
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Upper Bounds for Standardisations
and an Application

by

Hongwei Xi

Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213

Research Report No. 96-189*
May, 1996

Upper Bounds for Standardisations
and an Application

Hongwei Xi
Mathematics Department

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213

Telephone: +1 412 268-1439 Fax: +1 412 268-6380

Email: hwxiCcs.cmu.edu

Upper Bounds for Standardisations
and an Application

Hongwei Xi
Mathematics Department

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213

Telephone: +1 412 268-1439 Fax: +1 412 268-6380

Email: hwxi@cs.cmu.edu

Abstract

We first present a new proof for the standardisation theorem, a fundamental theorem in A-
calculus. Since our proof is largely built upon structural induction on lambda terms, we can
extract some bounds for the number of reduction steps in the standard reduction sequences
obtained from transforming any given reduction sequences. This result sharpens the standard-
isation theorem and establishes a link between lazy and eager evaluation orders in the context
of computational complexity. As an application, we establish a super exponential bound for the
number of reduction steps in reduction sequences from any given simply typed A-terms.

1. Introduction

The standardisation theorem of Curry and Feys [CF58] is a very useful result, stating that if
u /3-reduces to v for A-terms u and u, then there is a standard reduction from u to v. Using
this theorem, we can readily prove the normalisation theorem, i.e., a A-term has a normal form
if and only if the leftmost reduction sequence from the term is finite. The importance of lazy
evaluation in functional programming language largely comes from the normalisation theorem.
Moreover, the standardisation theorem can be viewed as a syntactic version of sequentiality
theorem in [Ber78]. For instance, it can be readily argued that parallel or is inexpressible in
A-calculus by using the standardisation theorem. In fact, a syntactic proof of the sequentiality
theorem can be given with the help of the standardisation theorem.

There have been many proofs of the standardisation theorem in the literature such as the ones in
[Mit79], [KI08O], and [Bar84]. In the present proof we intend to find a bound for standardisations,
namely, to measure the number of steps in the standard reduction sequence obtained from a
given reduction sequence. This method presents a concise and more accurate formulation of
the standardisation theorem. As an application, we establish a super exponential bound for the
number of reduction steps in reduction sequences from any given simply typed A-terms. This
not only strengthens the strong normalisation theorem in the simply typed A-calculus, but also
yields more understanding on //(£), the number of steps in a longest reduction sequence from a
simply typed A-term t. Since fi(t) can often be used as an induction order, its structure plays a
key role in understanding related inductive proofs.

The structure of the paper is as follows.

• The notions and basics are explained in Section 2.

• In Section 3, our proof of the standardisation theorem is presented.

• Some upper bounds for standardisations are extracted in Section 4.

• In Section 5, we establish a bound for the number of reduction steps in reduction sequences
from any given simply typed A-terms.

• Finally, some related work is mentioned and a few remarks are drawn in Section 6.

2. Notions, Terminology and Basics

We give a brief explanation on the notions and terminology used in this paper. Most details,
which could not be included here, can be found in [Bar84].

Definition 1 (X-terms) The set A of \-terms is defined inductively as follows.

• (variable) There are infinitely many variables x,y,z,... in A; variables are the only sub-
terms of themselves.

• (abstraction) IfteA then (Xx.t) £ A; u is a subterm of (Xx.t) if u is (Xx.t) or a subterm
oft.

• (application) Ifto,ti £ A then (tot\) £ A; u is a subterm of (tot\) ifu is tot\ or a subterm
of t{ for some i £ {0,1}.

The set FV(£) of free variables in t is defined as follows.

{ {x} if t = x for some variable x;

FV(to)-{x} ift = Xx.t0;
FV(*0)L»FV(ti) ift = tot1.

The set A/ of XI-terms is a subset of A such that, for every term t £ A/, if (Xx.to) is a subterm
oft then x £ FV(i0).
[v/x]u stands for substituting v for all free occurrences of x in u. a-conversion or renaming
bounded variables may have to be performed in order to avoid name collisions. Rigorous defini-
tions are omitted here.

Definition 2 ((3-redex} /3-reduction and (3-normal form) A term of form (Xx.u)v is called a
f3-redexf and [v/x]u is called the contractum of the redex; t ~> tr stands for a /3-reduction step
where t' is obtained from replacing some redex in t with its contractum; a /3-normal form is a
term in which there is no (3-redex.

