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Introduction
In this note we shall construct an effectiue

one-step Church-Rosser conuersion strategy F.
UJe wish to emphasize that our strategy is not
a reduction strategy since it on occasion eKpands
rather than contracts; hoiueuer, F is indeed a
Church-Rosser strategy since X = V => there
eKist n and m such that H - » F~n(X) = F"m(V) « -
V. Our strategy only works for combinators ,
since it makes use of our effectiue one-step
cofinal reduction strategy [ 3 ] which only works
for combinators; howeuer, it does yield an
effectiue one-step conuersion strategy for lambda terms
which the reader mill easily see.

In short F has the following
properties;
(1) F is effectiue
(2) either K -> F(K) or F(K) -> X
(3) if X beta conuerts to V then for some n and m

X - » F"n(X) ujhich is identical to F"m(V) « - V.
Preliminaries

Below '=' denotes beta conuersion and '='
denotes syntactic identity.

R combinator is an applicatiue combination of S and K.
D is a the digraph whose points consist
of the combinators and uihose lines are defined by the
one-step reduction relation X -> V. The depth d(X) of a
combinator X is defined by
d(S) = d(K) = 1 and d(XV) = max {d(X), d(Y)} +1.
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D(m) is the subgraph of D induced by { X : d(X)
< m } and D(K) is the weakly connected (i.e.
connected in the undirected sense) component
of D(d(X)) containing K. UJe assume that the combinators
haue been ordered by < so that
d(X)<d(Y) => X<V. Let t(X) be the < least element
of D(X). In [ 3 ] me defined an effectiue one-step
cofinal reduction strategy C. The nth iterate of
C on X is denote C"n (X). Here we recall that
either there are infinitely many n such that
K,C(K),C 2(K) C (n-1)(K) belong to D(C n(K))
(these C^n(X) are called the principal reducts
of X ) or there is some n such that ,for all m>n, C m(K)
belongs to D(C n(K)) ( such a C^n(X) is
called a sink for X ). If there is a sink in D(X) we
let s(X) be the < least such sink. Giuen a reduction
sequence R = XI -> X2 -> ...-> Xn me define lh(R) = n, df(R)
= S i = i n max {d(X(i+D) - d(Xi), 0 }, uik(R) = I { Xi: t(Xi) >
t(X1)} |. Now we order the triples

trip(R) = (df(R),wk(R),lh(R))
lexicographically and obserue that among all the
reduction sequences from XI to Xn there are
only finitely many paths R with df(R) < m for any
fixed m. This is because any term in such a path
has depth at most d(X1) + m. UJe shall assume that all of
these paths haue been ordered by «
so that trip(RI) < trip(R2) => R1 « R2. Now giuen
X find p(X) the « least reduction path from X to
a principal reduct of t(X) or a sink of t(X) which
euer exists. Let q(X) be the « least reduction
path from X to s(X) if this exists. p(X) and q(X) can be
effectiuely constructed from X. Finally we set ord(X) =
(t(X),trip(p(X))) and ord(X) = (s(X),
trip(q(X))) if the latter exists. These quadruples are
ordered lexicaographically.
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The algorithm
We now giue the definition of F(H). We assume that me

haue a Godel numbering of combinators X
such that d(X) < the Godel number of X.

First we determine whether D(X) contains a sink and if
one eKists we compute s(X) and q(X).ln addition, we find a
principal reduct or a sink of t(K), V, such that X - » V. This
can be done bg iterating C on t(X) while simultaneously
enumerating the reduction paths beginning with X. Bg the
definition of C ([ 3 ]), a sink for t(X) can be effectiuelg
recognized. Thus either a sink will be found or a reduction
to a principal reduct. Next we find p(X); this can be found
bg the aboue remark from ang reduction to V. Let
HI = S(KKHS(SKKHSKK)HS(KK)(S(SKKHSKK)))
(this is just a combinatorg fixed point of K)
R2 = KK(S(KK)(S(SKK)(SKK)))H1
IlJe distinguish seueral cases.
Case 1; s(X) eKists.

In case either X = Ks(H)(K nfll) or X = K(s(X))
(K nfl2) we put resp. F(X) = Ks(«)(K nfl2) and F(X) =
Ks(X)(K~(n+1 )fl1). Similarly if X - s(X) we
put F(X) = KXR1. Otherwise let X+ be the next
point on q(X). If s(K+) exists and s(H+) < s(X) then
put F(X) = X+. Otherwise set F(X) = KXN for N a
combinatorg integer representing the Godel number of X.
Case 2 s(X) does not exist.

