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Abstract
In recent years there has been remarkable progress in the mathematical
understanding of variational principles for unstable material phenomena.
In this paper some of the techniques developed are outlined.
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1 Introduction
In recent years there has been remarkable progress in the understanding of
nonconvex variational problems, motivated in part by ongoing research in the
analysis of questions in materials science. In this paper we will indicate briefly
some of the techniques developed and we will discuss the results obtained.

Among the many underlying physically relevant frameworks, we are par-
ticularly interested in the applications of nonconvex variational principles to
the study of phase transitions, crystals with defects (such as dislocations),
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metastable equilibrium states for crystals, the onset of microstructure and the
creation of concentrations, interactions between fracture and damage, image
segmentation, and the behavior and defects of liquid crystals (see [3, 7, 10, 14,
15, 26, 39, 40, 41, 42, 58, 59]). Also, amidst the very many powerful mathe-
matical tools recently developed, here we will concentrate on the study of lower
semicontinuity and relaxation techniques (see [11, 12, 25, 29, 33, 55, 56, 57]).
Part of the analysis will be undertaken in situations where the growth and co-
erciveness properties of the energy density are not compatible with the use of
standard relaxation techniques (see Section 2; see also [1, 2, 27, 28, 30, 34, 43,
45, 48, 49, 50, 52, 53, 54]). As it turns out, this is the natural setting for the
study of some coherent phase transformations and cavitation phenomena. Also,
in order to accomodate the study of incoherent phase transformations, image
processing, etc, we consider functional spaces that allow for discontinuities of
the admissible fields (see [4, 5, 6, 13, 17, 18, 19, 20, 22, 23, 24, 46]).

The study of phase transformations for nonlinear elastic materials suggests
the extension of the analysis to energy functionals involving higher order deriva-
tives, interfacial energies, and discontinuous (Caratheodory) energy densities.
The role played by interfacial energy terms in stabilizing the oscillations de-
veloped, as well as the dynamical creation of microstructure, concentrations,
their evolution and interaction, is very complex and very little is known on this
direction. Surface energy terms may be produced naturally by the bulk energy
(see [6, 46]), while in some other models interfacial energies are present in the
model from the start (see [3, 13, 39]). In the latter case, one may ask what will
be the interaction, if any, between the surface energy provided in the model and
the one which underlies the bulk energy term (see Section 3).

The framework of generalized measure-valued solutions may turn out to
give some insight into these questions. Thermochemical equilibria for coherent
two-phase alloys have been analyzed using Young measures (see [42]), and the
underlying framework requires a good understanding of constrained variational
problems. This remains a virtually unexplored area of research (see [31, 44]).

A common feature of the above described problems is the study of equilibria
through a minimization problem of the type

minimize I(u),

where
I(u) := / /(x,u, Vu)dx + . . . , (1.1)

and where the unspecified terms in the energy /(•) account for body forces, lower
order terms, interfacial energies, surface energies, etc. Here ft C RN is an open,
bounded domain, it represents the reference configuration of a certain material
body, and u : ft —• R stands for the deformation, mass density, etc.

The main question of the calculus of variations focus on the search of neces-
sary and sufficient conditions satisfied by / which will guarantee (weak) lower
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semicontinuity of the energy /(•) in some functional space. Usually, due to coer-
civity and growth conditions verified by / , this space turns out to be a Sobolev
space W1)P. It is well known (see [2, 11, 55, 57]) that if

l€l«) (1.2)

and if p > g, then

E(u):= f f{x,u,Vu)dx (1.3)
Jn

is W1'p-weak lower semicontinuous,

un — u in W1* =* E(u) < liminf E(un),
n—>oc

if and only if /(x, u, •) is quasiconvex, i.e.

