of a /3/-redex generated by ̂ -reductions are still /?/-redexes.
The proof of Lemma 20 would fail if S were used instead of H since the residuals of /3/-redexes
are not necessarily /3/-redexes after the contraction of an arbitrary /?-redex. This is basically
the reason why the proof of the conservation theorem for the A J-calculus in [Bar84] can not be
simply extended to a proof of the conservation theorem for the A/ir-calculus.

With this observation, we are ready to explore further on this subject.

6. Perpetual Redexes

It is certainly interesting to know what happens if we reduce some /3-redexes which are not
/?/-redexes.

Definition 22 (fix-redex) r = {\x.u)v is a fix-redex if x does not occur free in u; t ^^K t'
is a fix-reduction in which the contracted redex is a flx-redex; t ~^iK t1 stands for a leftmost
reduction in which the contracted redex is a /3K -redex.

10



The following lemma can be found in [Bar84] as Lemma 13.4.5.

Lemma 23 (/3K-conservation) Given t *^nK t' in which a 0K-redex r = (Xx.u)v gets contracted.
If both t' and v are strongly normalisable, then t is strongly normalisable.

Proof A simple induction on H{t) yields the result. •

Notice that the contracted /?#-redex must be a leftmost redex in order to apply the above lemma;
otherwise, counterexamples can be found easily. For those who are interested in ^-conservation,
[BK82] gives a much more detailed analysis on this subject.

Definition 24 A flx-redex r = (\x.u)v is a f3p-redex if S(u) < oo implies S(v) < oo; a
(3P-redex r in t is t-special if [t/x]r are flp-redexes for any list of strongly normalisable terms
t = tij... ,tfn, where x is a list of all the variables which are free in r but bound in t; a redex r
is special if it is (Xyi... \ym.r)-specialj where yi for 1 < i < m are all the free variables in r.

Evidently, we can use H instead of S in the above definition without changing its meaning. Also
we assume bound variables are chosen distinctly from free variables to make the above definition
hygienic.

Proposition 25 Given t and its leftmost redex r*/ = (\x.u)v, where H(v) < oo and all the free
variables in v are free in t; if r / r\ is a t-special redex in t and t ~>/ /*, then all the residuals
of r in t* are t*-special.

Proof Let rs be a residual of r in t*.

• rs is of form r. This case is trivial.

• rs is of form [v/x]r. rs is a /3p-redex since 7i(v) < oo. Let x = # i , . . . ,arn be all the free
variables which are free in rs but bound in f, then no free variables in v are in x. With
some property of substitution, it can be easily verified that rs is a £*-special redex.

Lemma 26 Given t and a set H of t-special redexes in t; If t ~>* tjsf is a standard complete
development of (t,lZ), then W(/JV) < °° implies H(i) < oo.

Proof Assume W(*#) < oo and t —>n tN. We proceed by induction on (W(tjv)jw), lexicograph-
ically ordered. The following proof is quite similar to the proof of Lemma 20.

• n — 0. This is trivial since t = ttf.

• n > 0. Let us conduct a case analysis on the structure of t.

— t = Xx.u. This case is easily verified by induction hypothesis.

11



t = Mi - Let t *^> t' -̂>* <JV, and r is the t-special redex contracted in the first step.
We first establish Hs{i) < oo.

* r is t. Then t = (Xx.uo)h and t' = uo. By induction hypothesis, H(u0) —
H(t') < oo. Since r is ^-special, H(u0) < oo implies 7 ^ i ) < oo. Thus, Hs(t) =

* r is not £. Then tpj must be of form t$y*3v> where U ̂ >* /)v a r e standard complete
developments for % — 0,1. By induction hypothesis, H(ti) < oo for i = 0,1.

Thus, 7Y5(/) = max{H(to),H(h)} < oo. It is easy to see that t must be of one of the
following forms.

* t = emi . . . ^ for some atom a. Since H(ui) < Hs(t) < oo, it is obvious that
H{t) < oo.