In case X = KC"n(V)N where N is the combin- atorg
integer representing the Godel number of V
a principal reduct of t(X) and none of the C^j(V)
for j = 1,...,n are principal reducts of t(X) then we
put F(X) = KCT(n+1)(V)N.Otherwise ,we distinguish seueral
subcases.
Subcase 1. lh(p(X)) = 1.

I f C(X) is a principal reduct of t(X) then we set F(X) =
C(X). Otherwise ,we set F(X) = KXN for
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N a combinatory integer representing the Godel
number of X
Subcase 2. lh(p(K)) > 1.

Let X+ be the neKt point on p(X). If t(X+) < t(X)
then uje put F(X) = X+ unless X = KX+N for N a
combinatory integer representing the Godel
number of X+. In the latter case we put F(X) = KC(X+)N
.Otherwise, me set F(X) = KXN where N is a combinatory
integer representing the Godel
number of X.
R correctness proof

First consider the sequence of iterations of F
X,F(X),F(F(X)) F^n(X),

We claim that this sequence is unbounded in depth.
Indeed if s(V) is defined for any V = F n(») then for a <
smallest such s(Y) we obserue that there are two cases.
If V is s(Y), Ks(V)(K mfll), or Ks(V)(K mH2) then F(V) is
Ks(V)R1, Ks(V)(K mfl2), or Ks(V)(K (m+1) RI) and s(F(V)) =
s(V). Otherwise s(F(V)) = s(V) and q(F(V)) < q(V). Thus the
first case euentually comes up and ,once it is established
,it persists. Otherwise s(V) is not defined for any V =
F m(«). Let VI = F m(H) be such that t(V1) is < smallest
and among those such that p(Y1) is « least. Ule claim that
there is some principal reduct of t(V1) in the original
iteratiue sequence. IDrite p(V1) = VI -> V2 ->...->Vk. If for
some i>1 t(V(i+U) > t(V1) ,for smallest such i we haue
F(V1)= V2, F(V2) = V3 F(V(i-1)) = Vi, F(Vi) = KViN, and KViN
-> KV(i+1)N -> ... -> KVkN -> Vk. Thus p(F(Vi)) « p(V1)
contradicting the choice of VI.Thus for j = 1,...,k-2 F(Vj) =
V(j+1). If FV(k-1) = Vk then the principal reduct Vk of t(V1)
is in the original iteratiue sequence. It is possible that
F(V(k-1» =/= Vk. In this case , F(V(k-1)) = KV(k-1)N for N
the Godel number of V(k-l) and the neKt principal reduct
of t(V1) is a member of the original iteratiue sequence.
For, if the neKt principal reduct of t(V1) is C r(Vk) we haue
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F(V(k-1)) = KV(k-1 )N, F^2(Y(k-1)) = KVkN,
F^3(Y(k-1) = KC(Vk)N F^(r+2)(V(k-1)) = C^r(Vk).
Once a principal reduct of t(V1) is found in the original
iteratiue sequence ,the sequence of
iterates alternates between the first part of case
2 and subcase 1 of case 2 foreuer. Since s(V)
neuer exists the sequence must grow unbounded in depth.

Since the sequence of iterates is unbounded in
depth there exists an infinite sequence of points
F n(K) such that H,F(K),...,F (n-1)(K) belong to
D(F^n(X)). Let all of these points in order be VI ,
Y2,...,Yn Now if there exists a sink Z = X then
there exists some Vn such that Z belongs to D(Vn).
Thus s(Vn) exists and for all but finitely many n
s(F"n(K)) is the < smallest sink beta conuertible
to X. Similarly, for all but finitely many n ,t(F"n(H))
is the < smallest combinator beta conuertible to X.

Finally ,if there is some sink = X then ,for all
but finitely many n , F^n(X) alternates between
KZ(K mfl i) and KZ(Kmfi i ) where Z is the < smallest sink
= X. find, if there is no such sink
then ,for all but finitely many n ,F n(») alternates
between the principal reducts V of the < smallest
combinator = X and the terms K(C m(V)))N for N
the combinatory integer representing the Godel
number of V (and all but finitely many such V are
included). It follows that F is a Church -Rosser
strategy.
References
[1] Barendregt The Lambda Calculus

North Holland 1981
[2] Bergstra & Klop Church-Rosser strategies in

the lambda calculus
TCS 9 1979 pgs 27-38

[3] Statman Rn effectiue one-step cofinal



Church-Rosser

reduction strategy for
combinators
CMU Dept. of Math. Tech.
Report 95-177 1995



Ill I III III 11 III II II III I HI I , . . , .

3 fi46E 01430 1523