/(x, u, A) < f /(x, u, A + V^(y)) dy
«/(o,i)N

for all matrices A € M d x N and all <p € Wo'p((O,l)N,Rd). Here, and in what
follows, M d x N denotes the vector space oidxN real-valued matrices. We recall
that in the scalar case (N = 1 or d — 1) a function is quasiconvex if and only
if is convex. In cases where / is not quasiconvex, and in order to study limiting
energies and stress states of the system, we consider the relaxed energy

T{u,Q):= inf I liminf / /(x,un , Vun)dx : un -> u inW1*] .
{un} { n-oo JQ J

One of the central questions of the relaxation theory is to find the new relaxed
bulk energy density / , i.e. an integral representation for T(u, •) of the form

jF(u,fi):= / / (x ,u ,Vu)dx .
Jn

We recall that, under suitable regularity and growth assumptions, T(',fl) is
now a lower semicontinuous functional, and the relaxation theory (see [29])
guarantees that

inf / /(x,u, Vu)dx =min / /(x,tt, Vu)dx,

where J(x, u, •) is the quasiconvexification Q/(x, u, •) of /(x, u, •), precisely

{ / V<p(y))dy : ̂  € ̂  ((O.l^R11) I .
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Often, the regularity or the growth conditions required to apply the above
standard relaxation techniques fail. In this paper we will overview new math-
ematical approaches which will allow us to study some of the situations not
covered under the usual assumptions. In Section 2 we concentrate on the anal-
ysis of the bulk energy term, precisely on the lower semicontinuity properties
of (1.3) when the function / satisfies the bound (1.2), and the relaxation in
taken among sequences un € W^I^R*)* un -> u in Wl* weak, with p < q.
On Section 3 we extend the analysis to include the relaxation in BV of the
same functionals in the case where coerciveness only guarantees W l f l bounds
for minimizing sequences. Section 4 addresses the relaxation in BV of energies
of the type (1.1) which involve bulk and interfacial energy contributions, and
where the energy densities have linear growth. The analysis of the super linear
growth case is undertaken partially on Section 5.

2 Growth conditions versus Sobolev bounds
In collaboration with Marcellini [45] and with Maly [43], we studied VT1?p-weak
lower semicontinuity properties of the functional E(-) introduced in (1.3), where
/ satisfies (1.2) and p < q. A prototype example is given by

G(u) := / (h(Vu) + p(detVu)) dx , (2.1)
Jn

where

" \£\P) , 4 - 1*1 - °2 < 9{t) <

for some d > 0,C2 > 0,iV - 1 < p < N and for all f € MNxN,t € R.
Integrands of this type are considered in nonlinear elasticity and the condition
p < q = jV plays a fundamental role in cavitation analysis (see [11]).

The (weak) lower semicontinuity problem in W1^ for poly convex integrands
(i.e., suprema of rank-one affine functions) and for p below the growth exponent
q was first considered by Marcellini [55]. In particular, if we restrict to our pro-
totype example (2.1), Marcellini proved the lower semicontinuity for p > ̂ j .
This result was extended to the case p > N — 1 by Dacorogna and Marcellini
[33]; the borderline case p = N — 1 was considered in [52] with a partial success,
and it completely established by Acerbi, Dal Maso and Sbordone [1, 34] (see
also [28, 48, 49]).

With Marcellini [45] we studied a class of quasiconvex integrands / = /(£)
satisfying some structure conditions naturally verified by (2.1). We proved low-
ersemicontinuity of the energy (1.3) for p > q - 1. For non quasiconvex inte-
grands, we define the relaxed energy

:= inf (liminf / f(Vun) : un
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un —> u weakly in WltP(ft,M!

and we proved that

F™(u)> [ QW(Vu{x))dx.
Jn

Equality holds provided u € Wl*(Q\ Rd). Recently, Maly [54] extended the later
result to the borderline case p = q — 1, assuming always suplementary structural
conditions on / .