"/?-" is often omitted if this causes no confusion or ambiguity. Let ~~»n stand for n steps of
/3-reduction, and ~~»* stand for some steps of reduction, which could be 0. Usually there are
many different redexes in a term t; a redex rx in t is left to another redex r2 in t if the first
symbol of r\ is left to that of r2.

Definition 3 (Multiplicity) Given a redex r = (Xx.u)v; the multiplicity m(r) of r is the number
of occurrences of the variable x in u.

Definition 4 (Reduction sequence) Given a /3-redex r in t; t^+u stands for the reduction step
in which redex r gets contracted; r\ + (- rn stands for a reduction sequence of the following
form.

to ^^ t\ '̂ » • • • ~> tn

Conventions cr, r , . . . range over reduction sequences; a : t -̂>* i ; or t^* tf stands for a reduc-
tion sequence from t to t'\ \a\ is the length of a, namely, the number of reduction steps in a,
which might be 0.

Definition 5 (Concatenation) Given a : to ~»* t\ and r : t\ ^ * t<i] a + r stands for the
concatenation of a and r , namely, a + r : t o ^ * h "^* *2-

Conventions Let a : w -̂ ** v and C[] be a context, then a can also be regarded as the reduction
sequence which reduces C[u] to C[v] in the obvious way. In other words, we may use a to stand
for C[a).

Before moving forward, let us introduce the concept of residuals of redexes. The rigorous defi-
nition of this notion can be found in [Hue94]. Let TZ be a set of redexes in a term t,r — (Xx.u)v
in 7£, and t^t'. This reduction step affects redexes r1 in TZ in the following way.

• rf is r. Then r' has no residual in t1.

• r! is in v. All copies of r' in [v/x]u are called residuals of rf in tf\

• r' is in u. Then [v/x]rf in [v/x]u is the only residual of r' in tf (rename bounded variables
in u suitably if necessary);

• rf contains r. Then the residual of r' is the term obtained from replacing r in rf with
[v/x]u.

• Otherwise, r ' is not affected, and is its own residual in tf.

Definition 6 (Developments) Given a X-term t and a set TZ of redexes in t; if a : t ^ * u
contracts only redexes in TZ or their residuals, then a is a development.

3. The Proof of Standardisation Theorem

Standardisation theorem of Curry and Feys [CF58] states that any reduction sequence can be
standardised in the following sense.

Definition 7 (Standard Reduction Sequence) Given a reduction sequence

cr : t = iQ -̂> ti^* i2^^ '''

a is standard if for all 0 < i < j , rj is not a residual of some redex left to rt-; a reduction
sequence a : t ^** tf is standardisable if there exists a standard reduction sequence as : t ^>* tf.

^Lemma 8 Given £ ^ * u^v, where <JS is standard and r is a residual of some redex rt in t; if
no redexes left to rt or their residuals are contracted in as, then we can construct a standard
reduction sequence t^* v with \r\ < 1 + max{m(r), 1} • \as\.

Proof Let us proceed by structural induction on t.

• t = Xx.t0. By induction hypothesis on t0, this case is trivial.

• t = totiy and rt is not t. as = G0 + ax, where £,-£**«,* for i = 0,1, and w =
Note rt is in ^ for some i £ {0,1}, and thus, v = t>ô i> where Ui^Vi and wi_; = vi_,-.
By induction hypothesis, we can construct a standard reduction sequence t{ -£>* vt- with
\T{\ < 1 + max{m(r), 1} • \at\. Note that i = 1 implies |CTO| = 0. Let r = TO + GI if i = 0 or ri
if i = 1, then £-̂ >* t; is standard. It can be readily verified that \r\ < l + max{ra(r), 1} • \as\.

• t = (\x.to)ti, and rt is £. a5 = ao + ai, where £,-£** ̂ for i = 0,1, and r — u= (\x.uo)ui.
Hence, v = [tti/a?]ii0. Let a0 = rxH hrn, and a^ — r\-\ 1-r*, where r!- = [^l/a:]^ for
j = 1, . . . , n. Then GQ : [ti/x]to ~>* [̂ i/̂]wo is standard. Notice that cr̂ + CJI + h ai is
a reduction sequence which reduces [ti/x]to to v = [wi/a:]wo? where G\ occurs m{r) times
and each a\ reduces one occurrence of £A in [t\fx]uo to u\. If a redex contracted in some
u\ is left to some r^, then all redexes contracted in that G\ are left to that r j . Hence, we
can move that G\ to the front of r-. In this way, we can construct a standard reduction
sequence from [ti/x]to to v = [UI/X]UQ in the following form.

where • • • stands for a reduction sequence of form G\ + • • • + <JI, which may be empty,
and r^ may also denote their corresponding residuals. Hence r = r̂ + a* is a standard
reduction sequence from t to v. Notice

\t\ = 1 + K*| = 1 + |aS| + m(r) * |ai| < 1 + max{m(r), 1} • \GS\.

