
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Revisiting Positive Equality

Shuvendu K. Lahiri Randal E. Bryant Amit Goel
Muralidhar Talupur

November 2003
CMU-CS-03-1963

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research was supported in part by the Semiconductor Research Corporation, Contract RID 1029.

Keywords: Decision Procedures, Logic of Equality with Uninterpreted functions, Verification

Abstract

This paper provides a stronger result for exploiting positive equality in the logic of Equality with
Uninterpreted Functions (EUF). Positive equality analysis is used to reduce the number of inter-
pretations required to check the validity of a formula. We remove the primary restriction of the
previous approach proposed by Bryant, German and Velev [5], where positive equality could be
exploited only when all the function application for a function symbol appear in positive context.
We show that the set of interpretations considered by our analysis of positive equality is a subset
of the set of interpretations considered by the previous approach. The paper investigates the ob-
stacles in exploiting the stronger notion of positive equality (called robust positive equality) in a
decision procedure and provides a solution for it. We present empirical results on some hardware
and software verification benchmarks.

1 Introduction

Decision procedures for quantifier-free First-Order Logic (FOL) with equality have become an
integral part of many formal verification tools. The importance of decision procedures lies in
automatically validating (or invalidating) formulas in the logic. The ability to automatically decide
formulas has been the corner-stone of several scalable verification approaches. For hardware, Burch
and Dill [9] have used symbolic simulation with a decision procedure for the quantifier-free fragment
of FOL to automatically verify complex microprocessor control. Bryant et al. [6, 23] have extended
their method to successfully verify superscalar and VLIW processors. Recently, Lahiri, Seshia and
Bryant [15] have demonstrated the use of efficient decision procedures to improve the automation for
out-of-order processor verification. For software, decision procedures have been used for translation
validation of compilers [19]. Decision procedures are used extensively for predicate abstraction in
several software verification efforts [2, 12, 14]. They have also been used for the analysis of other
concurrent infinite-state systems.

Most decision procedures for quantifier-free logic fall roughly into two categories: decision proce-
dures based on (i) a Combination of Theories [22, 17, 3, 18] or (ii) a validity preserving translation
to a Boolean formula [5, 19, 21, 8]. The former methods combine the decision procedures for
individual theories using Nelson-Oppen [17] style of combination. The latter methods translate
the first-order formula to a Boolean formula such that the Boolean formula is valid if and only if
the first-order formula is valid. There has also been work in solving first-order formulas by using
abstraction-refinement based on Boolean Satisfiability (SAT) solvers [4, 10].

Among the decision procedures based on a validity preserving translation to a Boolean formula,
Bryant et al. [5, 6] proposed a technique to exploit the structure of equations in a formula to effi-
ciently translate it into a Boolean formula. Their method identifies a subset of function symbols
in the formula as "p-function" symbols, the function symbols which only occur in monotonically
positive contexts. The method then restricts the set of interpretations for the function applications
of p-function symbols for checking the validity of the formula. They have successfully used this
decision procedure to automatically verify complex microprocessors. The method was initially pro-
posed for the Logic of Equality with Uninterpreted Functions (EUF) and was later extended for the
logic of Counter Arithmetic with Lambda Expressions and Uninterpreted Functions (CLU) [8, 13].
Pnueli et al. [19] use Ackermann's function elimination method [1] to remove function applications
from a formula and allocate ranges for each of the variables in the resulting formula, such that the
ranges are sufficient for checking validity. The technique also exploits the polarity of equations in
the formula to restrict the range allocation. Rodeh et al. [21] have used the function elimination
method of Bryant et al. [5] to further restrict the domain size of the variables using the algorithm
in [19]. The last two decision procedures have been successfully used for validating compiler code
automatically. In all the above decision procedures [5, 19, 21], the key idea has been to restrict the
set of interpretations, by exploiting the polarity of the terms in the formula.

One of the main limitations of the positive equality analysis of Bryant et al. is that it is not
robust. For a function symbol / to be a "p-function" symbol, all the function applications of /
have to appear in monotonically positive equations. This makes it difficult to exploit positive
equality, even when a small number of applications of a function appears in a negative context.
This places stronger restrictions on the formulas to be decided efficiently and the method has not
proven effective for benchmarks which display these characteristics [20].

In this paper, we present a generalization of positive equality analysis of Bryant, German and

Velev [5] which allows the decision procedure to exploit positive equality in situations where the
previous approach could not exploit it. This stronger version of positive equality analysis, called
robust positive equality, restricts the interpretations to consider in deciding formulas in EUF to a
subset of interpretations considered by the previous approach. We show the complexity of exploit-
ing robust positive equality in a decision procedure which uses the function elimination method
proposed by Bryant et al. [6]. We describe a decision procedure to exploit this stronger form of
positive equality. We present verification benchmarks where this approach reduces the number of
interpretations to consider by orders of magnitude compared to the previous approach.

The rest of the paper is organized as follows: In Section 2, we present Bryant et al.'s positive
equality analysis. We illustrate the strengths and limitations of their approach. In Section 3, we
present a generalization of the positive equality analysis called robust positive equality analysis.
We present the robust maximal diversity theorem that allows us to restrict the interpretations
to consider to be a subset of the interpretations considered by the previous approach. Section 4
discusses a decision procedure based on robust positive equality. We discuss the main complications
in exploiting robust positive equality in a decision procedure and provide a heuristic which lets us
exploit the robust positive equality. In Section 5, we compare the effectiveness of the new approach
compared to the previous work on a set of verification benchmarks.