In collaboration with Maly [43] we developed a new variational approach
which allows us to eliminate the above mentioned additional structural assump-
tions if the growth condition is (1.2) and p > q^jj^- We defined a new relaxed
energy

:= inf (liminf / /(x,un , Vun) : un
{un} I n—oc JQ

un^u weakly in j .
The behaviors of Tf£ and Tq'v may be rather different, and their values depend,
in a strikingly complicated way, on the ranges of p, q, and on the regularity
properties of u. Consider the example where TV = d, f(x,u.£) = /(£) = |det f |.
Notice that / is polyconvex and the growth condition

o <
is satisfied. It is well known that

fQ'p(u,n)> [ |detVu|dx (2.2)
Jn

if p. q > N. Recently, this result has been improved to include the case where
q > N and p > N -I (see [28]). If u € Wl>N(Sl,RN), then we get equality
in (2.2), whereas for u i W ^ n . R * ) it is difficult to describe F**(u,Sl). We
obtain

^9 'p(u,fi) = 0 (2.3)
if q < N (see [12]) or if p < N - 1 (see [43, 52]).

As before, in order to identify Tq*(u,Q) and 5££(u,fi), in [43] we started
by obtaining a lower bound for the relaxed energy,

^ ( u , Q) > / Q/(x, u, Vu) dx, (2.4)
Jn

which amounts to proving a lower semicontinuity result for quasiconvex inte-
grals, namely

liminf / /(x,un ,Vun)dx > / f(x,u,Vu)dx (2.5)
n~>o° Jn Jn
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if u € Wl*(n,Rd), un e W^(n,Rd), un — u weakly in Wl*{ft,Rd), /(x,u, •)
is quasiconvex, and p > q^r- In view of (2.3), the inequality (2.5) may no
longer be valid if p < q^jj^>

Further, we investigated the dependence of Tq*(u, U) and ̂ l(u, U) on the
open subsets U C ft. Assuming that

we proved that if p > m a x j g ^ , $+rN-r}> and i f ?q*{u&) < oo, then
there exists a finite, nonnegative, Radon measure // such that

(2.6)

for all open sets U C Q with fi{dll) = 0. In addition,

*Z£(". V) = / Q/(x, u, Vu) dx

holds for all open sets U C ft, where A is some finite, nonnegative, Radon
measure.

The representation formula (2.6) may fail if p < <?^rS as illustrated by an
example of the class (2.1), provided by Acerbi and Dal Maso [1] : if /(£) :=
|f l^"1 4- | detfl and setting p = iV - 1, then Tq'p(u, -) is not even subadditive.
Here 9 = rf = AT, r = p = JV - 1, u(x) = jff € Wl>a(B,RN) for all 5 < N, in
particular for s = p. Then

J Bf(VU)

is of order p at 0, whereas

Hence ^"9>p(u, •) is not be subadditive.
In this example, the additivity property failed due to the fact that p < j ^

Now we will see that, in spite of requiring p > q^1, the measure representation
(2.6) may not hold for open sets U with ^{dU) > 0. Let q = d = N and
u(x) := j | p but now iV > p > JV — 1, and

Let fj. := CN(B)6Q be the /^(B^multiple of the Dirac measure at 0. Then (see
[45], Theorem 4.1),

(2.7)
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if ti(dU) = 0. For U = {x € B : xx > 0} we have

(2.8)

and if £/ := £ \ {0} then

because each v € Wli9(C/) is also in W1'q(B) (the point 0 is a removable singu-
larity). Clearly, ^*9>p(u, •) cannot be a measure since in this case, and by (2.7),
it would have to be the measure /z, contradicting (2.8).

Moreover, we showed that (2.6) holds for all open sets U C Q if and only if
it exists a Radon measure v such that

for all open subset U C Q.
Under standard continuity hypotheses on / with respect to x and £ (see

[13]), the lower semicontinuity result (2.4) implies the estimate

for the absolutely continuous part [ia of fi, where CN is the TV-dimensional
Lebesgue measure. Actually, in all known examples the equality

holds.
The main novelty of the paper [43] lies on the construction of a linear op-

erator Tu from WliP into WliQ which conserves boundary values and improves
integrability of u and Vu. Namely, the W1)9-norm of Tu is estimated in terms of
a special maximal function if p > q^j^- We use this extension operator to "con-
nect" two functions across a thin transition layer and to estimate the increase
of the energy. We remark that the standard way to perform this connection,
by means of convex combinations using cut-off functions, would not achieve a
comparable result, namely an arbitrarily small increase of the energy on an ar-
bitrarily thin transition layer, since the admissible sequences may not remain
bounded in Wl«(Sl,Rd).

