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1. INTRODUCTION 

Complexity is a measure of cost. The relevant costs de­
pend on the model under analysis. The costs may be taken as 
units of time (in parallel computation), number of comparisons 
(in sorting algorithms), size of storage (in large linear sys­
tems), or number of arithmetics (in matrix multiplication). 
Of course a number of different costs may be relevant to a 
model. One can analyze the complexity of an algorithm, of a 

class of algorithms, or of a problem. The subject dealing 
with the complexity of an algorithm is usually called "Analy­
sis of Algorithms". The subject dealing with the analysis of 
a class of algorithms or of a problem is called computational 
complexity. 

Computational complexity comes in many flavors depending 
on the class of algorithms, the problem, and the costs. We 
limit ourselves here to mentioning three types of computatioi*-
al complexity. In each of these the costs are taken as the 
arithmetic operations. Algebraic computational complexity 
deals with a problem and a class of algorithms which solve 
the problems at finite cost. Typically the problem belongs 
to a class of problems which is indexed by an integer n. Let 
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corap(P^) be the complexity of solving the nth problem in the 
class. We are interested in lower bounds L(P^) and upper 
bounds U(P^) on compCP^), 

(1.1) L(P n) £ comp(Pn) * U ( P n ) . 

The upper bounds are obtained by exhibiting an algorithm for 
solving P n with complexity U(P )• Lower bounds are obtained 
by theoretical considerations and "non-trivial" lower bounds 
are difficult to obtain. For example if P^ is the problem of 
multiplying two n by n matrices and if the cost of each 
arithmetic operation is taken as unity then 

0(n 2) <; comp(Pn) <> 0(n p), p = lg 7. 

(We use lg to represent log£.) Borodin and Munro [75] survey 
the state of knowledge in algebraic complexity. 

Exact solutions of "most" problems in science, engineer­
ing, and applied mathematics cannot be obtained with finite 
cost even if infinite-precision arithmetic is assumed. In­
deed linear .problems and evaluation of rational functions 
which can be solved at finite cost are the exception. Even 
when the problem can be solved rationally, we may choose to 
solve it by iteration. An example is the solution of large 
sparse linear systems. Typically, non-linear problems cannot 
be solved at finite cost. 

We call the branch of complexity theory that deals with 
non-finite cost problems analytic computational complexity. 
Often the algorithms are iterative and we then refer to 
iterative computational complexity. 

In this paper we propose a new methodology for iterative 
computational complexity. Our aim is to create at least a 



partial synthesis between iterative complexity and other 
types of complexity. 

A basic quantity in iterative complexity has been the 
efficiency index of an algorithm or class of algorithms. In 
this paper we introduce a new quantity, the complexity index, 
which is the reciprocal of the efficiency index. The complex­
ity index is directly proportional to the complexity of an 
algorithm or class of algorithms. We show under what condi­
tions the complexity index is a good measure of complexity. 
Our methodology is non-asymptotic in the number of iterations. 
Earlier analyses of complexity applied only as the number of 
iterations went to infinity and this is not of course realis­
tic in practice. 

We summarize the contents of this paper. In Section 2 
we analyze a simplified model of the errors of an iterative 
process and show that complexity is the product of two fac­
tors, the complexity index and the error coefficient func­
tion. Bounds on the error coefficient function are derived 
in the following Section and used to derive rigorous condi­
tions for comparing the complexity of two different algor­
ithms. In Section 4 we show how the results of the simple 
model can be applied to a realistic model of one-point itera­
tion. Lower and upper bounds on the complexity index for 
several important classes of iterations appear in Section 5. 
In a short concluding Section we state the extensions and 
generalizations to be reported in future papers. 

2. BASIC CONCEPTS 

We analyze algorithms for the following problem. Let f 
be a non-linear real or complex scalar function with a simple 
zero a. Let x Q be given and let an algorithm 0 generate a 
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sequence of approximations x^,...,x^ to a. We terminate the 
algorithm when x^ is a sufficiently good approximation to a* 

This will be made precise below. 
The appropriate setting for this investigation is to 

consider f as a non-linear operator on a Banach space of fin­
ite or infinite dimension. Since many of the basic ideas can 
be illustrated when f is a non-linear scalar function we shall 
assume throughout this paper that this holds. We must remark 
however that some of the most interesting and important re­
sults deal with the dependence of complexity on problem di­
mension and we do not deal with that dependence here. 

