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1. INTRODUCTION

In this paper we develop a (two-dimensional) framework for dynamical fracture,

concentrating on the derivation of general field equations that govern the motion

of the crack tip regardless of constitutive assumptions. We work within the

nonlinear theory because the basic ideas are most easily explained within a

framework that distinguishes between reference and deformed configurations;1

moreover, instead of laying down specific assumptions regarding the strength of

the crack-tip singularities, we consider hypotheses motivated by the requirement

that the underlying physical laws make sense.

We base the theory on the notion of configurational forces. In classical conti-

nuum mechanics the response of a body to deformation is described by standard

deformational forces consistent with balance laws for linear and angular mo-

mentum. Configurational forces are less intuitive: they are related to the intrin-

sic coherency of a body's material structure and perform work in the addition

and removal of material and in the evolution of structural defects. Following

GURTIN and STRUTHERS (1990) and GURTIN (1995), we view configurational

forces as basic primitive objects consistent with their own force balance. Configu-

rational forces defined via the calculus of variations as derivatives of an energy

have been introduced earlier, e.g., in the classic work of ESHELBY (1951) on

lattice defects.2 The role of configurational forces, however, seems more perva-

sive and fundamental than problems susceptible to a variational formulation can

indicate, a view we hope to demonstrate within the context of fracture dynamics.

The configurational force system we envisage in our discussion of crack-tip

motions has three components: a stress C; a force f distributed continuously over

the body; and a force g concentrated at the tip, where

g - gb + 8d (1-D

with gd inertial and gb an internal force that maintains the integrity of the tip

when the crack is stationary and acts in response to the breaking of bonds during

propagation. What is most important, we postulate a configurational force balance

that has the following form when applied at the crack tip:

lim JCn + g « 0, (1.2)
6-0 9D6

^However, our analysis is applicable to small strains (cf. the remark containing (3.6)).
^The recent monograph by MAUGIN (1993) features a comprehensive treatment, inspired
by Eshelby's work, of configurational forces (there called material forces) in nonlinear
elasticity and other branches of continuum physics.



where D6=D6(t) is a tip disk, that is, a referential control volume having the form
of small disk of radius 8 centered at the tip and moving with it.3 (We omit the
area measure in integrals over regions in R2 and the arc-length measure in inte-
grals over the boundaries of such regions.)

A basic ingredient of our theory is a mechanical version of the second law of
thermodynamics (GURTIN, 1995) which asserts that, for each control volume R(t),

(d/dt) {free energy of R(t)} • X(R(t)) <

{rate at which work is performed on R(t)}, (1.3)

where X(R(t)) represents the temporal change in the kinetic energy of R(t) plus
the outflow of kinetic energy due to the motion of 3R(t). We point out three
features of this formulation of the second law:
(1) As with a tip disk, R(t) evolves through the reference configuration; we view
the dependence of R(t) on t as representing the addition of material to — or the
removal of material from — the boundary 3R(t).
(2) We do not include a term representing the outflow of free energy across 9R(t),
as we view all noninertial interactions with material exterior to R(t) in terms of
working, with an accounting that includes work performed in the addition and
removal of material at the boundary.
(3) The configurational forces f and g do not enter (1.3), as their noninertial com-
ponents represent forces internal to the portion of the body represented by R(t),
while their inertial components are presumed to be accounted for by X(R(t))
(vid. relation (1.6) just below).

A consequence of the second law formulated in this manner is the Eshelby
relation

C « 51 - FTS (1.4)

for the configurational stress, where $ is the free energy density, S the deforma-
tional stress, FT the transpose of the deformation gradient F, and 1 the unit
tensor. This result is a consequence of the requirement that the second law be in-
variant under changes in parametrization of the boundary 3R(t) (GURTIN, 1995);
it is independent of the particular constitutive equations satisfied by $ and S.
3 We choose a disk for convenience only; we could equally well choose Dg(t) to be a family
of "nice regions that tends to the tip" as 6-*0, uniformly in t. The balance (1.2) does not
involve f since lim Jf « 0.

6 - 0 D6



To characterize the inertial component gd of the configurational force g, we
first define the deformational inertial-force bd at the tip through the balance

lim JSn + bd = 0, (1.5)

which identifies bd as the limiting value of the inflow of momentum across SDg.
We then require4 that the working of gd and bd be equal to -lim6_0X(D5) using
as the kinematical quantities relevant to this working the velocities v and v of
the tip in the reference and deformed configurations:

Bd'v + *>d-v = -lim s^0X(D6). (1.6)

As a consequence of these assumptions we have for the configurational inertial-
force gd at the tip the relation

gd - lim J(k r € l)n, (1.7)

with krei the kinetic energy density measured relative to the crack tip; this
allows us to write the configurational balance (1.2) in the form

lim J{(£ + k r e l ) l -FTS}n + gb = 0. (1.8)
6-0 3D6

The second law (1.3) and our results concerning tip inertia yield the internal
dissipation inequality

gb-v < 0, (1.9)

a central result of our theory. This inequality shows gb to be a dissipative force
that opposes motion of the tip, a result consistent with our association of gb with
the breaking of bonds.