Lemma 9 Given t^* u^v, where GS is standard; then we can construct a standard reduction
sequence t-^** v with \r\ < 1 + max{m(r), 1} • |<js|.

Proof The proof proceeds by induction on \GS\. Let r = r if \GS\ — 0. Now assume GS = r' + (Tf
8J

where t^*tf^* u. Now we have two cases.

• r is a residual of some redex in t which is left to r'. By Lemma 8, we are done.

• r is not a residual of any redexes in t which are left to r1. By induction hypothesis, we can
construct a standard reduction sequence £'£>* v with |r'| < 1 + max{ra(r), 1} • \G!

S\. Let
r = rf + rf, then it can be readily verified that r is standard according to the construction.
Note \T\ = 1 + \r'\ < 1 + max{m(r), 1} • (1 + K|) = 1 + max{ra(r), 1} • \GS\. •

Theorem 10 (Standardisation) Every finite ^-reduction sequence is standardisable.

Proof Given t-Z** v, let us proceed by induction on |a|. Assume G = a'+r, where t^>* w^*v. By

induction hypothesis, we can construct a standard reduction sequence t~&* u. Hence, Lemma 9
yields the result. •

4. The Upper Bounds

It is clear from the previous proofs that we actually have an algorithm to transform any reduction
sequences into standard ones. Let std(a) denote the standard reduction sequence obtained from
transforming a given reduction sequence a, and we are ready to give some upper bounds for the
number of reduction steps in std(cr).

Theorem 11 (Standardisation with bound) Given a reduction sequence t^>* u, where a — r0 +
T\ + • • • + rn for some n > 1, then there exists a standard reduction sequence t^*u with
Kl < (1 + max{ra(ri),l}) • • • (! + max{m(rn), 1}).

Proof Let &$ = ro, &i = ro + r\ + \- r,- and U = |std(a»)| for i = 1 , . . . , n. By Lemma 9, we
have /j+i < 1 + max{rn(r t+i), 1} • l{ for i = 0 , 1 , . . . , n — 1 according to the proof of Theorem 10.
Note 1 < /;, and thus, for i = 0 , 1 , . . . , n — 1,

/t+i < 1 + max{m(r2+i), 1} • U < (1 + max{m(r i+i), 1}) • /,-.

Since /o = 1? this yields ln < (1 + max{m(ri), 1}) • • • (! + max{m(rn), 1}). Note a = an. Let
as = std(<jn), then we are done. •

Clearly, this simple bound is not very tight. With a closer study, a tighter but more complex
bound can be given in the same fashion. Unlike many earlier proofs in the literature, our proof
of the standardisation theorem does not use the finiteness of developments theorem. In this
respect, our proof is similar to the one in [Tak95]. As a matter of fact, Theorem 11 can be
modified to show that all developments are finite, following the application in the next section.
We will not pursue in this direction since the work in [dV85] has produced an exact bound for
finiteness of developments.

Given t ̂ n w, we can also give a bound in terms of n and the complexity of t defined below.

Definition 12 The complexity \t\ of a term t is defined inductively as follows.

1 if t is a variable;
\t\ = { l + \to\ ift^Xx.to;

Proposition 13 Ift^u then \u\ < \t\2.

Proof A structural induction on t yields the result.

Corollary 14 Ift^>n u, then there is a standard reduction sequence t^>* u with \as\ < \t\2

Proof This clearly holds if n = 1. Now assume ro + riH |-rn_i : t^±n u. By Proposition 13,
we have |r,-| < |£|2* for i = 1 , . . . , n - 1, which yields 1 + max{m(rt-), 1} < |£|2' for i = 1 , . . . , rc - 1.
By Theorem 11, we can construct a standard reduction sequence as : t ^ * u with |cr5| <

Now we introduce a lemma which will be used in the next section.