2 Background: Positive Equality and its Limitation

In earlier work, Bryant et al. [5, 6] exploited positive equality in the logic of EUF to give a very
efficient decision procedure for this fragment. The logic of EUF is built from terms and formulas.
Terms are formed by function applications (e.g. f(x)) or by if-then-else (ITE) constructs. The
expression ITE(G, Ti, T2) selects T\ when G is true, and T2 otherwise. Formulas are built from
predicate applications, equations between terms or using the other Boolean connectives (A, V, ->).
Every function and predicate symbol has an associated arity to denote the number of arguments
for the function. Function symbols of arity zero are called symbolic constants. Similarly, predicate
symbols of arity zero are called propositional symbolic constants.

In positive equality analysis, the decision procedure partitions the function symbols in an EUF
formula as p-function symbols and g-function symbols. A function symbol / is called a p-function
symbol in an EUF formula F1, if none of the function applications of / appear in (i) a negative
equation (e.g. / (x i , . . . , Xk) 7̂ Ti) or (ii) in the controlling formula of an if-then-else (ITE) term (
the controlling formula of an ITE is implicitly negated when choosing the else branch). All function
symbols which are not p-function symbols are g-function symbols.

The semantics of an expression in EUF is defined relative to a non-empty domain T> of values and
an interpretation /, which assigns values to the function and predicate symbols in the formula. An
interpretation I assigns a function from T>k to V for each function of arity k and a function from
Vk to {true,false} for each predicate symbol of arity k. Given an interpretation /, the meaning
of an expression E is defined as I[E] inductively on the syntactic structure of E. A formula F is
valid (also called universally valid), if for every interpretation / , I[E] = true.

An interpretation I is called a maximally-diverse interpretation2, if for any p-function symbol / ,

*For simplicity, assume F is in negation normal form where all the negations are pushed down towards the leaves
of the formula and -1-1G is collapsed to G.

2 The definition of maximally-diverse interpretation is slightly different from the original work [5] for simplicity of
presentation.

J[/(E/i,... , Uk)] = /[ff(5i,... , Sm)] if and only if the following conditions hold: (i) / and g are the
same function symbol and (ii) forall i G [1, . . . , fc], /[C/i] = I[Si\. The main theorem is called the
maximal diversity theorem, which is given below.

Theorem 1 Maximal Diversity Theorem. An EUF formula F is valid iff F is true in all
maximally-diverse interpretations.

Restricting the set of interpretations to only maximally-diverse interpretations for checking validity
is very efficient for EUF formulas with large number of p-function symbols. For instance, consider
the formula:

The set of terms in the formula is {x,y,g(x),g(y), f(g(x)), f(g(y))}. Since there axe 6 terms in
the formula, it is sufficient to restrict the domain of each of the terms to contain at most 6 values,
for checking the validity [1]. Hence, one can decide the formula by considering 66 interpretations.
However, positive equality analysis allows us to restrict the number of combinations to search, to
only 22 values, since only two functions x and y (of arity 0) appear in a negative equation.

However, the main bottleneck of the approach is that it is not robust. Positive equality can not be
exploited for a function symbol / even if only one application of / appears in a negative context.
For example, consider the following EUF formula:

F = ^(f(x) = x) V (f(f(f(f(x)))) = /(/(/(*)))) (1)

After exploiting positive equality, the set of p-function symbols would be {} and the set of g-
function symbols would be {x,f}. This is because both x and / appear in a negative equation,
namely ~^(f{x) = x) in the formula. Thus the number of interpretations to search would be 55 =
3125.

However, one can see that only one application of / , namely /(#), appears in a negative equation
while the other applications, f(f(x))t /(/(/(#))) and /(/(/(/(#)))) , appear in positive equations
only. In this paper, we present a generalization of the positive equality analysis which allows us to
exploit the positive structure of such applications. Based on the new analysis, it is sufficient to con-
sider only 4 interpretations to decide the validity of the formula F, instead of the 55 interpretations.
Even for this small formula, this reduces the number of interpretations to consider 3125/4 = 781
fold!

3 Logic of Robust Positive Equality with Uninterpreted Functions
(RPEUF)

3.1 Syntax

Figure 1 gives the syntax of RPEUF3. The logic is essentially same as EUF or PEUF [5], but
partitions the formulas (respectively, terms) into "p-formulas" and "g-formulas" (respectively, "p-
terms" and "g-terms"). Intuitively, a p-formula appears in only monotonically positive expressions,

3We try to follow the terminology of the original paper by Bryant et al. for the rest of the paper, whenever
applicable

i.e. does not appear under the scope of negations (-1), or in the controlling formulas of ITE
expressions. All other formulas are g-formulas. The top-level formula can always be classified as
a p-formula. The p-terms are those terms which never appear in a g-formula. More details can
be found in [6]. The only difference between PEUF and RPEUF is that function symbols are not
partitioned as p-function symbols and g-function symbols. Instead, each application of functions
can either be a p-function application (p-func-appl) or a g-function application (g-func-appl). Let
TP(F) be the set of p-term function application terms in a formula F. Similarly, let Tg(F) be the
set of g-term function application terms in a formula F.

g-term ::= ITE(g-formula, g-term, g-term)

I g-func-appl(p-term,... , p-term)

p-term ::= g-term \ ITE(g-formula, p-term, p-term)

I p-func-appl(p-term,... , p-term)

g-formula ::= true | false | -^g-formula \ (g-term = g-term)

I (g-formula V g-formula) \ (g-formula A g-formula)

I predicate-symbol(p-term,... , p-term)

p-formula ::= g-formula \ (p-term = p-term)

I (p-formula V p-formula) \ (p-formula A p-formula)

Figure 1: Syntax for RPEUF

For any RPEUF formula F, we define T,(F) to be the set of function symbols in F. For a function
application term T, top-symbol(T) returns the top-level function symbol for the term T.