We next establish the energy balance

lim J{Sn-y# + ($ + k)(v-n)} « - gb-v, (1.10)
6-0 dDs

4 The use of a requirement of this type to relate the expressions for "inertial force" and
"kinetic energy" in general theories of continue has been proposed by PODIO-GUIDU6LI
(1995).



a result that allows us to relate gb to more classical concepts. Assume that
V « | v l * 0 and write v = Ve. Then the quantity &-9(t) defined by setting $V equal
to the left side of (1.10) is usually referred to as the (dynamic) energy release-
rate;5 by (1.10), 9 coincides with the component of the internal configurational
force opposing crack propagation:

9 = -g b -e . (1.11)

In accord with a practice now standard in continuum mechanics, we view
the internal dissipation inequality (1.9) as indicating the need for constitutive
relations involving gb and v and as a means of suitably restricting such relations.
A discussion of general constitutive assumptions is beyond the scope of this paper,
but as an example we give an elementary discussion of possible constitutive
equations for straight cracks.

Our goal is a clearer understanding of those basic concepts that underlie
dynamical fracture. Our final results are not different in form from results well
known by experts on fracture (FREUND, 1990); what is different is our derivation
and our interpretation in terms of configurational forces, which we believe to
most accurately describe the underlying physics.

To facilitate our discussion, we derive two general transport relations approp-
riate to evolving control volumes R = R(t) that contain a portion CR=CR(t) of the
crack, including the tip. These relations, valid for $(X,t) a sufficiently regular field
that is smooth away from the tip and up to the crack from either side, assert
that

( d / d t ) { J § ) = Jfi- + j8Ud R - lim J$(v-n), (1.12a)
R R 3R 6-0 3D6

(d /dt ){J$) = J$ c + J$(Ud R-v-n) + J[5]m-v, (1.12b)
R R SR CR

where $° is the time derivative of $ following the tip, UaR is the (scalar) velocity
of SR in the direction of its outward normal, n is the outward unit normal to
dD5=3D6(t), m is a unit normal to the crack, and, for X on the crack,
IB](X,t) = 8(X+0m,t) - $(X-0m,t).

A defect of the theory as presented here is that the presumed regularity of
the crack rules out kinking; in particular, at initiation the crack has a prescribed
5C7. ATKINSON and ESHELBY (1968), KOSTROV and NIKITIN (1970), FREUND (1972),
WILLIS (1975), GURTIN and YATOMI (1980), and the comprehensive treatise of FREUND
(1990).



direction. An extension of the framework developed here to irregularly
propagating cracks is therefore warranted.

2. KINEMATICS OF CRACKED BODIES
a. Cracks. Time-dependent control volumes.
Let B denote a closed region of IR2 with boundary SB and, for each t in some open
time interval, let C(t) be a smooth, connected, oriented curve in B with one end
fixed at the boundary SB, with the remainder of C(t) — including the other end
point Z(t) — contained in the interior of B, and with

C(T) C C(t) for all t > T. (2.1)

We view

B(t) = B\C(t) (2.2)

as a referential neighborhood of a growing crack C(t) with Z(t) the crack tip
(Figure 1. Note that B contains the points of C(t) while 33(t) does not; hence B(t) is
cracked, while B is not. Note also that the assumed regularity of C(t) precludes
singularities such as kinks and bifurcations.) We let e(t) denote the unit tangent
to C(t) at Z(t) in the direction of (possible) propagation. Then the tip velocity

v(t) = dZ(t)/dt (2.3)

may be written in the form

v(t) - V(t)e(t), V(t) > 0, (2.4)

with V the speed. Finally, we choose a continuous unit normal field m(X,t) for
C(t).

By a control volume we mean a closed subregion R(t) of B for which SR(t)
evolves smoothly with t, and for which

CR(t) = C(t)HR(t), (2.5)

the portion of the crack in R(t), does not intersect 3R(t) at more than two points



(Figure 2). For convenience, we limit our discussion to two classes of control
volumes: those that do not intersect the tip and those that contain the tip in their
interior. We view the dependence of R(t) on t as resulting from the addition and
removal of material points. Our definition of a control volume does not preclude
control volumes R that are independent of time.

For R(t) a control volume, n(X,t) designates the outward unit normal to
3R(t), and U0R the (scalar) normal velocity of the boundary curve in the direc-
tion n. A useful example of a time-dependent control volume is the tip disc

D 6 ( t )«{X€B: | X - Z ( t ) | < 8 } , (2.6)

a disc of radius 8 centered at the tip Z(t); here the normal velocity is

UaDs= v n . (2.7)

For convenience, we write

C8(t) - CD6(t) = C(t)nD6(t). (2.8)

b. Derivatives following the crack tip. Tip integrals. Transport theorems.
We refer to a field $(X,t) as smooth away from the tip if $(X,t) is defined for all
XcB(t) and all t, and if, away from the tip, $(X,t) and its derivatives have limits
up to the crack from either side; we then write, for XcC(t),

5±(X,t) = lim §(X±em(X,t),t), [$] « 3T - $". (2.9)
e—0

Given such a field $(X,t), consider the corresponding field £(Y,t) in which Y rep-
resents the position of the material point X relative to the tip Z(t):

l(Y,t) = i(X,t), Y - X-Z(t). (2.10)

The partial derivative

£°(X,t) - i

with respect to t holding Y fixed represents the time derivative of $(X,t) following
the tip Z(t); by the chain rule,



fi° « fi* + VS-v (2.11)

away from the tip, where

S#(X,t)«SS(X,t)/3t.