Lemma 15 If a : t ^»* u is a development, then \u\ < 2$.

Proof This can be verified by a structural induction on t. m

5. An Application

It is a well-known fact that the simply typed A "^-calculus enjoys strong normalisation property.
In this section, as an application of our previous result, we will present an upper bound for the
lengths of all the reduction sequences from any given A^-term t. Among various proofs showing
the strong normalisation property of A"*, a few, such as the ones in [Gan80a] and [Sch91], present
some superexponential upper bounds for longest reduction sequences from given A^-terms.
Gandy invents an semantic approach in [Gan80a], which is called functional interpretations
and has its traces in many following papers such as [Sch82], [Pol94] and [Kah95]. In [Sch91],
Schwichtenberg adopts a syntactic approach from [How80], which bases on cut elimination in
intuitionistic logic.

Compared with other related methods in the literature, our following syntactic method is not
only innovative but also yields an quite intelligible and tight bound. It also exhibits a nice way
to transform strong normalisation into weak normalisation in A"4, simplifying a much involved
transformation in [Sch91]. Therefore, the new transformation has its own value in this respect.
We start with a weak normalisation proof due to Turing according to [Gan80], which can also
be found in many other literatures such as [And71] and [GLT89].

5.1. A bound for A~^/-terms

Since the leftmost reduction sequence from any A/-term t is a longest one among all reduction
sequences from £, it goes straightforward to establish a bound for A~*/-terms if we can find any
normalisation sequences for them. In order to get a tighter bound, the key is to find shorter
normalisation sequences.

Definition 16 (Simple Types and \~>-terms) Types are formulated in the following way.

• Atomic types are types.

• IfU and V are types then U —> V is a type.

\~*-terms are defined inductively as follows.

• (variable) For each type U, there are infinitely many variables xu, yu,... of that type.

• (abstraction) If v is of type V and x does occur free in v then Xxu.v is of type U —>- V.

• (application) If u is of type U —> V and v is of type U, then uv is of type V.

We often omit the type superscript of a variable if this causes no confusion or ambiguity. On
the other hand, superscripts may be used to indicate the types of A~*-terms.

Definition 17 The rank p(T) of a simple type T is defined as follows.

The rank p(r) of a redex r = [\xu,vv)uu is p(U —> V), and the rank of a term t is

(\ _ \ (0,0) if t is in (3-normal form; or
^ ' 1 (fc = max{p(r) : r is a redex in i), the number of redexes r in t with p(r) = k).

The ranks of terms are lexically ordered.

Notice that a redex has a redex rank, which is a number, and also has a term rank, which is a
pair of numbers.

Observations Now let us observe the followings.

• If t ~> t' and redex r' in t' is a residual of some redex r in £, then p(rf) = p(r).

• Given t = t[r] with p(t) — (fc,n), where r = (Ax^.w^Ju^ is a redex with p(r) — k and no
redexes in r have rank k. Then p(^) < p(t) for t ^^ t1 — t[[u/x]tt]. This can be verified
by counting the number of redexes in tl with rank &. It is easy to see that any redex in t1

which is not a residual must have rank p(U) or p(V), which is less than k. Hence, a redex
in rf with rank k must be a residual of some redex r\ in t with rank k. Note r\ has only
one residual in tf since rx is not in r. This yields p(t') < p(t) since p{tf) is either (Ar, n — 1)
or (A;', nr) for some kf < k.

Lemma 18 Given t with p(t) = (A;, n) /or some k > 0; ^/ien tye can construct a development
a : t -^* u such that \a\ = n and p(u) = (A;7, nf) for some kf < k.

Proof Following the observations, we can always reduce innermost redexes with rank k until
there exist no redexes with rank A:. This takes n steps and reaches a term with a less rank. •

Definition 19 Let functions 2k for k = 0 ,1 , . . . be defined as follows.

o (T) _ / x ifk = 0;
k{ } \ 22^-iW ifk>0.

Also we define

1 (l + max{m(ri),l}) • •-(1 + max{m(rn), 1}) if<r = n-\ \-rn.

Clearly, m{(Ti + a2) = i

Theorem 20 If t is a X~*-term with p(t) = (fc, n) /or some A; > 0, JAen fAerc exists a : t —»* u
such that u is in f3-normal form and m(a) < £

Proof By Lemma 18, there exists a development a1 : t ^ * t' with \a'\ = n and p(tf) = (k\ nf) for
some k' < k. Let a1 — rx+' \-rn, then l + m(rn) < 2^ by Lemma 15. Hence, m(a') < 2n$ < 2®2

since n < \t\. Now let us proceed by induction on k.