3.2 Diverse Interpretations

The semantics of an expression in RPEUF is defined in a similar manner as defined in Section 2.
The domain V is kept implicit for most of our purposes and we assume it to be the underlying
domain. An interpretation defines a partitioning of the terms in the formula, where two terms
belong to the same equivalence class if and only if they are assigned the same value. Interpretation
I refines (properly refines) interpretation / ' , if / refines (properly refines) the equivalence classes
induced by / ' .

Given an interpretation / , function application terms T\ = f(U\,... , JJk) and T2 = f(S\,... , Sk)
are said to argumentMatch under / , if for all j G [1 , . . . ,fe], I[Uj] — I[Sj]. It is not defined when
T\ and T2 have different top-level function symbols.

Robust Maximally Diverse Interpretation. An interpretation / is said to be robust maximally
diverse if / satisfies the following property:

• For every term T\ = f(U\,... ,17*) E TP(F), which does not argumentMatch under I with
any term f(S\ ... Sk) E Tg(F), and for any other function application term T2, I[T\] = /[T2]
iff (i) T2 = f(Vu . . . , VJb), and (ii) I[Um] = I[Vm], for all m G [1 . . . fc].

3.2.1 Example

Consider the formula in Equation 1. The interpretation Consider the formula in Equation 1. Let us
assume (shown a little later in Section 4.1), the set TP(F) = {f(f(x))J(f{f(x))),f{f(f(f{x))))},
the set of positive applications. The set Tg(F) becomes {#, f{x)}. The interpretation / = {x *->-
1,/(1) i-> 2,/(2) i-> 3,/(3) »-» 4} is an example of a robust maximally diverse interpretation. In
this interpretation, I[f(x)] = 2,I[f(f(x))] = 3 and /[/(/(/(x)))] = 4. Similarly, the interpretation
I = {x H> 1,/(1) *-> 2,/(2) i->- 2} is a robust maximally diverse interpretations. However, the
interpretation I = {a?i~> 1,/(1) i-> 2,/(2) •-» 1} is not a robust maximally diverse interpretation
since I[x] — I[f(f{x))] = 1. But f(f(x)) is a p-term, whose argument /[/(a;)] = 2 does not match
the argument of the g-term /(#), since I[x] = 1.

Theorem 2 Robust Maximal Diversity Theorem. A p-formula F is universally valid iff F
is true in all robust maximally diverse interpretations.

The theorem allows us to restrict ourselves to only those interpretations which are robust maximally
diverse. We will show later that in many cases, this prunes away a very large portion of the search
space. The proof is very similar to the one presented for the maximal diversity theorem [6], and
thus we present it in the appendix of the paper.

The following lemma establishes the correspondence between the maximally diverse interpretations
and the robust maximally diverse interpretations.

Proposition 1 // an interpretation I is a robust maximally diverse interpretation, then I is a
maximally diverse interpretation.

This follows from the fact, that for a "p-function" symbol / , a p-term T\ = /(C/i,... ,£/&) never
argumentMatch with a g-term T2 = /(Vi,. . . ,14), since there are no g-terms for a "p-function"
symbol / . Thus the set of robust maximally diverse interpretations is a subset of the set of
maximally diverse interpretation set.

4 Decision Procedure for Robust Positive Equality

In this section, we present a decision procedure for exploiting robust positive equality. The essence
of the decision procedure is similar to the decision procedure proposed by Bryant, German and
Velev. But there are important differences which makes the procedure more complicated.

4.1 Extracting a RPEUF from EUF

Given a EUF formula F, one might try to label the terms and formulas as g-terms, p-terms,
p-formulas, g-formulas by the syntax in Figure 1. But the choice of "promoting" g-terms and g-
formulas to p-terms and p-formulas makes the grammar ambiguous. Thus the first step is to use a
labeling scheme to mark the different expressions in the formula F.

For a given EUF formula F, let CF be a labeling function. If T(F) and Q(F) be the set of terms
and formulas in F, then CF satisfies the following conditions:

• If T G T(F), then CF{T) G {g-term, p-term}

• If G G £(F), then £F(G) G {g-formula, p-formula}

• This labeling is permitted by the syntax

A natural labeling function C*F [6] is to label the formulas which never appear under an odd number
of negations and does not appear as a control for any ITE node, as p-formula. All other formulas
are labeled as g-formula. Once the formulas are labeled, label a term as p-term if it never appears in
an equation labeled as g-formula. All other terms are marked g-term. This simple labeling scheme
has the following important property.

Proposition 2 Let Tj~* (F) be the set of set of p-term function applications in F produced by the

labeling scheme £*F. For any other labeling scheme Cl
F, and T^ (F),

Tp
c*(F)DTp

c\F)

4.2 Topological Ordering of terms

Once we have labeled all the terms in a formula F as either a p-term or a g-term, we will define
a topological order •<, for visiting the terms. A topological order preserves the property that if T\
is a subterm of T2 in the formula F, then T\ r̂ T2. There can be many topological orders for the
same formula.

Given a topological order <, consider the terms that have been "labeled" by C{F). We will partition
the terms into T_|(F), T^(F) and T${F) as follows: For any term T G T(F):

• T G T±{F) iff C(T) = g-term

• T e T^{F) iff C(T) = p-term and there exists Tx G T^(F) such that T < Tx and top-
symbol(T) = top-symbol(Ti).

• T G 7J(F) iff T £ T^{F) and T g T${F).

Intuitively, the terms in T${F) are those terms which precede a negative application with the same
top-level function symbol. We label some terms as members of T$ (F) because the function elimi-
nation scheme (based on Bryant et al.'s method) eliminates funcfion applications in a topological
order. Hence we need to process all the subterms before processing a term.