We will repeatedly take limits, as 6-*0, of integrals of fields over 3D6(t); we
refer to such limits, when meaningful, as tip integrals; examples, for cp a scalar
field, w a vector field, and T a tensor field, are:

tip (2.12a)
6-0 3D6(t)

ft ip(w®n) = lim Jw®n, (2.12b)
6-0 5D6(t)

ftipTn = lim jTn. (2.12c)

6-o SD6(t)

Let R(t) be a control volume that includes the tip and consider the region

R6(t) = R(t)\D6(t), (2.13)

with 8>0 sufficiently small that 9R6(t) * 3R(t)UdD6(t). Then, using the same letter
n for the outward unit normal on both flR and dD$f and bearing in mind that the
outward unit normal to 3R6 on 9D6 is -n, we may use the gradient theorem in
the usual manner — with CR considered as a "slit in R511 giving rise to an
additional pair of boundary segments (Figure 3), and with SRS^^ interpreted
accordingly — to conclude that, for $ smooth away from the tip,

= J $n - J[$]m - J$n. (2.14)
R6 SR CR g SD6

(Here, for convenience, we have suppressed the argument t.) Thus, if ft. Bn
exists, and if [f]m is integrable on C, then J R V $ exists as the limit
l im g_ 0 JR VB and we have the generalized gradient theorem

J $n - J[fi]m - •tip*11-
dR CR



The next definition allows us to state succintly our hypotheses concerning
momenta and energies. We will refer to S as regular if, in addition to being
smooth away from the tip,

(Rl) § is integrable on B; given any control volume R(t), the mapping t *-> JR(t)$
is differentiate;

(R2) 5° is integrable on B and [$]m-v is integrable on C(t), both uniformly in t;

(R3) f t ip$n exists.

(The phrase "uniformly in t" signifies "uniformly for t in any compact interval11.)
By (R2) and (2.8),

J[$]m*v approaches zero as 8->0. (2.16)
C6(t)

Remark. In actual solutions of crack problems the underlying fields are
generally singular in the distance r=lX-Z(t)| from the tip, but are otherwise
well-behaved; if a field $ has a tip singularity and yet is integrable (cf. (RD),
neither $* nor V$-v are generally integrable, but $° may well be, which is why
$° rather than $* was used in (R2). For example, let S be a field that is smooth
away from the tip and has the form

8(X,t) = r-1cp(X,t).

Conditions sufficient for the regularity of S are: (i) that (p(X,t) have a limit as
X -• Z(t), uniformly in t; and (ii) that cp°(X,t) be uniformly bounded in (X,t).
Indeed, a direct consequence of these assumptions is that $ and $°= r^tp0 are
integrable on B, uniformly in t, and that (R3) is satisfied. The differentiability of
the mapping t •-» JR(t)$(X,t)dX then follows upon changing the integration
variable from X to Y = X-Z(t), while the integrability of [§]m«v on C(t),
uniformly in t, follows from the fact that $(X,t) = O(r*1) and m(X,t)-v(t) -> 0 as
X-*Z(t), both uniformly in t. D

The following well known transport theorem is valid when $(X,t) is smooth
away from the tip and R(t) does not contain the tip:

(d/dt){J$) = jr * JSUaR. (2.17)
R(t) R(t) SR(t)
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We now give two generalizations of (2.17) that account for the crack tip.

Transport theorem. For R(t) a control volume that includes the tip, if $(X,t) is
regular, then

(d/dt){J$) « /*• + J$UaR - ftipfftv-n), (2.18a)
R(t) R(t) 3R(t)

(d/dt){J$) = J«° + J$(Ud R-v.n) • J[$]m-v (2.18b)
R(t) R(t) SR(t) CR(t)

(with JR(t)$* defined as Iim6_o J R 6 $ \ which exists).

We regard the transport theorem (2.18) as a central result of our theory.
Relation (2.18b) expresses (d/dt)JR(t)$ in terms of the derivative 3>° following
the tip and the inflow §(UaR-v*n) measured in a frame moving with the tip. By
(2.7), it follows from (2.18b) that

(d/dt){J$) = J$° + J[«]m.v, (2.19)

D6(t) D6(t) C6(t)

so that, by (R2) and (2.16), as 6-*0,

(d/dt){J$) -• 0, (2.20)
D6(t)

a result we will use often in what follows.
To verify (2.18), we consider the region R6(t) defined in (2.13) with 8

sufficiently small. Then (2.17) holds with R(t) replaced by R6(t), so that,

(d /dt ){ j5) - j r + JfUaR - Jff(v.n), (2.21)
R6(t) R6(t) 8R(t) 3D6(t)

since UaD =v*n, and therefore, by (2.11),

(d/dt){J$) « J ( r -V$-v) + J$UaR - J§(v-n). (2.22)
R6(t) R6(t) SR(t) SD6(t)
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But, by (2.14),