Let e. > 0 represent some measure of the error of x.. 1 r i 
For example, e^ might represent 

(x^-al, the absolute error 

—l—I , the relative error 

|f(x ) | f the residual. 

Assume that the e^ satisfy the error equation 

(2.1) e± = p £ 1, i « l,2,...,k. 

We call p the non-asymptotic order and A^ the error coeffici­ 
ent. We require 0 < L £ A £ U < ° ° for all values of e^ in­
cluding the possibility that e Q be arbitrarily small. Then 
p is unique. Many iterations satisfy the model given by 
(2.1). In Section 6 we mention extensions to this model. 

EXAMPLE 2.1. Let the algorithm be Newton-Raphson iteration 
and let e4 denote the absolute error. Then 



where T)^ is in the interval spanned by a and x^. B 

We simplify the model of ( 2 . 1 ) and show what kind of re­
sults may then be obtained. In Section 4 we return to the 
analysis of ( 2 . 1 ) . Let 

( 2 . 2 ) e± = A e J _ r p * 1 , i = 1 f . . . , k . 

We call this the constant error coefficient model while ( 2 . 1 ) 

is the variable error coefficient model,. 
We consider first the case p > 1. It is easy to verify 

that 

( 2.4) w p - - f 

e o 

Choose e 1, 0 < € ! < 1, and let k be the smallest index for 
which e. £ e fe r t. Define e ^ c 1 so that k 0 

( 2 . 5 ) e k = ee Q. 

C 1 is a basic parameter which measures the increase in preci­
sion to be obtained in the iteration. We choose c to avoid 
ceiling and floor functions later in this paper. It is con-
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venient to assume e £ 2 (we use this in Theorem 3 . 1 ) but 
this is non-restrictive in practice. 

From ( 2 . 3 ) , ( 2 . 5 ) . 



and it follows that 
8(wJ 

(2.7) k = lg P ' 
where 

This is independent of the logarithm base but it is convenient 
to take all logarithms to base 2. Then, if ê ^ is the relative 
error, t measures the number of bits to be gained in the 
iteration. 

We denote the complexity of iteration i by c^. In this 
paper we assume c, = c is independent of i. We defer a dis­
cussion of the estimation of c until Section 5. The impor­
tant case of variable cost will be considered in a future 
paper. We define the complexity of the algorithm by 

(2.9) cotnp = ck. 

Then from ( 2 . 7 ) , ( 2.8), 

(2.10) comp = zg(w^ 

where we define 

(2.11) z = . 
lg P 

as the complexity index. 
We call g the error coefficient function. Equation 

(2.10) will be fundamental in our further analysis. 
We have decomposed complexity into the product of two 

factors. The complexity index, which is independent of both 
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the error coefficient and the starting error, is relatively 
easy to compute for any given algorithm. (However, lower 
bounds on the complexity index for classes of algorithms re­
quire upper bounds on order which is a difficult problem only 
solved for special cases (Kung and Traub [73], Meersman [75] 
and Wo^niakowski [75b]).) We shall show, in a sense to be 
made precise in the next section, that the error coefficient 
is insensitive for a large portion of its domain and that 
complexity is determined primarily by the complexity index. 
We shall also show there are cases where complexity is deter­
mined primarily by the error coefficient function. 

The complexity index is the reciprocal of a quantity 
called the efficiency index which has played an important role 
in iterative complexity. See, for example, Traub [ 6 4 , Appen­
dix C], Traub [72], Paterson [72] and Kung [73a]. Since com­
plexity varies directly with the complexity index we feel that 
the complexity index rather than the efficiency index, should 
be basic 

We have been considering the case p > 1. For complete­
ness we write down the case p = 1. Then e. = Ae. ,, i 8=5 1, 

k i i-T • 2,...,k and e^ = A e^ = teQ* Hence 

(2.12) k c — ^ r — , comp = C t
1 . 

ig(£) ig(f) 

We shall not pursue the case p = 1 further and shall assume 
for the remainder of this paper that p > 1, unless we state 
otherwise. 