For example, consider the formula in Equation 1. There are 5 terms in the formula: #, /(#),
/(/(^))5 f{f(f{x))), f{f(f(f{x))))- The labeling scheme labels the terms xj{x) as g-term and
the terms f{f(x)),f(f(f{x))),f(f(f(f(x)))) as p-term. The only topological ordering on this set
of terms is x < f(x) ^ f(f{x)) r< /(/(/(#))) =< /(/(/(/(^))))- Given this topological order, the
partitioning results in the following sets

± ; - {} and7;+(F) =

However, consider the following formula:

)) (2)

There are 5 terms in the formula: #, /(#), g(x), f{g{x)) and g(f(x)). The labeling labels
f(g(x)),g(f(x)) as g-term and x,f(x),g(x) as p-term. Three possible topological orderings on
this set of terms are:

1. x * f(x) < g{x) < f(g(x)) 1 </(/(*))> or

2. x * f(x) r< g(f(x)) < g(x) r< f{g(x)), or

3. x ± g(x) ± f(g(x)) < f(x) < g(f(x))

Given these topological order, the partitioning results in the following sets for the three orders,
respectively:

1- T^(F) = {f(g(x)),g(f(x))}, T^F) = {f(x),g(x)} and Tf{F) = {x}.

2- T±(F) = {f(g(x)),g(f(x))}, T^(F) = {f(x)} and

3. T^(F) = {f(g(x)),g(f(x))}, Tt(F) = {g(x)} and

The example in Equation 2 illustrates several interesting points. First, even though f(x) and g(x)
are both labeled as p-term, there is no ordering of terms such all the g-term with the top-level
symbol / and g precede these two terms. Note that this limits us from exploiting the full power of
Theorem 2. Second, the topological ordering can affect the size of the set T^{F). The bigger the
size of this set, the better the encoding is. Hence, we would like to find the topological ordering
which maximizes the size of T^

4.3 Maximizing T^(F)

The problem of obtaining the optimal •<, which maximizes the size of T*(F), turns out to be NP-
complete. In this section, we reduce the problem of maximum independent set for an undirected
graph to our problem.

Let us first pose the problem as a decision problem — is there an ordering •< for which the number
of terms in T^{F) is at least k ? Given an ordering ^ , it is easy to find out the number of terms
in T* (F) in polynomial time, hence the problem is in NP.

To show that the problem is NP-complete, consider a undirected graph G = (V,£?), with V as the
set of vertices and E as the set of edges. Construct a labeled and polar directed acyclic graph (DAG)
D = (V',Er), where each vertex v £ V1 is a tuple (nv,lv,pv), where nv is the vertex identifier, lv is
a label of the vertex, and pv is the polarity of the vertex. The label of a vertex is a function symbol,
and the polarity of a vertex can either be (-) negative or (+) non-negative. It is easy to see that
the vertices of D represent the terms in a formula, the label denotes the top-level function symbol
associated with the term and a vertex with a negative polarity denotes a g-term.

The DAG D is constructed from G as follows:

• For each vertex v in V, create two vertices v+ and v~ in V;, such that v+ = (vl,v,+) and
v- = (v2,v,-).

• For each edge (vi,^) G E, add the following pair of directed edges in E1 —

Finally, given an ordering ^, T^{D) contains a subset of those v+ vertices which do not precede
the v~ vertex with the same label v in •<.

Now, we can show the following proposition:

Proposition 3 The graph G has a maximum independent set of size k if and only if the DAG D
has an ordering •< which maximizes the number of vertices in T^(D) to k.

The proof of the proposition can be found in the Appendix.

4.4 Heuristic to maximize T

Since the complexity of finding the optimum < is NP-complete, we outline a greedy strategy to
maximize the number of p-terms in T^{F). We exploit the following proposition:

Proposition 4 Given an ordering -<g over all the g-term of the formula, one can obtain an ordering
•< over all the terms in the formula in time linear to the size of the formula, such that the number
of terms in T^(F) is maximum over all possible orderings consistent with the order -<g.

It is not hard to see the validity of the proposition. We can simply walk over -<g, and for each
g-term T̂ , we add all the subterms of TJ, which have not been added already, before Ti to construct
•<. Finally, the terms (namely some p-terms) that are not subterms of any of the g-terms in <g,
can be added in any topological order to the end of the order •<. The number of terms in T^{F)
is the maximum across all possible orderings consistent with <g. This is because we did not have
any choice for the p-term which were subterms of some g-term, and all the terms added after the
last g-term are members of T^(F).

Hence, our problem has been reduced to finding the optimum ordering <g among the g-terms of
the formula. The algorithm has the following main steps:

1. A term Ti = / (S i , . . . , Sk) is potentially positive iff Ti is a p-term and Ti is not a subterm
of any other g-term T2, which has the same top-level function symbol / . For each function
symbol / , we compute the number of potentially positive function applications of / in the
formula.

2. Order the list of function symbols depending on the number of potentially positive terms for
each function symbol. The essential idea is that if a function / has n/ potentially positive
applications, and if we order all the terms of / independent of the applications of other
function symbols, then the number of terms in T^{F) is at least n/.

3. For each function symbol / , we order all the g-terms of / by simply traversing the formula
in a depth-first manner. This ordering of g-terms is consistent with the topological order
imposed by the subterm structure.

4. Finally, we obtain -<gj by repeatedly placing all the gterms for each of the functions in the
sorted function order. While placing a g-term T\ for function / , we place all the g-terms for
the other function symbols which are subterms of the g-term before T\ in the order.

4.5 Function and predicate elimination

To exploit the robust positive equality, we eliminate the function and predicate applications from
the RPEUF formula using Bryant et al.'s method. For a function symbol / which appears in F,
we introduce symbolic constants vfi,... , vfk, where k is the number of distinct application of / in
the formula. Then the ith application of / (in the topological ordering •<) is replaced by the nested
ITE formula, ITE{ai = au vfu ITE{ai = o2, v/2, • • • ITE(ai = di-u Wi-i> vfi))). Here a{ is the
argument list to the ith function application. We say that the symbolic constant vfi is introduced
while eliminating the ith application of / . The following lemma [6] describes the relationship
between the original and the function-free formula. Predicate applications are eliminated similarly.