^ t — nu\ . . . un for some leftmost /?-redex r/ = (Ao:.n)v. Let rjv be the only residual
of ri in tjv, then r/v is the leftmost /3-redex in tjsf. Let t̂ v "^^ ĵv? a n ^ w e have
T~C(t^) < H(tiv). Consider the standard complete development of (t,lZ U {ri}):
t ^i t* ^^* t^y where t* ^** t^ is the standard complete development of the
residuals of all the redexes in 11. Note that all the free variables in v are free in t.
Also v is a proper subterm of t, yielding H(v) < Hs(t) < oo. By Proposition 25,
all residuals of the redexes in 1Z are ^-special. Hence 7ii(t) — H(t*) < oo by
induction hypothesis, yielding Ti(t) — 1 + max{T-Cs(t)^7ii(t)} < oo.

To make sure that contracting a /?/<-redex r in t does not change the strong normalisability of
/, all we really need is that all the residuals of r are /Jp-redexes in all the Ti-reduction sequences
from t. Since this is difficult to verify, we require that r be ^-special. The following corollary is
a slight variation of Corollary 26 in [BK82]

Corollary 27 Given a term t — t[r] where r — (Xx.u)v is a t-special redex and t[ ] is a context;
ifH(t[u]) < oo then H{t[r]) < oo.

Proof The is a special case of Lemma 26, where 7Z is a singleton set. •

Definition 28 A redex r with contracturn c is perpetual if S(t[c\) < oo implies S(t[r]) < oo for
any context t[ ].

Theorem 29 A redex r = (Xx.u)v is perpetual if and only if r is a /3j-redex or r is a special
redex.

Proof If r is a redex in t and r is special, then r is t-special. Applying Theorem 21 and
Corollary 27, we can see that the only case left is to verify that a perpetual /?/<-redex r =
(\x.u)v is special. Suppose there exist t — tu...,tn such that S(t{) < oo for i - 1 , . . . ,n,
S([t/x]u) < oo and S([t/x]v) — oo, where x = X\ ... ,xn is a list of all the free variables in r.
Let t[ ] = (Xxi... Xxn.[ ])ti... tnj and we have S(t[u]) < oo while <S(̂ |V)) = oo. This contradicts
that r is a perpetual redex. Hence the therorem has been justified. •
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Compared with the proof in [BK82], which uses a perpetual strategy, this proof simply shows
what happens to the residuals of /-special redexes in a W-reduction. If one notices that a
term without head normal form implies that any substitution instances of the term have no
head normal forms, this method can be readily adapted to give a syntactic proof of Berry's
sequentially theorem, where the standardisation theorem is needed but H plays no role. The
main difference between induction on H and a perpetual strategy lies in that the former brings
out inner redexes using 7i-reductions while the latter enters a term to find them.

7. Simply Typed A-calculus

In this section, we intend to give a syntactic proof of the strong normalisation theorem for pure
simply typed A-calculus, which exhibits an elegant solution to a crucial lemma in the proof of
the strong normalisation theorem for the labelled A-calculus in [Daa80].

Definition 30 (Simple Types and Simply Typed Terms) Types are formulated in the following
way.

• Atomic types are types.

• If U and V are types then U —> V is a type.

Simply typed terms are defined inductively as follows.

• (variable) For each type U, there are infinitely many variables xu,yu,... of that type.

• (abstraction) If v is of type V then Xxu.v is of type U —> V.

• (application) If u is of type U —> V and v is of type U, then uv is of type V.

We often omit the type superscript of a variable if this causes no confusion or ambiguity. Also
/^-reduction for simply typed A-calculus is essentially the same as /^-reduction for untyped A-
calculus. We intend to prove the next theorem in this section.

Theorem 31 (Strong Normalisation for Simply Typed \-Calculus) Every term in simply typed
lambda calculus is strongly normalisable.