3. BOUNDS ON THE ERROR COEFFICIENT FUNCTION 

We turn to an analysis of the error coefficient function 
which is one of the two factors which determines the complex­
ity in (2.10). To see which values of w p are of interest, 
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note that from (2.3), e, < en iff w > 1. From the defini-
' k 0 p 

tion of k it is clear that k £ 1 and hence from (2.7), (2.8), 
1 

w — ) . Hence we assume P \ e / 

(3.1) ° 2 * - \ 

Generally depends on p. For many classes of itera-
tions 

(3.2) a p - 1 £ A <> b P " \ 

Then 

ae Q p be Q 

and the bounds on w^ are independent of p. If (3.2) holds 
for a class of iterations § we shall say that 5 is normal. 
An example of a normal class of iterations may be found in 
Wozniakowski [75b]. To simplify notation we shall henceforth 
write w as v whether or not we are dealing with a normal 

P 
class. 

Now, g(w) is a monotonically decreasing function and 
lim g(w) « % lim g(w) = 0. 

To study the size of g(w) we somewhat arbitrarily divide the 
range of w, given by (3.1), into three sub-ranges. 

1 < w ^ 2. Since g(w) « lg(t + lg w) - lglg w and 
0 < lg w £ 1, we conclude 

lg t-lglg w < g(w) £ lg(l+t)-lglg w. 



2 £ v £ t. Since g(w)i, g(2) = lg(l+t), g(t) > lg t-lglg t, 
we conclude 

lg t-lglg t < g(w) <> lg(l+t). 

t t 
t £ w £ 2 , 2V ^ t, Then 

lg p ^ g(w) < 1 + lg t-lglg t 

To get some feel for the length of these sub-ranges, ob­
serve that if e^ represents relative error then in single-pre­
cision computation on a "typical11 digital computer we might 

t 
take e =* 2 " 3 2 . Then t « 32 and if p = 2, then 2P"*] = 2 3 2 . 

From the bounds on the error coefficient function and 
(2.10) we immediately obtain the following bounds on complex­
ity. 

THEOREM 3.1. If 1 < w £ 2, 

(3.3) z(lg t-lglg w) < comp £ z(lg(l+t)-lglg w ) . 

If 2 £ w £ t, 

(3.4) z(lg t-lglg t) £ comp £ zlg(l+t). 

t t 
If t £ v £ 2 P " 1 , (with 2 P ~ 1 £ t), 

(3.5) c <. comp < z(l + lg t - lglg t). • 

We discuss some of the implications of this Theorem. 
As w approaches unity, then for e fixed, comp ~ - zlglg w. In 
this case the effect of the error coefficient A and the initi­
al error e n cannot be neglected. 



Complexity depends more on the nearness of w to unity 
than of c to zero. To see this, observe that if 2 £ w £ t, 
comp ~» zlglg (l/c) = comp^ while if 1 < w <. 2, 
comp ~ s(lglg ( l / e ) - lglg w) = comp . Let 

-2 J -2-3 2 1 
e 8 3 2 ,w-l=2 In 2. Then comp^ = jz, con^ ~ z(j+2 J). 

Note that for any p > 1 the complexity of an iteration 
can be greater than if p = 1 (see (2.12)) provided w is suf­
ficiently close to unity. 

For any w ^ 2, complexity is bounded from above by 
zlg(l+t) and is therefore independent of the error coeffici­
ent A and the initial error e^. For w £ 2, complexity is in­
sensitive to w and we need only crude bounds on w. 