JV«-v - J«(vn) - J«(v-n) - J[$]m-v; (2.23)
R6(t) QR(t) 3D6(t) CRg(t)

thus

( d / d t ) ( J $ ) « J»° + j 5 ( U d R - v n ) + J[$]m-v. (2.24)
R6(t) R6(t) SR(t) CRg(t)

Let

cp(t) . J » , <pe(t) = J fi. (2.25)
R(t) R6(t)

Then (2.24) and (R2) yield the conclusion that, as 6-»0, dcp6/dt tends to the right
side of (2.18b) uniformly in t. Further, since, by (Rl), <p6 -» ip, this uniformity
implies that d(p6/dt -> dcp/dt. Thus (2.18b) holds and, in addition, the left side and
the last term of (2.21) each approach the corresponding terms in (2.18a) (c/.
(R3)). Thus (2.18a) is valid modulo the asserted definition of JR$# .

c. Motions of cracked bodies.
Let y(X,t) be a motion of B(t); that is, let y(X,t) be smooth away from the tip
•with y(X,t) one-to-one in X on 33(t) for each t. The deformation gradient

F = Vy (2.26)

and the material velocity y are then smooth away from the tip.
Let R(t) be a control volume. The boundary curve 3R(t) may be parametrized

in a sufficiently small time interval and in a neighborhood of any of its points by
a function of the form X»X(a,t) (a a scalar variable); the field

u(X,t) - 3X(a,t)/dt (2.27)

then represents a velocity field for 3R(t) in that neighborhood. It is possible to use
such parametrizations to construct a velocity field for 3R(t); that is, a smooth
field u(X,t) defined for all X on SR(t) and all t in any (sufficiently small) time
interval. A field u so constructed depends on the choice of local parametrizations,
but its normal component is intrinsic:
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u-n - U3R. (2.28)

Each local parametrization X-X(a,t) induces a corresponding local parametriza-
tion x=x(a,t)=y(X(a,t),t) for the deformed boundary curve y(9R(t),t); the corres-
ponding induced velocity field

u(X,t) * a£(a,t)/St (2.29)

for the deformed boundary yOR(t),t) is related to u by the formula

u = y + Fu. (2.30)

The tip velocity v(t) may be considered as a velocity field for the boundary of
the disc D8(t) using as a parametrization

X = X6(a,t) = Z(t) + Bv(o), (2.31)

with v(o) a unit vector at an angle o from a fixed axis. Then

y° « y + Fv, (2.32)

the time derivative following Z(t), represents the corresponding induced velocity
field for yOD6(t),t). We assume that:

(Al) there is a function v(t) such that

y°(X,t) -^ v(t) as X -> Z(t), uniformly in t. (2.33)

One might expect that v(t) represents the velocity of the deformed crack tip.
Granted sufficient regularity this is indeed the case. Assume for the moment that
y(X,t) has a limiting value y(Z(t),t) a sX-* Z(t), so that the deformed crack tip is
well defined. Then y(Z(t),t) is differentiable in t and

v(t) = dy(Z(t),t)/dt. (2.34)

To verify (2.34) consider (2.31) with a fixed, and let y6(t) «y(X6(a,t),t). Then
dy6(t)/dt = yo(X6(cx,t),t), so that, by (2.33), dy6(t)/dt-» v(t) as 8->0, uniformly in
t. But, by hypothesis, y6(t)-* y(Z(t),t); thus y(Z(t),t) is differentiable in t and
(2.32) holds at Z(t).
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3. BASIC LAWS
a. Balance laws for deformational and configurational forces.
We let p denote the reference mass density, write

p « py* (3.1)

for the momentum, let S denote the Piola-Kirchhoff stress that arises in re-
sponse to deformation, neglect external body forces, and assume that the crack
faces are traction-free:

S±m = 0 on C(t). (3.2)

The balance laws for linear and angular momentum then take the form

(d /d t ){Jp) - J(pUaR + Sn), (3.3a)
R(t) SR(t)

(d /d t ){Jyxp) = Jyx(pUaR + Sn), (3.3b)
R(t) SR(t)

for each control volume R(t).
We consider, in addition, a configurational stress C, a configurational force f

distributed over 3B(t), and a configurational force g concentrated at the tip; these
are presumed consistent with the configurational force balance:

JCn + J[C]m + Ji = 0, if R(t) does not contain the tip; (3.4a)
SR(t) CR(t) R(t)

JCn + J[C]m + Jt + g(t) * 0, if R(t) contains the tip. (3.4b)
SR(t) CR(t) R(t)

We assume that each of f and g consists of internal and inertial portions.
While the decomposition of f is irrelevant to most of our discussion, determining
the inertial portion of g will form a major part of our analysis.

To ensure that the balances (3.4) are well defined and that their localization
to the crack tip (in Section 4) is meaningful, we assume that

(A2) p is continuous; p and yxp are regular; S and C are smooth away from
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the tip; f is integrable over B; J ISnl remains bounded as 6-*0; [C]m is
integrable on C(t).