3 Interactions between bulk and interfacial en-
ergies : bulk generated surface energy

Several problems in Mathematical Physics may be modelled by functionals of
the form (1.1), where the underlying function spaces should allow discontinuous
vector-valued functions u. In particular, relaxation techniques for these energy
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functionals have been used in the study of variational models in fracture mechan-
ics, where u is the displacement field and the discontinuity set S(u) represents
the crack site (see [26, 39]); in the theory of computer vision and image seg-
mentation, where the function u represents the so-called image reconstruction
and S(u) is the edge contour (see [3, 4, 5, 7, 36, 58, 59]). As a common feature
to these problems, we seek to minimize (1.1) on the class BV of functions of
bounded variation, or on some suitable subclass of it.

We recall that the distributional derivative of a function u in BV(£2;R ) is
a finite Radon measure on ft, and it may be decomposed as

Du = VuCN + (u+ - u~) ® vHN~l [S(u) + C(u),

where Vu is a Ll(Q,;MdxN) function (the density of the absolutely continuous
part of the measure Du), S(it), the jump set of u, is an N — 1 rectifiable hyper-
surface with normal vector i/, tt+ and u~, the traces of u on each side of S(u),
are such that, for HN~l-&.e. xo in 5(u),

lim - 1 / |u(y)-u+(u-)(x0) |W ( J V-1 )dy = 0> (3.1)

and C(tx), the Cantor part of the measure Du, satisfies

HN"l{B) < +oo =• \C(u)\{B) = 0

for any Borel subset B of ft (see e.g. [37, 38, 60]).
In collaboration with Muller [46] (see also [6]), we studied the lower semi-

continuity and relaxation properties of bulk energies, i.e. when (1.1) reduces to
(1.3), and in the case where the density /(x, u, •) has linear growth. Clearly, the
natural space for performing the relaxation is BV, rather than W1*1. This study
was undertaken in the scalar case by Dal Maso [32].

Let u € BV(ft,Rd), and let T(u, •) be the relaxation in BV of the functional
(1.3), i.e.

:= inf (liminf / /(x,un,Vun)dx : un

where U is an open subset of Q. Under suitable continuity hypotheses on / ,
and assuming that cp(x,u)(l 4- ||f||) < / (x ,u ,0 < Cg(x,u){l + ||f||) for some
nonnegative function g, we obtained the following representation

/ 0/(x,tt(x), Vu(x))dx
n
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The surface energy density Kf : fi x Rd x Rd x SN~X -> [0,+oo) is given by
(see also [21, 24])

Kf(x,a,b,v) = inf ̂ J f°°(xMv),Vv(v))dy : v € .4(a,&,i/) j (3.2)

where Qj, is a unit cube centered at the origin with two of its faces normal to
i/, and

A(a,b,v) := {v € Wu(Qi/;R*) : v(y) = a if y e 8QU) y • u < 0,

v(y)=bifyedQu, t / - i / > o | .

If / does not depend explicitly on u, then it turns out that

(see [6] and [46], Remark 2.17), where (Qf)°° is the recession function of / ,
namely

The method introduced to obtain this integral representation, the blow-up method,
may be summarized as follows. Suppose that we want to represent F{u, Q) as

^•(u,fi) = [j(x,u,Vu),dx
Jn

•/5(ti)

G{x,u{x),dC{u)). (3.3)

In order to identify the energy densities f,Kj,G, we claim that it suffices to
characterize T{v, Q) when Q is a unit cube and v is obtained as the blow-up
around a point xo of the function u. Precisely, let {un} be a minimizing sequence
for f(u,Q), i.e. un —» u in L1 and

^(u,f i )= lim
n~"fOO

and define the sequence {/in} of Radon measures by

Hn :=f(x,un,Vun)C
N.