For 2 £ w £ t, 

^i f lg t <; c o m r < ^l&O+t" 1) 
lg t zlg t lg t 

Therefore 
l + o ( D ££2Hi£- <; l + o ( l ) zlg t 

and we conclude that on the interval [2,t] we have, for t 
large, very tight bounds on comp with 

(3.6) comp ̂  zlglg — . 
e 

This should be compared with the case p = 1 (see (2.12)) 
where comp varies as lg —. 

e 
We have taken w - 2 as one of our endpoints for conveni­

ence but this is of course arbitrary. Any value of w suffici-
ently far from unity will do. If w = 2 V then g(w) - lg( l+vt). 
Then the effect of the nearness of w to unity and of e to zero 

are equal if v = t, that is if w = 2*". For this choice of w, 
2 1 comp = zlg(l+t ) ~ 2zlg t = 2zlglg 



We have chosen the sub-ranges of w so that the endpoints 
are simple. We could also choose values of w that make the 
complexity formula simple. If 

w - ^\ u ^ 1, then comp e uzlglg ^, 

while if 
1 

w = 2 t ^ t v ^ 1, then comp = ^zlglg J. 

We now consider the methodology for comparing two itera­ 
tions which are governed by the constant error coefficient 
model (2.2) and decrease the final error by the same e. Let 
V i * 2 i * c o mP£> i = 1,2 denote the parameters of the two_ 
iterations. Then 

comp1 ZZAgCw^ 
comp 2 \ z 2/g(w 2) 

Clearly if £ and w^ £ w 2 then comp^ £ comp 2. We obtain 
bounds on comp^/comp^ for sub-ranges of the w^. Using the 
bounds on complexity from the previous theorem we obtain 

THEOREM 3.2. If 1 < w . , w 2 ^ 2 , then 

(3.7) ( g l V 1 8 t " l 8 l g VT ^ ^ C ° m P 1 Y ' l Y 1 ' 0 ' 0 ' 1 ' 1 ' 
\z 2Alg(l+t)-lglg w 2 / comp 2 \ z 2 / \ i g t-lglg w 2 / * 

If 1 < w 2 £ 2 £ w 7 £ t, then 

( 3 . 8 ) (!jyi B t-i Ri K t \ ^ ! ! ^ , < ( ^ ( k i i ± t i ^ 
v ' \z2/\ag(l+t)-lglg w 2y comp2 V z 2 A l g t-lglg w2J ' 
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If 2 <. w ] , w 2 £ t, then 

Vvv igd+t) / comp 2
 <\z 2y\jg t-igig ty • • 

We discuss some of the implications of this theorem. As 
t «>, comp^/comp2 -» Z<|/Z2 ^ o r a n y fixed values of w^, \j^9 

The ratio z-|/22 ^ a s b e e n the way that iterations have been 
compared (see Traub [64, Appendix C] where efficiency indices 
are used). Theorem 3.2 shows that z-|/z2 can be a very poor 
measure of comp^/comp^; see for example (3.7). 

Finally we observe that inequalities (3.7)-(3.9) can be 
rewritten to show when comp^ < comp^ or comp^ < conipj • For 
example, if 2 £ w^, w^ £ t, 

(3.10) z 1 <, z 2 ^ ^ 1 g ( m ) ' ^ > t h e n c o m p l K c o m P 2 ' 

4. THE VARIABLE ERROR COEFFICIENT MODEL 

We turn to the variable error coefficient model, 

(4.1) e i + 1 - A. eP. 

A complete analysis of this model is beyond the scope of this 
paper. Here we confine ourselves to the very simple assump­
tion 

(4.2) A L <: k± <; Ay, i = 1 , k . 

Let 
w l = "JZ—' wu = ~JL~ 



Then 

(4.3) zg(w L) £ comp <. zg(w y) 

Note that w ^ w and therefore (4.3) is compatible with g be 
U Li 

ing a monotonically decreasing function. We can now draw con 
elusions from the constant coefficient model with A replaced 
by A L or A u. 