We then have the following local relations away from the crack:

divS=p\ SFT = FST, (3.5a)

divC + f = 0. (3.5b)

Remark. The theory we here develop is valid for infinitesimal displacements u
provided we redefine F to be Vu and replace y* and y° with u# and uc. In parti-
cular, all definitions and results are unchanged except those related to angular
momentum; there y in (3.3b), (3.7), and (6.1) should be replaced by X, while the
second of (3.5a) should be replaced by S = ST. Within this framework, classical ad-
ditional estimates for a linearly elastic material are that, as r= |X-Z(t)|-> 0,

u~ri , u-~r~i, Vu ~ r-i, S~r~i (3.6)6

(FREUND, 1990, p. 43), estimates which yield the additional results

*tiP
Sn - °' W X x S n ) s °' ( 3 7 a )

ftiP
(P®n) " ° ' ftip((Xxp)®n) = 0. (3.7b)

On the other hand, the configurational balances suggest that the configurational
stress satisfy C ~ r"1, an assumption consistent with the classical assumptions
(3.6) in the light of the interpretation of C in terms of the Eshelby relation
(1.4).7 D

b. Mechanical version of the second law.
In the absence of defects (such as cracks), of external body forces, and of thermal
and compositional effects, classical continuum mechanics may be based on a
"second law11 that utilizes stationary control volumes R and has the form

(d/dt){J*} + X(R) < Tff(R), (3.8)
R

*E\ren within the infinitesimal theory, these estimates are generally not valid beyond

linear elasticiticity (RICE and ROSENGREN, 1968; HUTCHINSON, 1968).
7Since C • $ 1 - F T S , and since (3.6)3^4 imply that F T S - r " 1 as r-• 0. In fact, one

expects * ~ r' 1 as r-*0 (c/. the Remark in Section 2b), hence the integrability of the

free energy $.
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where $ is the free energy density,

X(R)- (d/dt){Jk) (3.9)
R

with

k * {plyl 2 (3.10)

the kinetic energy density, and

Tff(R) = JSn-y (3.11)

3R

is the boundary working (GURTIN and STRUTHERS, 1990; GURTIN, 1995).
For an evolving control volume R(t) generalization of (3.8)-(3.11) is necessary,

but by no means obvious. We consider the dependence of R(t) on t as representing
the addition of material to — or the removal of material from — the boundary
c)R(t), and we write the second law in a manner reflecting this view. To begin

with we take

(d /dt ) {J$)
R(t)

as the sole term involving free energy; we do not include the outflow term

SR(t)

as we view noninertial interactions with the material exterior to R(t) in terms of
working, rather than transport.

This leads to the main issue: generalization of the expression (3.11) to account
for the work performed in the addition and removal of material at the boundary.
We assume that Cn*u represents the boundary working of the configurational
stress C, where u is the velocity field computed via a particular choice of local
parametrizations X=X(a,t) for 3R(t). The working of the deformational stress S
must also be taken into account. When the control volume depends on time there
is no intrinsic material description of its deformed boundary y(3R(t),t), as mate-
rial is continually being added and removed, and it would seem appropriate to
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use, as a velocity for y(3R(t),t), the derivative u(X,t) of y(X(a,t),t) with respect
to t holding the surface parameter a fixed; we therefore write the boundary wor-
king of S in the form Sn*u.

Finally, as we view the kinetic energy as "independent" of the internal struc-
ture of the material, we generalize X(R) in the standard manner, viz.,

X(R(t)) = (d /d t ) { Jk ) - JkUaR. (3.12)
R(t) 9R(t)

In conclusion, we write the second law for an evolving control volume R(t) —
that may or may not contain the crack tip — in the form

+ X(R(t)) < J(Sn-u + Cn-u), (3.13)
R(t) 9R(t)

with u a velocity field for 9R(t) and u the corresponding induced velocity field for
y(9R(t),t). (The configurational forces f and g perform no work, as their inertial
components are accounted for by X(R(t)), while their noninertial components are
internal; moreover, there is no contribution from C(t) because of (3.2) and since
only the tip of C(t) evolves.) Note that, by (2.30), the deformational working Sn-u
consists of a classical term Sn*y# plus a term Sn-Fu that accounts for the addi-
tion of strained material to 9R. Note also that for R independent of time (3.13)
reduces to the standard inequality (3.8), so there is no conflict with classical con-
tinuum mechanics.

To ensure that this version of the second law be meaningful, and to allow for
its localization, we assume that:

(A3) 5 and k are regular.

c. The Eshelby tensor as a consequence of invariance under
reparametrization (GURTIN, 1995).

We require that our theory be independent of the choice of parametrization for
9R(t). This requirement of invariance under reparametrization has important
consequences. In particular, the invariance of (3.13) is equivalent to invariance of
the boundary working, which, by (2.30), can be given the form

Tff(R(t)) « J(Sn-u + Cn-u) = J{Sn-y# + (FTSn + Cn)-u}. (3.14)
9R(t) 9R(t)
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Changes in parametrization affect the tangential component of u, but leave
the normal component unaltered. In fact, invariance of (3.14) under reparametri-
zation is equivalent to the requirement that (FTSn + Cn)*t = 0 on 3R(t) for all
tangential vector fields t on dR(t); thus, since R(t) is arbitrary, (FTS + O n must
be parallel to n for all n, so that

C + FTS « irl (3.15)

and, by (2.28), the working has the intrinsic form

1ff(R(t)) « J S n - y + JTTU^R. (3.16)
3R(t) SR(t)

The scalar field TT is a configurational tension that works to increase the volume
of R(t) through the addition of material at its boundary. Referring to the final
term in (3.16) as the configurational working, (3.16) may be stated more sugges-
tively as boundary 'working equals deformational working plus configurational
working. Note that the configurational working TCU^R is not due solely to the
action of the configurational stress C; the deformational stress contributes also
through the term (Sn«Fn)UaR.