Lemma 1 For a RPEUF formula F, the function and predicate elimination process produces a
formula F which contains only symbolic constants and propositional symbolic constants, such that
F is valid iff the function-free formula F is valid.

Let V be the domain of interpretations for F. Let V-< be the set of symbolic constants introduced
while eliminating the function applications and V* C V-< be the set of symbolic constants intro-
duced for the terms in T*(F). Let Fp be the formula obtained by assigning each variable Vi G V*
a value z%, from the domain V1 = VU {z\,... ,3m}, where m = \V+\ and all z% are distinct from
values in V. Then we can prove the following theorem:

Theorem 3 The formula F is valid iff Fp is true for all interpretations over V.

Proof: We give a very informal proof sketch in this paper. A detailed proof can be obtained very
similar to the proof shown in the original paper [6].

Let us consider a robust maximally diverse interpretation / for F. Consider a symbolic constant
vfi E Vj~, which results while eliminating the ith application of / (say T̂) in the order <. Note
that T{ is a p-term application. First, consider the case when T{ argumentMatch with some other
term Tj, such that Tj ^ T\. In this case, the value given to vfi does not matter, as it is never
used in evaluating Fp. On the other hand, consider the case when T{ does not argumentMatch
with any term Tj, such that Tj •< T{. Since all the g-term for / precede T{ in < (by the definition
of T^{F)), it means that I[Ti] is distinct from the values of other terms, unless restricted by
functional consistency (by Theorem 2). But the value of vj\ represents the value of /[Tj], under
this interpretation. Hence, we can assign vfi a distinct value, not present in V .

4.6 Extending Robust Positive Equality to CLU

We can extend our method to the Counter Arithmetic with Lambda Expressions and Uninterpreted
Functions (CLU), in the same way proposed in UCLID [13, 8]. The only addition in the logic is
the presence of inequalities (<) and addition by constant offsets (+c). In the presence of <, we
adopt a conservative approach and say that terms T\,T<i appear in negative context (g-term) if they
appear in an inequality (7\ < T2). Similarly, a function application term T\ is classified as g-term
if any term T\ + c (for any c) appears in negative context. Even these conservative extensions have
proved beneficial for verification problems in UCLID.

5 Results

5.1 Simple Example

Let us first illustrate the working of the decision procedure on a simple formula. Consider the
following formula:

i = (f(f(f(y))) = /(/())) V (f(f(y)) = f{x)) V ̂ (x = f(y)) (3)

The function symbols in the formula are S(\&i) = {/,sc,y}. Our heuristic finds the following order
r<, which also happens to be the optimal order:

x < y r< f(y) ± f(x) < f(f(y)) ± /(/(/(y)))

The sets T_7(*i), 7^(*i) and 7^"(*i) are:

W i) = i*>f(v)h'n{*i) = {},7?(*i) = {y,f(x)J(f(y))J(f(f(y)))}

The resultant formula after eliminating the function symbols using the above procedure would be

$1 = (/4 = / 3) V (/3 = / 2) V -n(x = Z1) (4)

where

f1 = vh
f2 = ITE(x = y,vfuvf2)
f = ITE(f1=y,vfuITE(f1=x,vf2,vh))
/4 = f ff \

Thus ^ i has 6 symbolic constants {o:,y,v/i,v/2,^/3,^/4}. Based on robust maximal diversity
theorem, we can assign distinct values to y, v/2, v/3, v/4, since they are introduced while eliminating
a function application in 7^"(*i). The rest of the symbolic constants x,vf\ have to take on 2 values
each. Thus, it is sufficient to consider 22 = 4 interpretations to decide the validity of the formula.
In fact, it is sufficient to consider 1 value for x and 2 values for vf\ to decide the validity, since
they can either be equal or unequal. Therefore, the number of interpretations to consider is 2 for
this case. Alternately, one could use a single Boolean variable to encode the equality x — vf\ [11].
The final propositional formula in this case contains a single Boolean variable4, and thus requires
2 interpretations.

The above formula was also used as a running example in previous work [19, 21]. Figure 2 illustrates
the number of interpretations to be considered by each of the approaches, which try to minimize
the number of interpretations to consider.

This brings out an interesting point. Rodeh and Strichman [21] claim that their method subsumes
Bryant et al.'s positive equality. But for this example, robust positive equality actually does better
than their method. Their algorithm can limit the search to 4 interpretations or 2 interpretations
depending on the heuristic for this example, whereas we can reduce it to 2. Hence, robust positive

4Usually, more variables are added to express transitivity constraints, but this example does not require any, since
there is a single Boolean variable

10

Approach

Bryant, German, Velev

Pnueli et al.

Rodeh, Strichman

Current Work

Number of Interpretations

55 = 3125

16

4 or 2

2

Remarks

Uses Positive Equality. Only
p-function symbol is y
Range allocation for each term
after Ackermann's reduction
Range allocation after
Bryant et al.'s function elimination
Depends on the heuristic
Robust Positive Equality

Figure 2: Comparison of different methods on the example formula.

equality is not subsumed by their approach. However the two approaches are complementary.
Robust positive equality analysis can be used as a preprocessing step before exploiting the range-
allocation scheme by Pnueli et al. and Rodeh et al.'s methods. Further, robust positive equality
analysis can work with the more general logic of CLU [8], but the methods in [19, 21] are restricted
to EUF. It is not clear how to extend the range allocation easily in the presence of < and constant
offsets.