• k = 1. Since tf is in normal form, let a — a1 and we are done.

• k > 1. By induction hypothesis, there exists a11 : t1 ̂ >* u such that u is in /3-normal form
and m{o") < 2i(£f:T1

1(2;_1(|£'|))2). Let a = a' + a", then

A;-l k

TTlyJj = TTl^C jTTl\(T) <C 2 i (|^ |) 2 j

since \t'\ < 2$ by Lemma 15. •

It is a well-known fact that the leftmost reduction sequence from a A/-term t is a longest one if
t has a normal form.

Corollary 21 Given any simply typed \~~*I-term t with p(t) — {k,n); every reduction sequence
from t is of length less than 2^+1 (|£|).

Proof It can be verified that the result holds if |*| < 3. For |*| > 3, we have 2i (£?=i (2t-_i
- By Theorem 20, there exists a : t ^ * u such that u is in /J-normal form and ra(<r) <
. This yields that std(<j) < 2k+\(\t\) by Theorem 11. Since t is a A"^/-term, the leftmost

reduction reduction sequence from t is a longest one. This concludes the proof. •

Notice that the leftmost reduction sequence from t may not yield a longest one if t is not a
A~^7-term. Therefore, the proof of Corollary 21 cannot go through directly for all A~*-terms.

5.2. A bound for A~*-terms

Our following method is to transform a A^-term t into a A ~*/-term T(t) such that n{t) <
li{T(t)). Since we have already established a bound for T(t), this bound certainly works for t.

Lemma 22 Given t = ru\ .. ,un and tQ = ([v/x]u)ui ...unt where r = (Xx.u)v; if t0 and v are
strongly normalisable, then t is strongly normalisable and ji{t) < 1 + A^o) + Mu)-

Proof Let a : t ~»* f be a reduction sequence, and we verify that |cr| < 1 + M(^O) + M(^)-
Clearly, we can assume that redex r or some residual of r has been contracted in a. Then
a = a\ + r' + cr2 is of the following form.

where o\ = cru + av + aUl + \- aUn for ^ ^ * w', u ^ * i/, i / i ^ * w ,̂ . . . , and wn^5* ^ . Let
r\ : [v/a:]w^* [^/x]^ be the reduction sequence which reduces each occurrence oi v in [v/x]u to
v1 by following <rv, and r2 : [^/x]^ ~>* [v'/x]uf be the reduction sequence which reduces [v'/x]u to
[t;7 /^]^ by following au. Clearly, |ri| = ra(r)|(7v| and \r^ — |crn|. Also let r : ([v/x]u)u\.. ,un ^>*
t* be 7i + T2 + crWl + • • • + crUn + (72, then |r| < /i(^o) by definition. Note

M = K + r' + <J2\ = Kl + kuj + • • • + \<Tun\ +1 + N + ki/l < i + H + |<rv|.

By definition, |av| < fi>(v). Hence, \a\ < 1 + fJ,(to) + fi(v). •

Definition 23 (Transformation) To facilitate the presentation, we assume that there exist con-
stants (,) of type U -> (V -> U) for all types U and V. Let (w, v) denote (,)uv.

t is a variable;
• -J/m,«) t = Xx.t0, where t0 has type Ux -> > Um -> V,

and V is atomic.

Clearly, (,) can always be replaced by a free variable of the same type without changing the
normalisability of terms.

Proposition 24 For every X~*-term t of type T, we have the followings.

1. T(t) is a X^ I-term of type T;

2. T([u/xu]t) = [T(u)/xu]T(t) for any X^-term u of type U;

3.

Proof (1) and (2) can be readily proven by structural induction on t. By (1) and Corollary 21,
we know /j,(T(t)) exists for every A"*-term t. We now proceed to show (3) by induction on
fi(T{t)) and the structure of T(£), lexicalgraphically ordered.

• t = Xx.u. By induction, /u(t) = /j,(u) < fi(T(u)) < fi(T(t)).

• t = aux ... un, where a is some variable. Note fi(T(t)) = aT(ui) . ..T{un). By induction
hypothesis, n{t) = A*(«I) + • • • + A*K) < /*(T(«i)) + .. .ft(T(un)) = n{T(t)).