Next, assuming that R(t) does not contain the crack, and using (2.17) and
(3.16), the inequality (3.13) may be rewritten as

n-y- + (Ti-$)Uc>R}. (3.17)
R(t) SR(t)

Given a time T, it is possible to find a second referential control volume R'(t) with
R'(T) = R(T) , but with U 5 R . (X,T) , the normal velocity of 5R'(T) , an arbitrary scalar
field on 3R'(T); satisfaction of (3.17) for all such UaR. implies

Tt = 5. (3.18)

Therefore, configurational tension coincides with free energy, a result analogous
to the coincidence of surface tension and surface free-energy; what is more
important, (3.16) and (3.18) yield the Eshelby relation

C - $1 - FTS (1.4)

for the configurational stress C.
This derivation of the Eshelby relation was accomplished without recourse to
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constitutive equations or to a variational principle; the derivation was based on a
version of the second lav/ appropriate to referential control volumes v/hose boun-
daries evolve with time. The result (3.18) is a consequence of the invariance of
1ff(R) under reparametrization; it is independent of the particular form chosen for
the second law and is hence more basic than (1.4).

Given the first of the balance equations (3.5a), the second law (3.17) has the
classical local form:

$#<S-F\ (3.19)

The results (3.18)-(3.19) are valid away from the crack. Since the configurational
force f does not appear in (3.19), we consider f to be indeterminate* in fact, as
defined by the balance (3.5b). The theory away from the tip is therefore equiva-
lent to the classical theory: only $ and S need constitutive specification, while
(1.4) and (3.5b) are regarded as defining relations for f and C; configurational
forces play no role. On the other hand, as we shall show in the next few sections,
configurational forces play a pivotal role in the evolution of the crack tip, as it is
there that the material structure undergoes change.

Finally, by (2.17), (3.17), and (3.18), we can write the second law in the form

k)} < JSn-y- + J($ + k)UaR, (3.20)

R(t) c)R(t) 5R(t)

again showing consistency with classical ideas.

Remark. With (1.4), the first of (3.5a) and (5.5b) yield

(f -FTp-)-a * -V*-a+S-V(Fa) (3.21)

for all vectors a. Suppose that the body B(t) is elastic and homogeneous, with

constitutive equations giving the stress S as the derivative of the free energy $:

$ - $(F), S - SF$(F) (3.22)

(so that, in particular, $* * S-F*, in accord with (3.19)). The right side of (3.21)

then vanishes for all a; hence f = FTp* and the configurational force f has only an

inertial part. This is a direct consequence of homogeneity; for an inhomogeneous

material with energy $(F,X) and stress S=aF$(F,X), (3.21) yields f =-3 x $ + FTp-,
8That is, not specified constitutively (TRUESDELL and NOLL, 1965, p. 70).
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and both internal and inertial components are present (ESHELBY, 1975). D
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4. BASIC LAWS AT THE CRACK TIP
a. Balance laws.
By (A2), (A3), (2.7), (2.12), and (2.20) applied to p and yxp, the momentum
balances have the limiting forms:

• tip(y«(Sn)) = -• t ip((yxp)(v.n)), (4.1b)

while the limiting form of the balance for configurational force is

• s - 6 - W.2)

To see how, in particular, (4.1a) is arrived at, write (3.3a) for a tip disk, taking
(2.7) into account, and then make use of (2.20) applied to p; the result is

JSn + Jp(v-n) = o(l), (4.3)
SD6(t) SD6(t)

where o(l) represents terms that approach zero as 8—>0; the definition of the tip
integrals (c/. (2.12b) and (2.12c)) then yields (4.1a).

b. Tip inertia. Resistance to the breaking of bonds.
We define the tip inertial force bd in the deformational system through the
balance (1.5); then, by (4.1a),

)- ( 4-4 )

We then assume that the configurational force g concentrated at the tip
admits the decomposition (1.1), with gd the inertial force at the tip and gb an
internal force that resists the breaking of bonds during crack propagation.

