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Fang-Hua Lin * and Chun Liu*

Courant Institute

Abstract
Here we established the partial regularity of suitable weak solutions to the dynamical

systems modelling the flow of liquid crystals. It is a natural generalization of an earlier
work of Caffarelli-Kohn-Nirenberg on the Navier-Stokes system with some simplications
due to better estimates on the presure term.

§1. Introduction.

In [LL] we studied the following dissipative system which comes from the modeling of
the flow of liquid crystals:

v t + (v • V)v - i/Av + VP = -AV • (Vd 0 Vd) (1.1)

V-v = 0 (1.2)

dt + (v • V)d = 7(Ad - / ( d ) ) (1.3)

where Q is a smooth, bounded domain in R3, v(x,t) represents the velocity of the flow,
and d(x,£) is the optical molecule direction. Here we take /(d) to be the gradiant of a
scale function -F(d),

/(d) = VF(d) (1.4)

A typical example of F(d) is given by F(d) = ^y(|d|2 — I)2. As e goes to zero, we see that
d becomes an unit vector field.

We also have the following initial and boundary conditions:

v(ar, 0) = vo(x) with V • v0 = 0, d(z, 0) = do(x), for x € ft, (1.5)

v(ar, t) = 0, d(x, t) = do(z), for (x, t) e dtt x (0, oo). (1.6)

In that paper, we have already shown the existence of the global weak solutions and the
global classical solutions under certain conditions. The local existence of classical solutions
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was established as well. The most important property of the solutions of (1.1)—(1.6) is
the following "basic energy inequality":

| v | 2 + A | v d | 2

for almost all t G (0, T].
However, there is still a gap between the case of existence and the case the solutions

being regular. Because of that, in this paper, we want to give a partial regularity result
for suitable weak solutions of the system (1.1)—(1.6). The existence of such solutions can
be shown easily, see the discussions in Section 2.

The situation here is very much like that for the Navier-Stokes equations. There have
been a lot of works concerning the regularity properties of the Navier-Stokes equation:

v t - Av + (v • V)v + VP = / (1.7)

V-v = 0 (1.8)

in Q x [0.T7]. with the initial-boundary condition:

v(-,0) = vo, v | a n = 0 (1.9)

Serrin[Se] has shown that a weak solution of (1.7)—(1.9) will be locally bounded
(hence locally regular in spatial direction) under the following assumption:

v e L 8 ( L r ( Q ) ) w i t h - + - < l
/ S

Fabes, Jones, Riviere[FJR] and Sohr, von Wahl[W] extended this result to the equal
case.

We note that, in Serrin's result, the regularity with respect to the time, t, variable is
much weaker. The so called classical solution usually means the one with infinitely smooth-
ness with respect to the spatial variables. Actually the following example constructed be
Serrin prevent one from further expectation of the regularity in the time direction. Let a(t)
be any measurable function and f(x) to be a harmonic function, then v(t) = a(t)Vf(x)
is a weak solution of equations (1.7)—(1.9). Of course, for the boundary value problems,
the situation may be better, see [La].

The gap between the case of existence and the case of regularity still exists for the
Navier-Stokes equations. Schefer ([SI]—[S4]) first proved that under some conditions, the
Hausdorff dimension of the singular set for the weak solutions of Navier-Stokes equation is
| . The best known result in this direction is probably that of Caffarelli, Kohn Nirenberg



[CKN] which shows that the singular set of a "suitable weak solution" of the system
(1.7)—(1.9) will satisfies:

P1(S) = 0

where P 1 is the one-dimension Hausdorff measure with respect to the parabolic matric in
R3 x R. Also, by using an estimate of Solonnikov [SOI], they proved the existence of the
"suitable weak solution" in their paper.

The main technical devices in [CKN] are an induction argument and a decay estimate.
The induction argument is a localized version of ScheflFer's argument [S4], which gives the
P t estimate on the singular sets. However, due to one missing estimate for the pressure
(see the proposed conjecture in [CKN] page 780), the argument in [CKN] becomes very
difficult. However they still managed to get the conclusion PX(S) = 0.

Motivated by the results of [CKN] and the relation between the system (1.1)—(1.6)
and the Navier-Stokes equation (1.7)—(1.9) which was established in [LL], we will show
the following partial regularity results for the system (1.1)—(1.6).