= r«! . . .un, where r = (AX.M)U. By definition, T(t) = 7"(r)T(ui).. .T(un), and T(r) =
. ..Xym.{T(u)yi.. .ym,x)T(v). Hence,

T(r) ^ XVl. ..Xym.{{[T{v)/x]T{u))yi ...

Since T(u)yi ...ym is of atomic type, m>n. This yields

T{t) ^* Xym.n+l. ..\ym.{{[T{v)/x]T{u))T(ux).. .T(un)ym_n+1 ...ym, T{v)).

By (2), [T{v)/x]T(u) = T([v/x]u), and thus,

([7 » / z] 7 ») 7 > i) . . T K) = T(([v/x]u)Ul. ..«„).

By induction hypothesis, /x(([u/a;]M)«i.. .un) < /x(T(([t;/x]u)ui.. .un)). Therefore, by
Lemma 22,

Corollary 25 Given any simply typed X^-term t with p(t) — (k,n); every reduction sequence
from t is of length less than 2k+i((2k + S)\t\).

Proof Given a subterm Xx.u of type U = U\ —»...—» JJm —>• V in t, where V is atomic, we
can simply transform Xx.u into Xx.T(u) if k < p(U) since no redexes with rank greater than k
can occur in any reduction sequence of t; if p(U) < Ar, we have

\T{Xx.u)\ = IAZAJ/X . . . Xym.(T(u)yi ...ym,x)\ = \T(u)\ + 2m + 3 < |T(tt)|

Thus, it can be readily shown that \T(t)\ < (2k + 3)|^|. Also it can verified that, if p(t) — (k, n)
for some k and n then p(T(t)) = (&,n) by the definition. By Corollary 21, we have fi(T(t)) <
2k+1((2k + 3)\t\). This yields fi(t) < 2*+i((2fc + 3)|*|) by Proposition 24 (3). •

6. Related work and Conclusion

For those who know the strong equivalence relation = on reductions in [Bar84], originally due
to Berry and Levy, it can be verified that a = std(cr) for all reduction sequences a.

There is a short proof of the standardisation theorem due to Mitschke [Mit79], which analyses
the relation between head and internal reductions. It shows any reduction sequence can be
transformed into one which starts with head reductions followed by internal reductions. In this
formulation, it is not easy to extract a bound from the proof. There are also two proofs due
to Klop [KI08O], to which the present proof bears some connection. Though all these proofs

10

aim at commuting the contracted leftmost redexes to the front, our proof uses an entirely
different strategy to show the termination of such commutations. While Klop focuses on the
strong equivalence relation =, we establish Lemma 8 by a structural induction without using the
finiteness developments theorem. This naturally yields an upper bound for standardisations.

In our application, an upper bound is given for the lengths of reduction sequences in A""*. This
is a desirable result since ju(t), the length of a longest reduction sequence from £, can often be
used as an induction order in many proofs. Gandy mentions a similar bound in [Gan80a] but
details are left out. His semantic method, which aims at giving strong normalisation proof,
is utterly different from ours. Schwichtenberg presents a similar bound in [Sch91] using an
approach adapted from [How80]. His method of transforming A"^-terms into A~*/-terms closely
relates to our presented method but is very much involved. It seems that his entire proof is
less transparent, and therefore, obscures the merits in it. In addition, the proof of finiteness of
developments theorem by de Vrijer [dV85] yields an exact bound for the lengths of developments,
and thus, is casually related to our proof of the standardisation theorem with bound.

In Gentzen's sequent calculus, there exists a similar bound for the sizes of cut-free proofs obtained
from cut elimination. Mints [Min79] (of which I have only learned the abstract) gives a way of
computing the maximum length of a reduction from the length of a standard reduction sequence.
In this respect, our work can be combined with his to show the maximum length of a reduction
sequence from the length of an arbitrary one. This also motivates our planning to establish a
similar bound for the first-order A-calculus with dependent types. On the other hand, Statman
[Sta79] suggests that a lower bound for fi(t) have the same superexponential form, and this
makes it a challenging task to sharpen our presented bound for fi(t) though it seems to be
greatly exaggerated.

7. Acknowledgement

I thank Frank Pfenning, Peter Andrews and Richard Statman for their support and for providing
me a nice working environment. I also thank some anonymous referees for their criticisms and
suggestions on a draft of this paper, which have certainly enhanced its quality to a large extent.