The method used below originates from Turing's work according to [Gan80]. A detailed account
of it can also be found in [And71]. Though the method produces a straightforward proof of a
weak normalisation theorem for simply typed A-calculus, we have not found a proof of the strong
normalisation theorem for simply typed A-calculus given in this fashion in the literature. The
closest ones are found in [deGr93] and [KW94], where controlling erasure technique is used.

Definition 32 (Head redex and Head Reduction) Given t = Xxt... Azm.r^i . . . un where r is a
redex. We call r the head redex in t; t - ^ t' stands for a head reduction step in which r gets
contracted; a head normal form is a term without head redex in it.
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Definition 33 The complexity \T\ of a type T is defined as follows,

\
V m _ I 0 ifT is atomic;

\ M l ~ \ rnax{ 1 + |ro

The rank \t\ of an application t = £0̂ 1 *s defined as |T\| where T\ is the type of t\. /

Lemma 34 Given a simply typed term t = to*i- IfS(U) < oo /or i = 0,1, Jfien «S(tf)^ oo.

Proof We proceed to prove fi(t) < oo by induction on the lexicographic order (\
The S-H lemma implies H(U) < oo for i — 0,1 since S(ti) < oo for i = 0,1.* If £ is in normal
form, then H(t) < oo. Let us assume t-^+it*, and argue that H(t*) < oo. /

t* = t&Z where U ^n tj and *i- t \= tj_t- for some i G {0,1}. H^jce W(^) < H{U) and
W ( ) ( i ) . By induction hypothesis, W(t*) < oo.

• /0 = Xx.u. Then t* = [ii/a:]w. We have the following subcases.

- u — \y.u0. Since H(Xx.u0) < H(to)y by induction hypothesis, H((Xx.uo)ti) < oo.
Thus, H(t*) = W(Ay.[ti/x]«o) - 1 + ft([*i/x]«o) < W((Aa:.t«o)*i) < oo.

— u = VQV\. 7i((Xx.Vi)ti) < oo for i = 0,1 by induction hypothesis. This yields
Hdh/xfa) < oo for i = 0,1. Hence Hs(t*%< oo; Now we show H(t*) < oo.

* u *v>fc w*. Then f* ~>-/ [ti/a?]w*. By in^tiction hypothesis, 7i((\x.u*)ti) < oo
since H(\x.u*) < H(t0). Thus, Ht(tVj^ H([ti/a?]u*) < oo. Note W(<*) =
1 + max{W,(r),W/(<*)} < oo.

* u is of form au\ . . . wn, where a is a variable. Let u\ — [t\/x]ui for i = 1 , . . . , n.
By induction hypothesis, for i =*' l , . . . , n , W^ti') < W((Aa?.ti,-)<i) < oo since
H(Xx.Ui) < H(t0).

• a is not x. Then t* = a w j . . . ^ . It is easy-to verify 7i(t*) < oo since
W K ) < Wa(f) < oo for i = 1 , . . . , n.

• a is x. Then t* = t ^ .. .u'n. If n = 0 then Ti{t*)^ H(h) < oo. Otherwise,
it is easy to verify -̂jt*| < \t\. By induction hypothesis, Tii(t*) < oo. Thus,
W(t*) = 1 + max{Ha(t*),ni(t*)} < oo.

Therefore, H(t) = l + max{n(to),H(h),K(t*)} < oo. This yields S(t) < oo by the US lemma.

It is feasible to give a pj6of of Lemma 34 without using H, but the complexity olrsuch a proof
increases significantly.Jpox instance, if we would like to prove S(t*) < oo directly, t!|en we have
to show S(t*') < oojoi a J l f ^ t*'m The difficulty arises if the contracted redex in $£ ~> t*' is
not a residual of some redex in t. A solution to this problem is given in [Daa80], which\<tn also
be found as Exej^ise 15.4.8 in [Bar84]. \

//
Proof (of ^fieorem 31) We prove every term t is strongly normalisable by induction on
structure oft.
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• t is a variable. Then t is strongly normalisable.

• t = Xx.u. t is strongly normalisable since u is by induction hypothesis.