EXAMPLE 4.1. Let a be a real zero and let J denote an inter­
val centered at a* Assume f f does not vanish in J and let 
Xq 6 J and such that 

min|f f(x)| 
I I . x£J 1 

e 0 " lX(H *max|f»(x)| = 2A n 

x6J 

Then by Example 2.1, for Newton-Raphson iteration, w^ £ 2 and 
a priori 

(4.4) comp <. c lg(1+t) 

The value of c is discussed in Section 5. Note that a suf­
ficient condition for convergence is 

u 
but with only this condition, complexity could be extremely 
large. • 

1/2 
EXAMPLE 4.2. We seek to calculate a ' , that is solve 2 in 2 1 2 f(x) = x -a. Let a «= 2 X , m even, z> £ X < 2. Then 
1/2 m/2 l/2 l/2 

a 9 = 2 1 X, 1/2 1 <> X < 2 9 . We use Newton-Raphson itera­
tion, 



Then A ± - l/(2x j L_ 1). If x Q > X, then 

a l - 2 ^ i A i < k - v i = 1 " - " k -
Hence 

1/2 
Let x Q « 2 • Then w y £ 2 and comp £ c lg(lH-t). To derive 
a lower bound on complexity one must make an assumption about 

1/2 
the closest machine-representable number to 2 . We do not 
pursue that here. • 

5. BOUNDS ON THE COMPLEXITY INDEX 

We have shown that provided w is not too close to unity, 
then for fixed c, complexity depends only on the complexity 
index z. In this section we turn our attention to the com­
plexity index. 

Recall that z = c/lg p. We begin our analysis of z by 
considering the cost per step, c. We distinguish between two 
kinds of problems. 

We say a problem is explicit if the formula for f is 
l/2 

given explicitly. For example, the calculation of a by 
2 

solving f = x -a is an explicit problem. The complexity of 
explicit problems has been studied by Paterson [72] and Kung 
[7*] t [73b]. (Paterson and Kung take the efficiency index as 
basic.) We do not treat explicit problems here. 

We say a problem is implicit if all we know about f are 
certain functionals of f. Classically the functionals are f 

2X/x Q 



and its derivatives evaluated at certain points. These func­
tional may be thought of as black boxes which deliver an 
output for any input. Kacewicz [75] has shown that integral 
functionals are of interest. The question of what functionals 
may be used in the solution of a problem are beyond the scope 
of this paper. We confine ourselves to implicit problems for 
the remainder of this paper. 

We assume the same set of functionals is used at each 
step of the iteration. The set of functionals used by an 
iteration algorithm 0 is called the information set 51. 
Wozniakowski [75a] gives many examples of 51. Let the informa­
tion complexity u = u(f,51) be the cost of evaluating func­
tionals on the information set 51 and let the combinatory com­ 
plexity d « d(0) be the cost of combining functionals (see 
Kung and Traub [74b]). We assume that each arithmetic opera­
tion costs unity and denote the number of operations for one 
evaluation of f ^ by c ( f ^ ) . The following simple example 
may serve to illustrate the definition. 

EXAMPLE 5.1. Let 0 be Newton-Raphson iteration 
Xi+1 " ^ ( x i } = x i = f ( V / f f ( x i ) j 1 = °»---. k- 1- H u m 
51= {f-(x1),ft (x.)}, u(f,51) - c(f) + c ( f ) , d(0) = 2 . El 

Up to this point we have illustrated the concepts with 
algorithms. Computational complexity deals with classes of 
algorithms and we turn to our central concern, lower and upper 
bounds on classes of algorithms. As usual the difficult prob­
lem is obtaining lower bounds. Good lower bounds may be ob­
tained from good lower bounds on cost and good upper bounds 
on order. The problem of maximal order is a difficult one 
about which a great deal has been recently learned (Meersraan 
[75], Wozniakowski [75a] , [75b]). Part of the mathematical 



difficulty of the subject deals with the problem of maximal 
order. Note however that maximal order does not necessarily 
minimize complexity; we deal with this in a future paper. 
Upper bounds are obtained from algorithms. An interesting 
question here is a good upper bound on the combinatory com­
plexity of a class of algorithms. Brent and Kung.[75] have 
obtained a surprising new upper bound, 0(n lg n), on the com­
binatory complexity on a family of nth order one-point itera­
tions based on inverse interpolation. 