References

[And71] P.B. Andrews (1971), Resolution in type theory, J. Symbolic Logic 36, pp. 414-432.

[Bar76] H.P. Barendregt et al. (1976), Some notes on lambda reduction, Preprint No. 22,
University of Utrecht, Department of mathematics, pp. 13-53.

[Bar84] H.P. Barendregt (1984), The Lambda Calculus: Its Syntax And Semantics, North-
Holland publishing company, Amsterdam.

[Ber78] G. Berry (1978), Sequentialite de revaluation formelle des A-expressions, Proc. 3-e
Colloque International sur la Programmation, Paris.

[Chu41] A. Church, (1941), The calculi of lambda conversion, Princeton University Press,
Princeton.

11

[CF58] H.B. Curry and R. Feys (1958), Combinatory Logic, North-Holland Publishing Com-
pany, Amsterdam.

[dV85] R. de Vrijer (1985), A direct proof of the finite developments theorem, Journal of
Symbolic Logic, 50:339-343.

[Gan80] R.O. Gandy (1980), An early proof of normalisation by A.M. Turing, To: H.B. Curry:
Essays on combinatory logic, lambda calculus and formalism, edited by J.P. Seldin and
J.R. Hindley, Academic press, pp. 453-456.

[Gan80a] R.O. Gandy (1980), Proofs of Strong Normalisation, To: H.B. Curry: Essays on
Combinatory logic, lambda calculus and formalism, edited by J.P. Seldin and J.R.
Hindley, Academic press, pp. 457-478.

[GLT89] J.-Y. Girard et al. (1989), Proofs and types, Cambridge Press, 176 pp.

[Hue94] Gerard Huet (1994), Residual Theory in A-Calculus: A Formal Development, Journal
of Functional Programming vol. 4, pp. 371-394.

[Hin78] J.R. Hindley (1978), Reductions of residuals are finite, Trans. Amer. Math. Soc. 240,
pp. 345-361.

[How80] W. Howard (1980), Ordinal analysis of terms of finite type, Journal of Symbolic Logic,
45(3):493-504.

[Hyl73] J.M.E. Hyland (1973), A simple proof of the Church-Rosser theorem, Typescript,
Oxford University, 7 pp.

[Kah95] Stefan Kahrs (1995), Towards a Domain Theory for Termination Proofs, Laboratory
for Foundation of Computer Science, 95-314, Department of Computer Science, The
University of Edinburgh.

[KI08O] J.W. Klop (1980), Combinatory reduction systems, Ph.D. thesis, CWI, Amsterdam,
Mathematical center tracts, No. 127.

[Lev78] J.-J. Levy (1978), Reductions correctes et optimales dans le lambda calcul, These de
doctorat d'etat, Universite Paris VII.

[Min79] G.E. Mints (1979), A primitive recursive bound of strong normalisation for predicate
calculus (in Russian with English abstract), Zapiski Naucnyh Seminarov Leningrad-
skogo Otdelenija Matematiceskogo Instituta im V.A. Steklova Akademii Nauk SSSR
(LOMI) 88, pp. 131-135.

[Mit79] G. Mitschke (1979), The standardization theorem for the A-calculus, Z. Math. Logik
Grundlag. Math. 25, pp. 29-31.

[Pol94] J. van de Pol (1994), Strict functionals for termination proofs, Lecture Notes in Com-
puter Science 902, edited by J. Heering, pp. 350-364.

[Sta79] Richard Statman (1979), The typed A-calculus is not elementary, Theoretical Com-
puter Science 9, pp. 73-81.

12

[Sch82] H. Schwichtenberg (1982), Complexity of normalisation in the pure typed lambda-
calculus, The L.E.J. Brouwer Centenary Symposium, edited by A.S. Troelstra and D.
van Dalen, North-Holland publishing company, pp. 453-457.

[Sch91] H. Schwichtenberg (1991), An upper bound for reduction sequences in the typed
lambda-calculus, Archive for Mathematical Logic, 30:405-408.

[Tak95] Masako Takahashi (1995), Parallel Reductions in A-Calculus, Information and Com-
putation 118, pp. 120-127.

[Wad76] C.P. Wadsworth (1976), The relation between computational and denotational prop-
erties for Scott's Doo-models of A-calculus, SIAM Journal of Computing, 5(3):488-521.

13