Main Theorem. / / the domain and the initial-boundary conditions in problem (1.1)—
(1.6) are smooth enough, then there exists a suitable weak solution such that the singular
set of this solution has one-dimension Hausdorff measure zero in space-time.

Like what Scheffer [Si] and Caffarelli,Kohn Nirenberg [CKN] did for the Navier-Stokes
equation, the "suitable weak solution" here will have the following "generalized energy
inequality" :

(1.11)

(lvl2 *[ [
o Jn
/ / ((v • V)d © Vd) • V(f>dxdt
o Jo,

for any <f> which is a smooth function and has compact support in fi x (0, T).
The second to the last term in (1.11) represents the following:

/ / ((v • V)d © Vd) • Vcf>dxdt = [ [ vlVld
kVid

kVi<{>dxdt
Jo Jn Jo Jn

The term R(/,tf>) is given by R(/,<£) = /Q
TJQVf(d)Vd<f>dxdt. Under very mild

assumption on / (d) , one can easily show that d is bounded. Hence the term R(/ , </>) can
be bounded by other terms in the inequality.



The generalized energy inequality can be formally obtained as follows. Multipling
(1.1) by v0, integrating by part, we have

/

T f 1 1

/ HVv|2<£ + -|v|2A<£ + J|Vd|2v • V<f> - AdVdv<t>)dxdt

Then take derivative of (1.3) with respect to the spatial variables,

Vd t + Vv • Vd + v • VVd = AVd + V/(d)

and multipling it by Vd<£, integrating by part, one obtains
TrT r i

/ / (~o
Jo Jn 2

[ [
o Ju

Since
rri rry

f / (Vv- VdVdcj) + v • VVdVd(f))dxdt = [ [ (-AdVdvcf) -
Jo Jn Jo Jn

We finally arrive at (1.11) by adding these two result.
This paper follows very closely to [CKN]. In Section 2, we will prove several key

estimates. These estimates form a frame of the induction argument. After taking out the
terms involving d, these estimates are just those for the Navier-Stokes equation. After
using a stronger estimate for the pressure due to Von Wahl, our arguments are some what
simpler than that of [CKN].

In Section 3, we will first prove the key decay estimate. Combining this decay estimate
and the results from Section 2, we will be able to obtain the main theorem.

Viscousity constants i/, A, 7 play no role in the results of this paper. For this reason
we shall simply assume them to be all 1.

§2. Notations And Basic Estimates.

Suppose Q is an open, smooth domain in R3, we define a cylinder with the top center
point (x,t) to be

QrOM) = {(ViT)||y - x\ < r,t - r2 < r < *} (2.1)

For any I c R 3 x R , K 0 , w e define

= limP}(X) (2.2)



where P}(X) = ini{J2Zirk\X c UZiQ^U < 6} here Q r i represents a parabolic

cylinder. We know that Pk is an outer measure. All Borel sets are Pk measurable,

and Pk is Borel regular (cf. [Fed]).

Also, we have

H* < c(fc)Pfc (2.3)

where Hfc is the HausdorflF measure with respect to the parabolic matrix d((x, £), (y, r)) =

[ k - y | 2 + |< - r | 2 ]§ .

Next, we define another kind of cylinder

- x\ < r,t - ^r2 < r < * + ^r2} (2.4)

As we have seen in [LL], for the system (1.1)—(1.6), v has scaling dimension -1, P
has dimension -2, d has dimension 0, while x has dimension 1 and time t has dimension 2.

We define Lp(0, T; Lq(Q,)) to be the closure of C°° functions under the following norm

/ dt)l (2.5)
o Jn

In the case of T = oc, we simply write it as Lp(L9(f2)). If p = g, we will write it as

The following lemmas will be very important in this and the next section.

Lemma 2,1 (Poincare Inequality). IfCl is a bounded smooth domain, then

- P ( Q ) < c(fi,m,p)||Vm(/)||Lp(Q) (2.6)

forall<f>ell™>p(n).