The identification of gd is not immediate, chiefly because of the nonintuitive
nature of configurational forces. For that reason, following a procedure of PODIO-
GUIDUGLI (1995), we characterize gd through the equivalence of inertial working
and temporal changes in kinetic energy; precisely, we require that the working
of gd and bd be equal to - lim 6_0 X(D6). Arguing as in our discussion in the
paragraph following (3.11), the velocities relevant to the working of gd and bd are
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v and v, respectively; therefore, appealing to (3.12),

lim ( Jkv-n - (d/dt){ Jk }) « bd-v + gd-v, (4.5)
6-0 £)D6(t) D6(t)

so that, by (2.20) applied to k,

f t ipk(v*n) * bd«v + gd*v. (4.6)

With (4.4), (4.6) yields

g d . v = v-^ t i p (k - p-v)n. (4.7)

Further, as a consequence of (3.8),

k - p-v = kr€l - Jplvl2 (4.8)

with

krel « { P l y - V l 2 , (4.9)

the kinetic energy measured relative to the tip. Since p is continuous, the integral
of p|v|2n over dD6 tends to zero, and

* t i P r e i (4.10)

so that, by (4.7),

g d -v = v $ t i p(k r e ln). (4.11)

This should at least motivate our identification of gd with the tip integral of the
relative kinetic energy:

Bd s $tiP
(krein). (4.12)

Finally, by (3.15), (4.3), and (4.12), we can write the configurational balance
(4.1c) for the crack tip in the form

-g b . (4.13)
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c. Internal dissipation inequality. Energy production. Energy release-
rate.

We now localize the second law (3.13) to the crack tip. Because of (A3) and (2.20)
applied to $, (1.1) and the second law (3.13) with R(t) = D6(t), u=v, and u = y° (c/.
(2.32)) yield the inequality

0 < J(Sn-y° + Cn-v) + bd-v + gd-v + o(l). (4.14)
SD6(t)

The next two estimates use the spatial constancy of v and v. By (Al), the
assertion of boundedness in (A2), and (1.5),

J Sn-y° « J Sn-v + o(l) = -b d -v + o(l). (4.15)
SD6(t) SD6(t)

Thus, by (4.1c),

J(Sn*y°+ Cn*v) = -bd*v - g-v + o(l); (4.16)
SD6(t)

this estimate, with (1.1), reduces (4.14) to

gb*v < 0, (1.9)

an inequality requiring that the internal configurational force oppose motion of
the tip. The relation (1.9), the main result of this section, represents an internal-
dissipation inequality for the crack tip.

The quantity

E(R(t)) = (d/dt){J(* + k)} - JSn-y - J(* + k)UaR < 0. (4.17)
R(t) SR(t) SR(t)

is the production of energy in R(t), with -E(R(t)) the corresponding energy dissi-
pated (c/. (3.21); equivalently, E(R(t)) may be defined as the left side of (3.13)
minus the right.) If we take R(t) = D6(t)= D5 in (4.17), we find, with the aid of
(2.20), that

ft. {Sn-y- + (£ + k)(v-n)} - - lim E(D6), (4.18)
P 6-0

provided the tip integral on the left exists. By (A3), this integral, which represents
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the working on and energy flow out of an infinitesimal neighborhood of the tip,

will be well defined provided f t ipSny# exists; but (1.4) and (2.32) yield

Sn-y* « Sn-y° • Cn-v - $n-v, • (4.19)

so that, by (A3) and (4.14), fti Sn-y# exists. Further, appealing to (4.6), (4.14),

and (4.16), we find that the left side of (4.18) equals -gb*v. Thus

gb-v « lim E(D6), (4.20)
6-0

establishing -gb-v, and hence the breaking of bonds, as the sole source of dissipa-

tion at the tip. An immediate consequence of (4.18) and (4.20) is the tip balance

# t ip{Sn-y + ($ + k)(v.n)} • - gb-v. (4.21)

The quantity 9 = §(t) defined for V*0 by setting 9 V equal to the left side of (4.21)

is usually referred to as the (dynamic) energy release-rate. A consequence of

(2.4) is then the identity

9 - -gb-«. (LID

and the energy release-rate coincides with the component of the internal configu-
rational force opposing crack propagation. Finally, by (4.13),

FTS}n. (4.22)

Remark. For a straight crack (e = constant) in a homogeneous elastic material
(c/. the Remark in Section 3c), neglecting inertia, the energy release-rate may be
computed via an integration along a path away from the tip. Let F = F(t) denote
any smooth, closed, nonintersecting path that begins and ends on the crack and
surrounds the tip, let n denote the outward unit normal to F, let

J(D = e-J(*l - FTS)n, (4.23)

and keep in mind that divC = 0, since f=0 (c/. again the Remark in Section 3c),
and that e*[C]m = *e.m = 0 (c/. (1.4) and (3.2)). Then, applying the (tensorial
version of) the generalized gradient theorem (2.15) to divC, with R the region
bounded by F, we may conclude that (ESHELBY, 1956; RICE, 1968):
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9 = J(D for any choice of the path T. D (4.24)

5. Second law revisited.
At this point we have identified the forms of energy dissipation, with -gb#v the
dissipation at the tip and (S*F# - $*) the dissipation in the bulk material away
from the tip (c/. (3.19)). We now show that, granted an accounting of these forms
of dissipation, the second law takes the form of an energy balance.

We begin by writing

*-$-) > 0 (5.1)

for the bulk dissipation in any control volume R = R(t), where here and through-
out this section JR is defined, when meaningful, as lim6 - + 0 JR , with R5=R5(t)
given by (2.13). In fact, in each subsequent appearance JR will be well-defined,
thereby establishing the existence of (5.1).