Assuming that P(u,Q) < +oo, it follows that supn |/in|(n) < -foo and so there
exists a subsequence (still denoted /in) and a finite Radon measure fi such that
fj,n -^ fj. in the sense of measures, i.e. for every rp € Co (ft)

lim / il>(x)f(x,un{x), Vun(x)) dx = /
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By the Radon-Nikodym Theorem, we may decompose /x as the sum of four
mutually singular nonnegative measures

M = »aC
N + txjHN~l [S(u) + /Xc|C(u)| + /i..

The equality (3.3) is achieved provided one can prove that

fol> £N ae* X° € ̂ '
o),^(xo)) for # N - I a.e. x0 € ft nS(u),

= G (xo,t/(xo), ̂ §j^](*o)) for |C(u)| a.e. x0 € ft,

fis = 0 .

To show that

Ma(̂ o) = /(^o,^(xo), Vu(x0)) for CN a.e. x0 G ft,

we select a point xo € ft such that the following hold:

lim i / \u(x) - u(x0) - Vu(x0) • (x - x0) | dx = 0, (3.4)

Ma(̂ o) = lim nMt^f —TT exists and is finite , (3.5)
c-o+ ^(^(xo,^) )

where Q(xo,€) := xo + eQ,Q = (0,l)N. Denote by D the (at most countable)
set of all e > 0 such that the boundary of xo 4- eQ is not //-negligible. For every
e $. D, we have

= lim-rf lim / /(x,un(x),Vun(x))dx

= lim lim / /(x0 + ey,un(x0 + cy), Vun(x0 -f ey))dy

= lim lim / /(x0 -f ey,un,c(y), Vun,€(y))dy,

where

Clearly, by (3.4)
jim+ ^Urn^ ||un,c - uo\\Li{Q) = 0
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with uo(y) := Vu(xo)y, and so, due to the continuity of / , and after extracting
a diagonal subsequence, we conclude that

/ia(x0)= lim / f(xo,u(xo),Vvk(y))dy

where vk is a sequence bounded in Ti/1)1((5,Rd) such that Vk —• i*o in L1. The
advantage of this method is that we reduced the relaxation problem for an arbi-
trary BV function to the relaxation problem when the target is a homogeneous
function. In the same way, when searching for a characterization of the interfa-
cial energy density Kf, the blow-up method, together with (3.1), allows us to
focus on the case where the macroscopic limit is the piecewise constant function

+(x0) if y."(x0) > 0
r (x 0 ) if ».i/(x0) < 0.

The density G on the Cantor part is obtained following a similar argument.

4 Interactions between bulk and interfacial en-
ergies : the linear growth case

The next step was taken in collaboration with Barroso, Bouchitte and Buttazzo
[13], where we studied the relaxation of (1.1) in the case where there is an inter-
facial contribution from the start. Precisely, we studied the relaxation !F{u, f2)
with respect to the L1 convergence of the functional defined in SBV(Q; Rd) by

/ M - l { x ) (4.1)
s(u)

where we assume that /(x, •) is quasiconvex and has linear growth, and that
<£>(x, •, v) grows also linearly,

c\\A\\ < f(x,A) < C(l + P||), Cl|e| < <p(x,Z,u) < C,\i\. (4.2)

The space SJ3V(fi;R ) of special functions of bounded variation was firstly
introduced in [35]; a function u € J3F(f2;Rd) is said to be of special bounded
variation if C(u) = 0, i.e. the distributional derivative of u can be written as
Du = VuCN 4- (u+ - u") <g> ^ff;v~1[5(it). Under some technical continuity
conditions and using the blow-up method described in Section 3, we obtained
the integral representation

I g{x,Vu(x))dx
n

S(u)

g°°(x,dC(u))
n



12 Irene Fonseca

in BV(Q;M.d), where g is the quasiconvexification of the inf-convolution of /
and v?o, 9 = Q(/V<£o)> the inf-convolution is defined by