Lemma 2.2. For a bounded, smooth domain fi, for any function v € L°°(0,T;Lm(fi)) n
L2(0,T;H1(f})), andv vanishes at the boundary, then there exists a constant c depending
only on n, the space dimension, m and p, such that

f f \v(x,t)\qdxdt
Jo Jn ( ,

<cq( / \Dv(x,t)\pdxdt)( sup / |v(z,t)
ô Jn o<t<TJn

where q =___ p(m+n)



Note that in the case n = 3,ra = 2,p = 2, the lemma gives the bound of the
norm of the function. Since the weak solutions obtained in [LL] satisfy:

v € L^H1) nL°°(L2),d € L2(H2) n l / ^ H 1 )

we have, by Lemma 2.2, that

v

Lemma 2.3. For v G H^R3),

/ /
Br JB

where C is independent of r,

|Vv|2n(/ | v | 2 ) § - a + 4 ( / M2)^ (2.8)
r JBr r JBr

The proof of this lemma can be found in [CKN]. One interesting case is when
^p, a = 1, we recover the L"s" norm stated above.
Let us consider the global weak solution of (1.1)—(1.6) so that,

veL^rjL^nL^rjH)

d € L°°(0,T; H1) n L2(0, T; H2) ( 2 '9 )

and satisfies (1.1)—(1.6) in the weak sense.
the next Theorem will give an estimate of the pressure P. It follows from that of Sohr

and von Wahl [SW] for the Navier-Stokes equations.

Theorem 2.5. Let f] C R3 be a smooth, bounded domain. vo,do are smooth enough.
s , p € ( l , o o ) with n < J + J , J + i < l , J = J + i , such that

d e L°°(0, T; H1) D L2(0, T; H2)

Then there exists a P 6 L«(0, T; LP(fi)) «;i</i VP G La(O,r; L«(f2)) u;/iic/i satisfies (1.1)—
(1.6) together with v,d.

Remark. In Theorem 2.5, if we take s = p = | , n = 3, g = | | , we get that
P € Lf (0,T;Li). And this proves the conjecture of [CKN] page 780.
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There are several ways to prove the theorem. Besides the method used by Sohr and
von Wahl [SW], one can also use the estimate by Solonnikov [Sol] which was actually
used by Caffarelli, Kohn, Nirenberg in [CKN] to prove the existence of the suitable weak
solution of Navier-Stokes equation. We will just sketch the idea of the proof here.

Since we have that

v . Vv € L°°([0, T], L2(ft)) D L2([0, T], Hx(ft))

which implies that

v e L T ([0, T], L ^ (ft)), Vv € L2([0, T], L2(ft)) (2.10)

By Holder's inequality, we have that

v.Vv€L*([0,r],L*(ft)) (2.11)

The same argument works for the term V(VdQ Vd).
We rewrite the equation (1.1) in the form:

vt - i/Av + VP = - ( v • V)v - AV • (Vd 0 Vd) (1.1)'

The left hand side is the Stokes operator, while the right hand side is in L* space-time.
The Solonnikov [Sol] gives

which in turn gives:

see [CKN].
If we use Lemma 2.3 with

we obtain:
j |v|x < c(J |Vv|2)(/ |v|2)§ + ̂ (f |v|2)f (2.14)

But if we choose
30 3.30 3

we have

/ / / T* 1 ^ /

Applying the Holder's inequality again:



To estimate the the second term, we note that:

(J M«)» < C(J |Vv|2)*(J |v|2)§ + ̂ (J |v|2)§ (2.17)

thus,

l|v||g < (J |Vv|2)(J |v|2)4 + ̂ (J |v|2)5 (2.18)

All the above integrals are taken with respect to the space. And we see that

v • Vv € Lf ([0, T], Lit (Q)) (2.19)

After we do the same estimates fot V(VdO Vd), we get,

VPeL§([0,T],L"(ft)) (2.20)

which, by the Sobolev's embedding theorem, implies,

P€Lt([0,r] ,L*(fi)) (2.21)

Now we can give the definition of the "suitable weak solutions" of the system (1.1)—
(1.6). Since the estimate of the pressure in Theorem 2.5, we don't need the unnatural
restraint P € Lf (ft x (0,T)) as in the definition of [CKN].

Definition. (v,d) is called a suitable weak solution of the system (1.1)—(1.6) on an open
set D C R3 x R if the following conditions are true:

1. (v,d) satisfies the system (1.1)—(1.6) in the weak sense, i.e., it is a weak solution.
2. There exist constants E\,E2 such that,

f
7 (2.22)

[|Vv|2 + |Ad - f(d)\2]dxdt < E2

where D t = D n (R3 x t).
3. For any <f> € C°°(D),<£ > 0, the generalized energy inequality (1.11) holds.