Next, the (vectorial version of the) generalized gradient theorem (2.15) applied
to STy# yields

JSn-y# = J(S-F+y'-divS) + J t ipSn-y# (5.2)
3R R

(c/. (3.2)), and, by (3.5a) and (3.8), we have the power identity

JSn-y- - •tipSn-y - / (S-F+k-) . (5.3)
dR R

On the other hand, (4.17) and the transport identity (2.18a), with $ -$ + k, yield

E(R) = J($ + kY - fti (* + k)(v-n) - JSn-y\ (5.4)
R 3R

The last two relations and (5.1) imply that

E(R) « -D(R) + gb-v, (5.5)

showing that the production of energy in a control volume R is balanced by the
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energy dissipated in bulk plus the energy dissipated by the moving tip. More spe-

cifically, (5.5) yields the second law as a balance:

- JSn-y* + J (* + k)UdR - D(R(t) + gb-v. (5.6)
R(t) 5R(t) SR(t)

For an elastic material D«0 and (5.6) takes the simple form

k)} = JSn-y' + J (* + k)USR + gb-v. (5.7)
R(t) 3R(t) 3R(t)

6. SUMMARY OF BASIC RESULTS FOR THE CRACK TIP
The basic equations for the crack tip consist of the momentum balances

• tiP - • t i p (p(v .n) ) . (6.1a)

• t ip(y*Sn) = -• t i p((yxp)(v.n)) , (6.1b)

and the configurational balance

* t i p{(* + k r c l ) l -F T S}n - -Bb. k r t l - Jp ly ' -vP . (6.2)

These balance laws are supplemented by the internal dissipation inequality

gb*v < 0, (6.3)

which represents the second law localized to the crack tip.

The fields S and $ are generally given by constitutive equations defining the
material properties away from the crack. On the other hand, the quantities gb

and v, which characterize the mechanics and kinematics of the crack tip, require
constitutive specification, as without further restriction the internal dissipation
inequality (6.3) may be violated. The basic theory for the crack tip is therefore
closed by relating gb and v constitutively in a manner consistent with (6.3). In
the next section we will discuss a possible constitutive specification for the kinetics
of a straight crack.

Remarks.

i . It is important to differentiate between the roles played by the energy

release-rate % and the internal configurational force gb. Throughout the literature
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one finds constitutive prescriptions for 9 (or equivalently for the stress intensity
factor). We believe this to be conceptually incorrect, as it is gb that is constitu-
tive, with 9 a defined quantity related to gb through a reduced version (1.11) of
the configurational balance. In this regard, note that, with the exception of the
inertial term kreJ, 9 *$ represented by quantities that already have constitutive
prescriptions.9 More pragmatically, gb, being a vector, accounts for directional
resistance to motion of the tip, and might therefore be useful in modeling the
curving and kinking of cracks.

2. Granted the classical estimates leading to (3.7), the momentum balance
laws (6.1) are satisfied automatically and krel in (6.2) may be replaced by k (c/.
(3.8)). D

*E.g., for an clastic material in a quasi-static process, %, as defined in (4.22), depends on
$, S, and F; but for such a material $ and S are already prescribed constitutively as
functions of F.
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7. CONSTITUTIVE EQUATIONS FOR STRAIGHT CRACKS

We assume that the crack is straight. The direction of propagation e (c/. (2.4)) is

then a prescribed constant, and it is convenient to write the internal dissipation

inequality (5.3) in a form that singles out the component of gb in the direction e:

Ve-gb < 0. (7.1)

The component of gb normal to e does not enter the local form (7.1) of the second

lav/, and for that reason we shall regard this component of gb as indeterminate,

an assumption consistent with the requirement that v be constrained to the di-

rection e.

We therefore let

gb = e ' 8b (7-2)

and rewrite (7.1) as

gbV < 0, (7.3)

so that -gb is conjugate to the speed V > 0 of the tip; a necessary condition for

crack propagation is then that gb be resistive:

gb * 0. (7.4)

The cohesive force gb is related to the breaking of bonds at the crack tip, and

it seems reasonable to suppose that crack propagation is accompanied by a resis-

tive force dependent on the velocity V, with propagation possible only when |gb| is

sufficiently large. We therefore introduce a limiting value L and a tip viscosity

A, with

L = £(...) > 0, A - A(...) > 0, (7.5)

such that

gb = -L - AV for V > 0, -L < gb < oo for V « 0 (7.6)

(Figure 4.1 0 The notation L-L(...) and A«A(..J signifies that L and A are
1 0 The experimental results of ROSAKIS et al (1984) and ZENDER and ROSAKIS (1990), as
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material moduli whose values may depend, constitutively, on quantities asso-
ciated with the crack tip.) These constitutive relations are consistent with the
internal dissipation inequality (7.3). Note that, by (7.9), the configurational
balance (5.2) may be written in the form

t ip k r e l ) l - F T S } n = L + AV (7.7)

for V > 0.
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displayed in Figure 11 of the latter, at least indicate behavior of this form, as does the mic-
romechanical model of LAM and FREUND (1985) (FREUND, 1990, §8.3).
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Figure 1
Referential neighborhood af a crack.



 



Figure 2

Types of control volumes.



 



Figure 3
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Figure 4

Tip force vs. tip velocity.
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