• t = JQ^. By induction hypothesis, Jt are strongly normalisable for i = 0,1. Applying
lemma 34, we have S(t) < oo, i.e., t is strongly normalisable.

For those who are familiar with the labelled A-calculi introduced by Hyland, Wadsworth and
Levy, it is obvious that this proof also works in that setting with a slight twist on the definition
of |2|. Comparing this proof with the proof of the strong normalisation theorem for labelled A-
calculus in [Daa80], we can notice that the underline strategies resemble each other. Our proof
is very short since the US has captured the essential idea in [Daa80]. The major drawback
with the proof is that it can hardly be extended to other stronger systems such as system F.

8. 77-reduction

Let Xx.tx ^v t be an 77-reduction where x does not occur free in t. Since Lemma 10 is obviously
still true in the presence of 77-reduction we conclude that Ti-S lemma still holds even if 77-
reduction is taken into consideration. This fact can be used to judge that all results, such as
finiteness of development and the conservation theorem, also hold if /^-reduction is used. The
only reason that we exclude 77-reduction in our proofs is to enhance the comprehensibility of the
proofs. If a term s = Xx.tx itself is an 77-redex, then the contractum t of s can be obtained from
two steps of subterm reduction. In other words, the case of 77-reduction can simply be handled
by induction hypothesis in the structural induction proofs, yielding virtually unchanged new
proofs.

9. Related Work

^-reduction bears a great resemblance to the reduction strategy used in [Gog94]. The main
difference is that we start our work in the untyped A-calculus while Goguen works in a typed
setting. It is also easy to reveal by a direct comparison that some intimate relation exists between
H-reduction and the perpetual strategies in [Bar76] and [BK82]. A related idea of transforming
strong normalisation into weak normalisation can also be found in [Ned73], [KI08O], [deGr93]
and [KW94].

H-reduction brings out inner redexes or their residuals by leftmost and subterm reductions.
It is usually easier to prove H(t) < 00 than S(t) < 00 for a given A-term.

Perpetual strategies spot the crucial places where reductions may change the strong normal-
isability of a term. They are often intuitive but can involve too many syntactic details.

Controlling erasure reduces (Xx.Xy.u)v to \y.(\x.u)v so that one can avoid contracting (3K~
redexes while keep reducing /?/-redexes. If this method works for a system, one can usually
give a direct proof of the strong normalisation theorem for that system. The proof of
Theorem 31 is such an example.
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We have seen that all the proofs presented are quite short and straightforward. H-reduction
is a flexible and helpful tool handling strong normalisations, especially, when it is combined,
with other ideas such as standard reduction sequences. Besides, the US lemma is also a clean
presentation of many similar ideas such as perpetual reduction strategies mentioned in the
literature: to make sure if contracting the leftmost redex changes the strong normalisability of
a term.

10. Conclusion

We have seen, through various examples, that the notion of W-reduction establishes a useful
induction measure in the proofs of many theorems related to strong normalisations. The new
proof for the finiteness of developments theorem is quite concise and straightforward, compared
with others in the literature. The new proof of the conservation theorem for AiT-calculus really
brings out the essence of the theorem, which enables us to present a much simplified proofs for
the characterisation theorem on perpetual redexes given in [BK]. To demonstrate the versatility
of the method, we also present a proof of the strong normalisation theorem for the simply typed
A-calculus, which can be readily transformed into a proof of the strong normalisation theorem
for labelled A-calculi. Above all, I feel that Ti-reduction eases thinking to a great extent when
one deals with problems related to strong normalisations. It summarises a key idea used in many
related proofs in the literature. Instead of handling inner redexes directly, 7^-reduction allows
us to wait until they become leftmost redexes in a reduction sequence. I have also tried this
method on various semantic proofs of strong normalisation theorems for various typed A-calculi,
but the result turns out to be much less satisfactory since the simplification is very minor if there
is any. This should not be surprising since the semantic proofs often treat leftmost redexes and
inner redexes equally with no distinction. Lastly, We expect more applications of 7i-reduction
coming out.
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