Remark. The existence of the suitable weak solution can be shown by the exactly the
same method as that of [CKN] and [LLl], together with Theorem 2.5 and we will omit the
detail here.

The key theorem of this section is the following,

8



Theorem 2.6. There exist constants e, C\ > 0, such that, if (v, d, P) is a suitable weak
solution of (1.1)—(1.6) on Qi with the following property,

I I (|v|3 + |Vd|3 + \P\i)dxdt < e (2.23)
J JQX

Then

for Lebesgue almost every point (x, t) € Q1.

Definition. A point x,£ is called a regular point of the solution if |v(x, t)\ + |Vd(x,t)| <
Cfor Lebesgue almost every point (x, i) € Q i . The complement of the set of all the regular
points will be called the singular set.

Remark. Suppose that Theorem 2.6 is true. Let V be a neighbourhood of 5, which is
the singular set of a solution in D = Q x [0,T]. For each point (x,£) € 5, we choose
Q*(x, t) CV such that, for any 5, we can find r < 5, and

! + |P|f)>e

This is because otherwise, by using Holder's inequality, we see (2.23) will be true and
(x, i) will be a regular point.

Applying a Vitali-type covering lemma, we obtain a disjoint subfamily Q* (x, £), such
that

and we see that

< 5c-1 J J (|v|* + |Vd|* + \P\*)dxdt
IV

Since 8 is arbitrary, we get that S has Lebesgue measure zero, and also

<- f [ (|v|¥ + |Vd|¥ + \P\l)dxdt
t J Jv

for every neighbourhood V of S.
Since

\P\%)dxdt<oo



and since V is arbitrary neighbourhood of S, We have

The proof of the Theorem 2.6 is built upon an induction argument which was used in
[SI] and [CKN].

We pick a point (a,s) € Qi (0,0), such that,

§ e (2.24)

Here we notice the fact that Qi(a, s) C Qi(0,0).

Let Qn = Qrn(o, s), where rn = 2~n.

The induction argument follows from the following Lemmas.

Let (v,d,P) be a suitable solution of (1.1)—(1.6) satisfying (2.23), (2.24).

Lemma 2.7.If 2 <k<n,

sup / (|v|2

J Jo*

then

44 (|v|3 + |Vd|3)+r! / / |v||P-Pn+1|dxdi<ci (2.26n+1)
J ./Q(n+1) J JQ^n+l)

Lemma 2.8. if 3 < k < n,

44 (|v|3 + ]Vd|3) + r l / / |v||P-P fc |dz<ft<€i (2.26fc)
J JQfc J JQk

then

sup / (|v|2 + |Vd|2)dx
8-rn<t<8 •/|x~

f I (|Vv|2 + |V2d|2)dxdt
J JQ"

10



Here f- and f- f- denote the averages. Also,

Pn = P«(t) = / Pdx
J\x-a\<rn

Proof of Theorem 2.6. Using the generalized energy inequality, where we choose the test
function tf> to be smooth, positive with value between 0 and 1, and <f> = 1 on Q2 and <fi = 0
our of Qi, and the Holder's inequality, we have that (2.25)2 is true.

Then by applying Lemma 2.7 and Lemma 2.8, we get

\x-a\<rn

for any (a,5) e Qi (0,0), and rn = 2
Then we have |v|2(a, 5) + |Vd|2(a, s) < C, for any Lebesgue point (a, s). In particular,

v is essentially bounded in Qi(0,0).
(Q.E.D.)

Proof of Lemma 2.7. Prom (2.7)and (2.25)*, together with Lemma 2.3, one has,

/ \v\3dx<([ \Vv\2dx)*([ \v\2dx)* + 4 ( / |v|2dx)§ (2.27)
JBr JBr JBr ?! JBr

ft \v\3dxdt<([ f \Vv\2dxdt)i ([ ([
J JQ' J Jct: J-r*JB' (2.28)

\v\2dx)Ut .