5.2 Verification Benchmarks

In this section, we compare our algorithm with the original positive equality algorithm, based on
a set of software verification benchmarks generated from Translation Validation of Compilers [19]
and device-driver verification in BLAST [12]. We also report our experience with other verification
benchmarks including those from microprocessor and cache-coherence protocol verification. All the
formulas discussed in this section are valid formulas.

We have integrated the new method in the tool UCLID [8]. All the experiments are run on a
1.7GHz machine with 256MB of memory. For all these experiments, the integer variables in the
formula (after function elimination) are encoded using a small-domain encoding method [8]. This
method assigns each integer variable a finite but sufficiently large domain which preserves validity
of the formula. The final propositional formula is checked using a Boolean Satisfiability (SAT)
solver. For our case, we use mChaff [16].

Figure 3 compares the number of terms which can be assigned distinct values (i.e. the number of
terms whose range contains a single value) for positive equality (p-vars) and the robust positive
equality (robust-p-vars) algorithms. The column with potential # of p-vars denotes an upper bound
on the total number of positive terms. This is obtained by simply adding the number of potentially
positive terms for each function symbol without considering the ordering of terms across different
function symbol. This is a very optimistic measure and there may not be any order ^ for which
this can be achieved. The time taken by each approach is also indicated in the table.

For most of the code validation benchmarks, the number of p-terms is larger compared with the
earlier work. Similar trend is also observed for the BLAST set of benchmarks. For many of the
code validation benchmarks, the increase in the number of positive variables translates into an
improvement of the total time taken to check the validity of the formula. This is expected as the
new method reduces the number of interpretations to search. However, for a few cases, the new
method is almost 10% slower than the original method, even when the number of positive variables
are 10% larger. This happens because of the overhead of the robust positive equality analysis.

11

Our current implementation requires multiple passes over the formula, which can often increase the
time required to translate a CLU formula into a Boolean formula. However, the time taken by the
SAT solver (mChaff) is almost always smaller with the new method. This is particularly effective,
when solving formulas for which the SAT solver time dominates the time to translate to a Boolean
formula (e.g. cv46).

It is interesting to notice that for most benchmarks (except cv22) the total number of robust-p-vars
is the same as the maximum possible number of p-vars possible. On one hand this suggests that
the heuristic we chose is optimal for all these benchmarks. On the other hand, it shows that there
are no occurrence of mutually nested function applications with alternate polarity evident in the
example ^f(g(x)) = g{f(y)). For this example, the maximum number of potentially positive terms
is 4 ({x,y,f(y),g(x)}), but one can obtain at most 3 in any ordering ({X,J/ , /(J/)} or {x,y,g(x)}).
This is because a potentially positive application for g appears as a subterm of a g-term for / and
vice versa. Our tool gives the correct answer for this example.

We also ran our analysis on a large number of hardware benchmarks ranging from a DLX pipeline,
an out-of-order processor with unbounded resources and a directory based cache-coherence proto-
col [7]. For all these examples, the number of robust p-vars generated by our analysis matched
the number of p-vars generated by positive equality. This is not hard to explain. For the pro-
cessor benchmarks, designing the models often ensured that the number of p-vars was maximized.
The cache coherence example does not involve any data-path computations. The uninterpreted
functions are used to generate arbitrary process identifiers, which are compared with each process
identifier, and hence all the applications end up being negative.

Besides, these benchmarks are generated from symbolic simulation of the hardware designs, where
the same transition function is replicated across the different steps, resulting in identical structure
for different steps. Hence the polarity of a function application is often the same (either all positive
or all negative) across different steps of simulation. For other form of benchmarks, which arise
mostly from the symbolic simulation of software [2, 12], the formulas are relatively shallow, and
have different transition functions for different control locations in a sequential program. For such
benchmarks, the new approach is likely to do better.

Benchmark

Code Validation

BLAST

example

cvl
cv2
cv20
cv22
cv23
cv25
cv37
cv44
cv46
bl7
bl8
blt3

vars

17
4
21
101
101
101
13
38
70

262
315
268

Positiv
#p-vars

3
1
6
1
8
8
4
8
10

109
125
72

e Equality
Time taken

(sec)
1.58
0.34
0.40
70.84
23.06
45.93
6.40
19.75

> 1800
241.27
454.40
11.16

Robu
p-vars

7
1
6
16
22
22
4
17
28

125
142
94

st Positive I
potential
p-vars

7
1
6
18
22
22
4
17
28

125
142
94

Equality
Time taken

(sec)
1.60
0.48
0.47
45.65
15.96
21.80
6.32
7.13

100.50
265.38
456.80
11.90

Figure 3: Comparison on Software Verification Benchmarks. The examples with prefix "cc"
denote code validation benchmarks and those with prefix "bl" denotes BLAST benchmarks.

12

6 Conclusion and future work

In this work, we have presented a generalization of the positive equality analysis. The extension
allows us to handle benchmarks for which the positive structure could not be exploited using the
previous method. The added overhead for this generalization is negligible as demonstrated on
some reasonably large benchmarks. An interesting point to observe in this paper is that most of
the proofs and mathematical machineries from the previous work have been successfully reused for
our extension.

There are other optimizations that can be exploited beyond the current work. We want to exploit
the positive equality for the terms in 7^, which are subterms of g-terms with the same top-level
function symbol. Instead of using distinct values for the symbolic constants which arise from the
elimination of these terms, we are investigating the addition of extra clauses in the final formula,
to prevent the SAT-solver from considering these interpretations. We would also like to use other
range allocation methods, after exploiting robust positive equality, to further improve the decision
procedure.

References

[1] W. Ackermann. Solvable Cases of the Decision Problem. North-Holland, Amsterdam, 1954.

[2] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction of
C programs. In Programming Language Design and Implementation (PLDI '01), Snowbird,
Utah, June 20-22, 2001. SIGPLAN Notices, 36(5), May 2001.