It is convenient to index our algorithms by n, the num­
ber of elements in the information set 9L We illustrate the 
issues with two examples. 

EXAMPLE 5.2. Let 0^ denote any one-point iteration with 
5t c {f(x i),f ,(x i),...,f ( n" 1 )(x i)}. Let c f = min c ( f ( i ) ) . 
Then u(f,!ft) ̂  nc^. For simplicity we use the linear lower 
bound ^ n-1. (No non-linear lower bound is known.) A 
sharp upper bound on the order of one-point iteration (Traub 
[64], Kung and Traub [74a]) is p ^ n. Hence 

ncf+n-l 
z(0 ,f) £ --i 

n lg n 
nc +n-l 3 c +2 

z(0 ,f) £ -r^ £ -r^-r 
^ n * lg n lg 3 

provided only that c^ £ 4 (Kung and Traub [74b]). Hence for 
any one-point iteration with w^ ^ t 

3c +2 
(5.1) comp ^ 3(lg t - lglg t). 

On the other hand there exists a one-point iteration which 
uses f, f 1, ffl and such that p « 3. Hence if Wy ^ 2, 



(5.2) c o m p ^ ^ ; ' ) ^ ^ " ) lg(i + t). lg 3 

For problems such that c(f) ~ c(f') ~ c(f") ~ c f the lower 
and upper bounds of (5.1) and (5.2) are close together. IS 

EXAMPLE 5.3. Kung and Traub [74a] show there exists an itera­
tion for which the information set 01 consists of n evalu-
ation of f with p('lr ) « 2 n ~ and d(ti ) = rn + ;rn - 7. Hence 

Tn n l l 
3 2 3 nc(f)-frii +rn-7 

The complexity index is minimzed (Kung and Traub [74b]) at 
n* = round[1 + (|(c (f) -4) ̂ 2 ] = 0(c(f)) 1 /' 2 and 

z < v } =
 C<F/(1 + — S t j m > °-

' V (c(f)) ' /y/ 
It would only be reasonable to use this high an order 

* n -1 
iteration for very small e. Assume t » p = 2 

Observe that z(\|f ) is a very f lflat n function of n. Thus 
3 11 n 

z(tyo) 855 o^Cf) + and comparing this with z(ty ^) shows we -5 z £. ^ n/x 

can gain only another ̂ ( f ) . 
Let $ denote the class of all multipoint iterations for 

which Wy ^ 2. Then 

comp($) <; c(f)lg(l+t)/n + ^ 7 o l • B 

' \^ (c(f)) , /y 
We can obtain a lower bound on the complexity of the 

jclass of multipoint iterations by using an upper bound on the 
•maximal order of any multipoint iteration and a lower bound 
on the combinatorial complexity. Kung and Traub [74a] con­
jecture that any iteration without memory which uses n pieces 



of information per step has order p <• 2n ^. This conjecture 
seems difficult to prove in general (Wozniakowski [75b]) but 
has been established for many important cases (Kung and Traub 
[73], Meersman [75], Wozniakowski [75b]). 

6. SUMMARY AND EXTENSIONS TO THE MODEL 

Wer have constructed a non-asymptotic theory of iterative 
computational complexity with strict lower and upper bounds. 
In order to make the complexity ideas as accessible as pos­
sible we have limited ourselves to scalar non-linear problems. 
The natural setting for this work is in a Banach space of.fin­
ite or infinite dimension and we shall do our analysis in 
this setting in a future paper. We have focussed on the sim­
plified model e. = Ae? ,. More realistic models include some 
of the following features; 

1. e. = A.e? - under various assumptions on the struc-
l I i-l 
ture of A^. 

P l Pm 
2. e, = A.e. n...e. . This is the appropriate model 

i l i-l i-m 
for. iterations with memory. 

3. Variable cost per iteration,^. 

4. Include round-off error. Then e^ will not converge 
to zero. 

We plan to analyze these more realistic models in the future. 
We also intend to investigate additional basic properties of 
complexity. Our various results will be used to analyze the 
complexity of important problems in science and engineering. 
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