Thus we get,

rj / / \v\3dxdt < C(r3
nei)Hrl(r3

nCei)3)i + Crf r2
n(r

3
nCe^

J JQn (2.29)
< Cr5

ne + Cr5
ne

by using (2.25*), that is,

4 4 \v\3dxdt < Ce < el (2.30)
J jQn

The same estimates work for the term f ^ n |Vd|3.

For the last term of the left hand side of (2.12n+i), we can use the Green function
representation of P

= - £ L F=il ( P M + 2 ( v*'V P )

l i



Note, by equation (1.1), that

AP = -Viv'V^V - V y (VidVj-d) (2.31)

After integration by part, we see,

P = P 3 + PA + Pb (2.32)

where

p°=h I jFTi i^ A* (» )*+£ / 3 V i m y ) d y - (2-33)

3 f 1 (2-34)

where ^ is the cut-off function equal to 1 in {\y\ < \] and equal to 0 outside {\y\ > | } ,
.and

|Vi0| < C, \Vij(f>\ < C. (2.36)

We decompose P5 = P& + Pg, where

^ ( 2 . 3 7 )

J f T 1 (2.38)

We note that

\P-Pr\<
i=3,4,8,9

here

pi =4 Pi
JBn

For Ps, we can use the Calderon-Zygmond's inequality to obtain, we get:

\Ps\><C f (|v|3+|Vd|3) (2.39)
n+1 JBn

12



Therefore

+

'Bn+1

have

- C ( J B ( | V ' 3 ) i ( X (|v|3 + IVd|'
dv|3)i(/ p,yn

(\v\3)H[ (|v|3 + |Vd|3)i

( | v | 3 ) i ( X ( | v | 3 + | v d | 3 ) l

For P3,P4,Pg, we bound \Pi — Pi\ uniformaly in B n + i . Indeed, for \x\ < r n + i , we

|VP3| <C f \P\ (2.40)

+ |Vd|2) (2.41)

|VP9| <C I (M -' i—i ) d y (2.42)

Thus for i = 3,4,9, one has,

IvHPj-Pfl < Crl( / (|v|3 + |Vd|3)3 sup

< Crl( I (|v|3 + |Vd|3)* sup |VPi|
JBn+i x€Bn

by the mean value theorem.

Remark. We can also use the Poincare Inequality in the last estimateabove. Indeed,

|v||Pi -Pi\ <C([ (|v|3 + |Vd|3)i( [ wx) - pi|i)i

<Crn+1([ (|v|s+|Vd|8)*(/
•'Bn + i -/Bn

/ sup

and hence we have

|v||Ps - Psl < Cr3

|P|§)

13



|v||P4-P4 |<Cr3(/ (|v|3+|Vd|3)5(/ (|v|2 + |Vd|2
*n+l « /O n + l •/Jb$2

^ ( j f (|v|3+|Vd|3)5(^ (|v|3 + |Vd|3)i

and

/ |v||P9 - P9| < Crl{ [ (|v|
Bn+1 JBn+1

To summerize, we have obtained

\v\\P8-Ps\dxdt<C([ [ \v\3)H[ f (|v|3 + |Vd|3)f

[ f |v||P9 - P9\dxdt < Cr 3
+ 1 r | + 1 (

Qn

fc=2 fc=2

(|v|3 + |Vd|3)f

and

\x\\P3-Pz\dxdt<Cr*+1([ [ | v | 3 ) i ( / / |P|f)§
J •/Qn + l •/ -/Q2

In the other words, we have

ri J 1 \v\\P-P\<Ce<e*
J J Q n + 1

(Q.E.D.)

Proof of Lemma 2.8. Without lose of generality, we will assume (a, 5) to be just (0,0).
First, we have to obtain a modified version of the generalized energy inequality (1.11).

Take the test function of the form </>(£, t ) ^ ^ ) , where 77 = 1 when s > 1 and 77 = 0 for

14



s < 0 and it is a smooth function between 0 and 1. After putting this in (1.11) and taking
the limit of e goes to zero, we get the following:

/ (|v|2 + |Vd\2)(f>dx + 2 [ [ (|Vv|2 + \V2d\2)<f>dxdt
JQx{t} JO JO.

< f [(\v\2 + \Vd\2)(<f>t

t[ [
o Jn

(2.43)

+ f I ((v • V)d 0 Vd) • Vcf>dxdt + R ( / , cf>)
Jo Jn

Next we choose the test function to be of form <j)n = x^m such that

1

w^e " (2-44)
and x is the cut-off function with is smooth, between 0 and 1, and equal to 1 in Qi (0, 0)
and equal to 0 outside Qi(0,0).