/V^0(ar, X) := inf {/(z, A - a ® 6) + </>o(z, a, 6) : a € Rd, b € 5*" 1 } ,

and h is given by

h(xow) := inf ( / /°°(x0, Vu(x))dx

JS(u)nQv )+
JS(u)nQt

Here Qv is any unit cube centered at the origin and with two of its faces normal
to i/,

:= | V e SBVloe{Su; Rd) : v(y) = 0 if y • 1/ = ~ ,

v(y) = 77 if y • i/ = - ,

v is 1-periodic in the directions of v\ , . . . , | / A T - i > ,

{v\,..., !/#-1, u] forms an orthonormal basis of R , and 5^ stands for the strip

Su := iy € RN : \y • u\ < \ \ . In the above, as usual f°° (resp. g°°) denotes the

recession function of / (resp. #), and (£Q is the positively homogeneous of degree
one function defined by

Bouchitte, Braides and Buttazzo [16] studied the scalar version of this problem,
and they extended the results to the case of linear growth in / or <£>, although
they needed to make an isotropy assumption. Recently, Braides and Coscia [22]
obtained an integral representation of the relaxation with respect to the L1

topology of the functional

u ~ f f(Vu(x))dx+ f ip([u]
Jn Js{u)

under the assumption that <p is positively homogeneous of degree one. Very mild
restrictions are placed on / .

5 Interactions between bulk and interfacial en-
ergies : the superlinear growth case

The analysis in [13] was carried out under the linear growth assumptions (4.2).
These prove to be too exclusive in some settings. As an example, in problems
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in image segmentation and interaction between fracture and damage, it is com-
monly assumed that the bulk energy density f(x,u, •) grows superlinearly.

In the study of variational models in fracture mechanics, u is the displace-
ment field and S(u) represents the fracture region (see [26, 39]). In collaboration
with Francfort [39] we studied variationally equilibria for materials that experi-
enced brutal partial damage. To this end, we used the model introduced in [47],
where it is assumed that the material is only allowed to drastically drop from
its healthy state to its damaged state, the latter retaining some positive definite
stiffness. Further, the material may undergo fracture, in which case material
discontinuities at a macroscopic level will develop. The quasistatic evolution of
both damage and fracture is governed by a yield criterion, commonly accepted
in fracture mechanics. After the work of Griffith (see [51], Chapter 4), the crite-
rion compares the decrease in potential energy due to either damage (in which
case it is a local decrease) or fracture ( in which case it is a global decrease)
to the resulting increment of energy dissipated through either process. Both
processes are further assumed to be irreversible. In other words, self-healing is
absent from both the damaged part of the material and the cracks through that
material.

The adopted model results in a time indexed sequence of partial minimiza-
tion problems. At each time step the potential energy to be minimized is of the
form

£(u,fl):= f W{Vu)dx + \HN^l{S{u))- [ f-udx,
Jn Jn

where W(£) is the "elastic" energy, A > 0 is a dissipation rate and / represents
the body loadings. The density W is non quasiconvex, and it satisfies

a|£|p < W(0 < (3(6 + |e|p), £ € Md x N ,

\W(0 - W(r,)\ < 7(1 +

where a, /?, 7 > 0, 6 > 0 and 1 < p < +00. If u € SBV(CL, Rd), and setting

T{u,U):= inf
{Un}

where U is an open subset of ft, then we showed in [39] that

T{u, U) := / QW(Vu) dx + HN'l(S{u) n 17). (5.1)
Ju

The analysis relies heavily on the blow-up method (see Section 3; see also [46])
and on Ambrosio's lower semi-continuity result in 5BV(ft;Rd) for quasiconvex
Caratheodory integrands with superlinear growth (see [3]). In [39] we used (5.1)
to investigate the quasistatic evolution of damage and fracture at discretized
times.
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An important question that remains to be answered regards the regularity
of the interface S(u) and of u, whenever u minimizes the relaxed energy, and
under suitable boundary conditions or constraints. With the exception of the
case where QW(£) = |f |p (see [8, 9, 36]), this question remained virtually un-
touched until very recently. Ongoing work on this direction is being carried out
in collaboration with Francfort.
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