[3] C. Barrett, D. Dill, and J. Levitt. Validity checking for combinations of theories with equality.
In Formal Methods in Computer-Aided Design (FMCAD '96), LNCS 1166, November 1996.

[4] C. W. Barrett, D. L. Dill, and A. Stump. Checking Satisfiability of First-Order Formulas by
Incremental Translation to SAT. In E. Brinksma and K. G. Larsen, editors, Proc. Computer-
Aided Verification (CAV'02), LNCS 2404, pages 236-249, July 2002.

[5] R. E. Bryant, S. German, and M. N. Velev. Exploiting positive equality in a logic of equal-
ity with uninterpreted functions. In N. Halbwachs and D. Peled, editors, Computer-Aided
Verification (CAV '99), LNCS 1633, pages 470-482. Springer-Verlag, July 1999.

[6] R. E. Bryant, S. German, and M. N. Velev. Processor verification using efficient reductions of
the logic of uninterpreted functions to propositional logic. A CM Transactions on Computa-
tional Logic, 2(1):1-41, January 2001.

[7] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Deciding CLU Logic formulas via Boolean and
Pseudo-Boolean encodings. In Proc. Intl. Workshop on Constraints in Formal Verification
(CFV'02), September 2002.

[8] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and Verifying Systems using a Logic of
Counter Arithmetic with Lambda Expressions and Uninterpreted Functions. In E. Brinksma
and K. G. Larsen, editors, Proc. Computer-Aided Verification (CAV'02), LNCS 2404, pages
78-92, July 2002.

13

[9] J. R. Burch and D. L. Dill. Automated verification of pipelined microprocessor control. In
Computer-Aided Verification (CAV '94), LNCS 818, pages 68-80, June 1994.

[10] C. Flanagan, R. Joshi, X. Ou, and J. Saxe. Theorem Proving usign Lazy Proof Explication.
In W. A. Hunt, Jr. and F. Somenzi, editors, Computer-Aided Verification (CAV 2003), LNCS
2725. Springer-Verlag, 2003.

[11] A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal. BDD based procedures for a theory of
equality with uninterpreted functions. In A. J. Hu and M. Y. Vardi, editors, Computer-Aided
Verification (CAV '98), LNCS 1427, pages 244-255. Springer-Verlag, June 1998.

[12] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. In Proceedings
of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of programming languages
(POPL '02), pages 58-70, 2002.

[13] S. K. Lahiri. An efficient decision procedure for the logic of Counters, Constrained Lambda
expressions, Uninterpreted Functions and Ordering. Technical report, ECE Department,
Carnegie Mellon University, May 2001.

[14] S. K. Lahiri, R. E. Bryant, and B. Cook. A symbolic approach to predicate abstraction. In
W. A. Hunt, Jr. and F. Somenzi, editors, Computer-Aided Verification (CAV 2003), LNCS
2725, pages 141-153. Springer-Verlag, 2003.

[15] S. K. Lahiri, S. A. Seshia, and R. E. Bryant. Modeling and verification of out-of-order micro-
processors in UCLID. In Formal Methods in Computer-Aided Design (FMCAD '02), LNCS
2517, pages 142-159. Springer-Verlag, Nov 2002.

[16] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient
SAT solver. In 38th Design Automation Conference (DAC '01), 2001.

[17] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. A CM Trans-
actions on Programming Languages and Systems (TOPLAS), 2(l):245-257, 1979.

[18] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In 11th
International Conference on Automated Deduction (CADE), June 1992.

[19] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding equality formulas by small-
domain instantiations. In N. Halbwachs and D. Peled, editors, Computer-Aided Verification,
volume 1633 of Lecture Notes in Computer Science, pages 455-469. Springer-Verlag, July 1999.

[20] A. Pnueli, Y. Rodeh, O. Strichman, and M. Siegel. The Small Model Property: How Small
Can It Be? Information and Computation. Information and Computation, 178(l):279-293,
2002.

[21] Y. Rodeh and O. Strichmann. Finite Instantiations in Equivalence Logic with Uninterpreted
Functions. In G. Berry, H. Comon, and A. Finkel, editors, Computer-Aided Verification (CAV
'01), LNCS 2102, pages 144-154, 2001.

[22] R. E. Shostak. Deciding Combinations of Theories. Journal of the ACM, 31(1):1-12, 1984.

[23] M. N. Velev and R. E. Bryant. Formal Verification of Superscalar Microprocessors with Mul-
ticycle Functional Units, Exceptions and Branch Predication. In 37th Design Automation
Conference (DAC '00), June 2000.

14

A Proof of the Robust Maximal Diversity Theorem (Theorem 2)

We will restrict ourselves to the proof of the non-trivial part of the proof. Clearly, if a p-formula is
universally valid, it is true is all interpretations, including the robust maximally diverse ones. The
following lemmas help us prove our claim:

Lemma 2 If I is not a robust maximally diverse interpretation for p-formula F, then there is a
proper refinement I1 s.t. I'[F] = > I[F\.

We will present the proof of this lemma in detail after the next lemma, to first complete the proof
of Theorem 2.

Lemma 3 For a given RPEUF p-formula F, and a non robust maximally diverse interpretation
7° = I, we can refine it finitely many times to reach a robust-maximally-diverse interpretation I*,
such that I*[F] => I[Fy

This is easy to see, as there are only finite number of function applications in any RPEUF formula.
Starting with 7°, one can obtain an interpretation 71 by lemma 2, such that Il[F] = > I°[F]. This
process can continue until Ik = 7* is robust-maximally diverse.

Now, we present the proof of Lemma 2.

Proof: Since I is not robust maximally diverse, there is a p-term T\ of the form /(E/i, . . . , Uk) which
does not argumentMatch with any g-term with the same function symbol / , and there is another
function application term T<i = g(S\,... , S&) such that /[Ti] = /[T2] = z, and either (a) f is not
same as g or (b) I[Ui] ̂ I[Si\ for some «G [1 , . . . ,fe].