3

We note that ipn is the fundemental solution of the backward heat equation

ut + Aw = 0

with singularity at (0, r£).
After putting these test functions in (2.43), we obtain that:

sup / (|v|2 + \Vd\2)dx + r~3 f [ (|Vv|2 + \V2d\2)dxdt
-rn

2<t<8 J\x-a\<rn J JQk

[ [ ( I | + | | ) ( 0 n t + A<j>n)dxdt
o JBn (2.45)

/ / lVdl3)V(j>ndxdt + f f (vPV<findxdt)
o JBU JO JBU

< I+ 11 +III

Direct calculation shows that:

\4>nt+&4>n\<C (2.46)

\<t>n\ < Cr~3, |V^ n | < Cr~\ on Q n , (2.47)

<Crl\ onQk-l\Qk, (2.48)

15



Therefore, by the Holder inequality, one has the following.

I<C f f (|v|2 + |Vd|2)<C(/ / (|v|3 + |Vd|3)i <ce§ (2.49)
JO */Bn J */Qi

by (2.24), and

H<C^2rkA I I (lvl3+ \Vd\3)dxdt < Cj2rkt* <Ct* (2-50)

For eash k > 1, take % to be a smooth cut off function with value 1 at Q|rfc and 0
out of Qrk with the property:

< Cr

III < C Y, f [ Pv • V(fafc - Vk+i)4>n) + [ [ Pv • V(i/n^n) (2.51)

Use the divergence-free property of v,

[
k>3J J(^1 k>3

where Pk = Pk(t) = fbfBk P.
Similarly, one has

/ / Pv • V(7?n< n̂) < f f (P- Pk)v

When k = 1,2, one simply has

/ / (P-PtivVdVk-rk+JbjKC f [ \P\\v\
J JQk J JQ1

Thus

f f \v\\P\

fc=3

and this yields the result. (Q.E.D.)

Remark. From the proof of the Lemmas, we see that, by using the new estimate for the
pressure, the proof is somewhat simplier than that in [CKN]. We also see that it is the
generalized energy law which relates the quantities of the different scaling dimensions.

16



§3. Proof Of The Main Theorem.

We will proof the following key decay estimate. This decay estimate and Theorem 2.6
will imply the main theorem.

Lemma 3.1. / / (v,d,P) is a suitable solution of the system (1.6)—(1-7). Then there
exists a constant e, such that, if

limsupr-1 / / (|Vv|2 + \V2d\2)dxdt < e (3.1)

Then there exist 7 < 1 such that if r <1, then

Q7r(o,o)

3 [f |P|M«*«tt)
r)2 J JQyr{o,o)

l (|v|3 + i^ i 3 )^*+(A / / iplf

Qr(o,o) \ry J ./Qr(o,o)

7T2 f f
ry J JQr(o,o)

\P\\v\dxdt)i)

Proof of Lemma 3.1. First, for the convenience of the latter arguments, we define several
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dimensionless quantities:

A(r) = sup r"1 / (|v|2 + |Vd|2)d.
- |r2<t<|r2 JBrx{t}

B(r) = r"1 / f (|Vv|2 + \V2d\2)dxdt

J 7Q«
(3.3)

\P\Uxdt

E(r) = r~2 [ f \v\\\y\2-]^\dxdt + r-2 [ [ |v|||Vd|2 -
J jQ*r J JQ-

F(r) = r~2 [ [ \P\\v\dxdt
J J

We will assume that r < p,
What we want to prove in the Lemma 3.1 is a decay estimate of the quantity

C(r)+D(r)2 + E(r)l+F(r)l.
Like in the proof of the Lemma 5.2 of [CKN], we can get the following estimate by

using the interpolating estimate in Lemma 2.3:

C(r) < {(-)3A(p)* + ^)3A(p)*B{p)*} (3.4)
p r

Next we make use of the generalized energy inequality again. This time we take the
test function <p as follows:

(f> is smooth and compactly supported in Q*. It is between 0 and 1. It is equal to 1
in Q* and 0 out side of Q*. It has the properties:

~ p ' * • ~ P2

By using this test function, we immediately get, for — | r 2 < t < | r 2 , that

f ( |v |2 + |Vd|2)dx < f f (|v|2 + |Vd|2)(<^f + A<f>)dxdt
JBrx{ty J JQ;

+ f f (|v|2 + |Vd|2)v • V<j>dxdt + f f (2P)v • V<t>dxdt
J JQ; J JQ; (3.6)

+ 11 ((v • V)d © Vd) • V<j>dxdt -

< iv + V + VI + VII + VIII

18



We now estimate the right hand side of (3.6) in the following way. By using the Holder
inequality,

<-2 f f (|v|2+|Vd|2)<-^(// (|v|8+|Vd|3)M<<VC7t(p) (3.7)
P J JQ; P J JQ;

While by the divergence free property of v, Poincare inequality and Holder inequality, we
have :

V = / / |v|||v|2 + |Vd|2 - WTWW\dxdt < CplE(p)
J JQ;

where ~g above means the average of g in Q*. The reason of introducing it is to lower the
power of V|v|2 as we will see later.

The term VI which has the pressure P is nothing else but F(p).

We now deal with term VII

VII <C [ f d(v • V)VdV(f>dxdt + C [ [ dVd(v • V)V<t>dxdt
J JQ. J JQ.

<C- [([ |v|3dx)s(/ \VVd\Ux)Ut
PJ JB; JB;

\Vd\2dx)?dt+ c\[[ [
P J JB; JB; (3.8)

<C-(f f \v\3dx)s([ f \VVd\2dxdt)?p<
P J JQ; J JQ;Q;

|Vd|2dx)

and

VIII <Cp2 I I |v|2 + \Vd\2dxdt < CpC(p)%

From above we see that:

A(r) < C[(^)CHP) + {£)E{p) + (£)F(p) + (^)C(p)*B(p)i] (3.9)
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Here we can estimate the term E(r) by using the methods as we mentioned earlier:

r2E(r)< [([ \v\zdx)%[([ ||v|2 - ^ \
J JB-r JB;

[
B'r

[ /
B; JB;

\v\zdxdt)*{ f f ( |Vv|
Q'r J 7 Q ?

<r2(C(r)f +A(r)B(r))

What we need next is the estimate of the pressure P term, which is probabily the
most difficult part, we decompose it into

P = Px + P2 (3.11)

where

j ^ l S ^ (212)

( 3 1 3 )

This can be obtained from the Green's representation of P, and integrate by part.
The test function <f> here is equal to 1 in {\y\ < |p} and equal to 0 out of {\y\ > p}. with
the property:

M 2 (3.14)

Realizing that these are of convolution form, one uses Young's inequality and Holder's
inequality,

/ / |2 + |VV(VdVd)|2)dx)t (3.15)
Br p

Also, by using the properties of the test function <f> and the fact that <f> is constant near x,

<C± f \P\ (3.16)
P JBO
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/ \ [ \\
Br p? JBP P? JBP

3 r ( j

< r*\p$ f \P\
P* JB*

P6
 JBP

Hence,

| p | ! ( 3 i 8 )

Realizing that (3.15) have too much derivatives on d in the right hand side, we have
to decomposit Pz further by again use

AP = -VivVj-v + VjVj(VdVd) (3.19)

Put (3.19) into (3.13) and integrating by parts once more, we have

P2 = P6 + P7 (3.20)

where

P6 = - -£- / . ^ " ^ ( v V v + VdWd + VdAd)dy (3.21)
4TTJ \x-y\3

P7 = -T- f r ^ V ^ v V v + VdVVd + VdAd)dy (3.22)
A-K J \x-y\

It follows that

which in turns implies,

\Pr\ < § / (|v||Vv| + |Vd||VVd|) (3.23)

\P7\*<^(JB (|v|2 + |Vd|2))f(^ (|Vv|2 + |VVd|2))f

and

f \P7\$<Cr^([ (|v|2 + |Vd|2))f(/ (|Vv|2 + |VVd|2))
JBr P JBp JBP

Finally we do integration with respect to time to obtain,

1*1* <c-zj J |**|* < C^pUipf* y*(jf (|Vv|2 + |VVd|2))f

< C^pf A(p)i(J J ^IVvl2 + |VVd|2))?p^ (3.24)