We can define a new interpretation V in the following way:

• V = VXJ {z1}

• Define h : V -> V such that

z if x = z1

\ x Otherwise

• Define I' as follows

1. For the function function symbol /

I'\f(r, r,)] - i Z> i f fora11 « £ [1> • • • . *] > K *) = I[Ui]
i[j(xu...,xkn \ i[f(h(Xl),...,h{xk))} Otherwise

2. for any other function or predicate symbol g

l'[g(Xl,... ,Xk)] = I[g(h(Xl),..., h(xk))}

We claim the following properties and prove it by induction on the construction of the formulas.

1. For every g-formula G, I'[G] = I[G]

15

2. For every g-term T, I'[T] = I[T]

3. For every p-term T, /i(J'[T]) = I[T]

4. For every p-formula F, /'[F] = > /[F]

5. 7'[Ti] = ^ and /'[T2] = z

For the base case :

1. g-formula : /'[true] = /[true]; /'[false] = /[false]; I'\p] = I\p]

2. g-term : Ir[v] = I[v] for any g-term

3. p-term : h(I'[v]) — I[v] for any p-term, actually I'[v] ̂ I[v] iff v = T\

4. p-formula : same as g-formula

Consider the induction step:

1. g-formula (G) : There are 3 cases to consider

(a) -iB, BV C, where B, C are g-formulas. By Inductive Hypothesis, I'[B] = I[B], I'[C] =
I[C}. Hence I'[G\ = I[G\.

(b) Si = 52, where Si, S2 are g-terms: By Inductive hypothesis /'[Si] = /[Si], I'[S2] = /[S2].
Hence /'[G] - /[G].

(c) Predicate-application p(Si,... , Sn): By Inductive hypothesis

I'\p(Su...Sn)] -

Hence I'[G] = /[G]

2. g-terms (T). We have 2 cases to consider.

(a) ITE(G, Si, S2). By Inductive hypothesis /'[G] - /[G], /'[Si] = /[Si], /'[S2] = /[Si].
Hence /'[T] - I[T}.

(b) g-term : T = ^(Si S^). Since we have assumed that T\ does not argumentMatch with
any other g-term under /, 2\ could not possibly argumentMatch with T under / . Thus
by the definition of /':

I'\9(Si

3. p-terms (T): We can have 3 cases to consider.

16

(a) T is a g-term. Clearly I'[T) = I[T\, hence h(I'[T]) = I[T].

(b) T is ITE(G, Su S2). By induction Hypothesis: I'[G] = I[G], h{I'[Si]) = I[Si\, h(I'[S2])
I[S2]. Hence

h{l'[T)) = iil'[G] then /i(/'[Si]) else h(l'[S2])

= if I[G] then I[Si] else 7[52]

(c) T is p-term g{S\,... , 5^): We consider 2 subcases.

i. if (i) g is the same symbol as / and (ii) I[Ui] = / [$] , forall i G [1 , . . . ,fc], then
/'[T] = *' , /i(/'[T]) = z. Hence /i(/'[T]) - I[T\.

ii. else /'[T] - I[T) = /i(/'[T])

4. p-formulas (F): We need to consider 3 cases

(a) F is a g-formula. Clearly I'[F] = > /[F]

(b) F is Gi V G2. Since both Gi,G2 are p-formulas, by Induction Hypothesis, /'[Gi] = >
/[Gi]; /'[G2] = ^ I[G2]. Hence /'[G] = » /[G].

(c) F is 5i = £2. Here 51,52 are p-terms. By Inductive hypothesis, we know that if I'[S\ is
different from J[5], then I'[S] = ^', and the definition of h tells us that /[S] = z in that
case. Consider the different cases:

i. Both I'[Si] = I'[S2] - z'. Then /[5i = 52] = true = I'[Si = 52].
ii. Neither of them equal z\ then 7[F] = V[F\

iii. Only one of V[SX\ or / ;[52] equals ^ . Then P[F] = false and P[F] =

5. The claim that /'[Ti] = ^; and /'[T2] = z follows from the definition of P and the Inductive
properties.

] , . . . , /[%])

B Proof of NP-completeness

Proof: First, let us assume that the graph G has a maximum independent set of vertices {v^,..., Vik },
of size k. We claim that there are is an order ^< for D, such that number of vertices in T^{D)
is at least k. Since there are no edges between any pair of vertices in { t ^ , . . . , Vifc}, there are no
edges (v ^ , ^) , 0 < j < k and 0 < / < k in E1. Hence we can create an order -<, where the
vertices {v r ? . . . , ^ r } appear before { v t ? . . . , v ^ } . This is because a vertex ?;z~ can only constrain
a positive vertex v~-~ to appear before it in the order (only if the edge (w^~,ux

r) G J5;)? a n (l v / ̂ oes
not constrain any other vertex to appear before it in the order (since no directed edge ends in a V+

17

vertex in JD). Hence, we can always place the vertices {^,... , vf } after {vix,..., vi } in an order.
It is easy to see that T^{D) contains at least the vertices {v*,... ->vf}.

On the other hand, let us assume that there is an order ^, such that T*(D) is the set {vf,..., vf}
of k vertices. Then the maximum independent set for G has at leastT k vertices. In fact, the set
Vj = {v^,..., Vik} is an indepedent set. To see why, let us assume that only a proper subset
V[C Vj forms an indepedent set. Let v^ G Vi — V{. There has to be a vertex v^ G V[such that
(vijivii) ^ E- That implies that {vf.^v^) G E' and (û ~,w,~) ^ &'• But that contradicts the fact
that both v* and vf appear in

18