< c£
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For the P$ term, since we do not have the gradient on 0, we simply use Young's
inequality,

/ \ 6 \ ) ( [ (
Br JBP

 r

<Cp*([ |
•>BP

<Cp*([ |
JBP

f \P6\Ux<CpH[ |v|2)f(/ |v|3)*(/ |W|2)
JBT JBP JBP JBP

Thus
r r r t*

| 2 N 4

*p

and

\P6\Uxdt<CpH[ |v|2)f(/7 \v\*)H[ [ |Vv|2)t

<Cr\ / | v | 3 ) U r - 4 ( / |v|2)?(/ / |Vv|2)§

We therefore obtain

f < C[()2D(p)2

Finally, we estimate the term F(r).
By the property of Pi (3.16), one concludes,

f \Pi\W\dx < I \dx\ [ Pdx
JBr JBr P JBp

< JL f \v\>\v\Ux f Pdx
P JBr JBp

'Br

thus

f f \Pr\\v\dxdt < l / / [ [
J jQ'r Pl JBr J JQ'r J JQP

/
Q;

22

D(rf < C[(-)2D(p)
rP r P a (3-26)

+ (-p)
2C(p) + C-)"6A{p)iB{pf]

|v|3)t (3.27a)



On the other hand, one has

/ |P2||v|dx< / |P6 + P7||
JBr -/Br

|+|Vd||VVd|)^ / | | / (|
P2 JBr JBP

|P6|¥
B r JBP

<§(/ |v|2)M(/
P JBr JBr

\v\2))H[
JBP

|Vd|2)( / |Vv
JBP

H r - U ( / |v |2))( / |Vv|2))2

and hence

[
BP JBP

/
BP

Q* p2 JB" J JQ> (3.276)

+ A[ [ |v|3)§+r-12(/ |v |2))(/ / |Vv|2))2

J JQ'p JBP J JQ;

Therefore,

f3 28)

Now we can combine all the above estimates to get the followings.

Finally we have

C(7p) + il(7p)*B(7P)* + 7 f ^ (^P) § + (7 f )C(7P) + 73<?(^p) + 7 ^ (
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and using the estimates of A(r), one has concluded that,

D(p)

here #(7) is a smooth function for 7 not equal to zero, and £(7) is a function for 7 which
is some linear combination of the positive power of 7. We will put (3.9) again in the last
term of the right hand side.

Now we see, if we take 7 small enough to make £(7) small, then take B(p) which is
the 6 small enough to make H(y)B(^p)^ small, we will get (3.1).

Remark. In the above argument, we see some special features of system (1.1)—(1.6).
For the Navier-Stokes equation, AP is equal to the quadratic form of Vv, but for the
system (1.1)—(1.6), it als depends on the multiplication of Vd and V3d! (see (3.15)) We
overcome this difficulty by integrating by part (see (3.20)).

The immediate result consequence of Lemma 3.1 and Theorem 2.6 is the following

Theorem 3.1. There exist a absolute constant e > 0, such that, if (v,d,P) is a suitable
weak solution of (1-1)—(1-6), and

limsupr-1 / / (|Vv|2 + \V2d\2)dxdt < e (3.29)
r-»o J JQ;(X)t)

then (x, t) is a regular point.

The following somewhat standard covering argument can be used to prove the Main
Theorem.

Let V be a neighbourhood of 5, which is the singular set of a solution in D = Q x [0, T].
For each point (x,t) € 5, we choose Q*(x,i) C V such that, for any 5, we can find r < 5,
and

r"1 / / (|Vv|2 + \V2d\2)dxdt > e (3.30)

Applying a Vitali-type covering lemma, we obtain a disjoint subfamily Q^. (x, £), such that

and we got that

ri<e-iyT f f (|Vv|2+|V2d|2)<M < e-1 / / (|Vv|2 + \V2d\2)dxdt (3.32)
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Since 6 is arbitrary, we get that S has Lebesgue measure zero. Also we know that

Pl(S)<- [ [ (|Vv|2 + |V2d|2)<£rd* (3.33)
t J Jv

for every neighbourhood V of S. and

/ /(|Vv|2 + \V2d\2)dxdt < oo (3.34)

Since V is arbitrary, we have
0 (3.35)

which completes the proof of the Main Theorem!
(Q.E.D.)
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