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RELAXATION OF MULTIPLE INTEGRALS IN
* SOBOLEV SPACES BELOW THE GROWTH

EXPONENT FOR THE ENERGY DENSITY

IRENE FONSECA1 AND JAN MALY2

ABSTRACT

The integral representation of the relaxed energies

^p(u,Q) := inf (liminf / F(x,un,Vun)dx : un € Vl'«(fi,Rd),

un - u weakly in

^o'c
p(u,fi) := inf {liminf / F{x,un,Vun)dx : un € Wi^(n,Rd),

un — u weakly in

of a functional

where 0 < F(x,C,£) < C(l + |C|r + Ifl9) and m a x { l , r ^ = l , g ^ } < p < q,
is studied. In particular, W1)P-sequential weak lower semicontinuity of E(-) is
obtained in the case where F = F(£) is a quasiconvex function and p > q(N — l)/N.

Keywords: lower semicontinuity of multiple integrals, quasiconvexity, relaxation,
trace-preserving operators

1. INTRODUCTION

We study lower semicontinuity properties of functionals

(1.1) [
Jn

1 Research partially supported by the Army Research Office and the National Science Foundation
through the Center for Nonlinear Analysis, and by the National Science Foundation under the
Grant No. DMS-920 1215.
2Research supported by the grant No. 201/93/2171 of Czech Grant Agency (GACR) and by the
grant No. 364 of Charles University (GAUK).

Typeset by



 



RELAXATION OF MULTIPLE INTEGRALS 3

bounded above by F. As it turns out, PF < QF and we say that F is polyconvex
when PF = F.

In this paper we will treat the case where q is the growth exponent of F and
p < q. As a first step towards obtaining an integral representation for 5*9'p(tz,fi),
we aim at identifying a lower bound for the relaxed energy, precisely

(1.4) ^ ' p ( u , f i ) > [ QF{Vu)dx,
Jn

assuming that the growth assumption

(1.5) 0 < F(0 < C{\ + |£|«)

is verified. In view of (1.4), we need to establish a lower semicontinuity result for
quasiconvex integrals (see Theorem 4.1), namely

(1.6) liminf / F(Vun)dx > f F{Vu)dx
n->°° Jn Jn

if u € W^i^R*), un € Wl«($l,Rd), tin — u weakly in Wl*(Q,Rd) and F is
quasiconvex. It is well known that this inequality holds true when p > q (see [2, 4,
20, 21]). As indicated by (1.3), we remark that the inequality (1.6) may no longer
be valid if p < q.

The study of lower semicontinuity properties for (1.1) when p < q finds its moti-
vation on questions in nonlinear elasticity. As an example, in the case where F is the
polyconvex function F(£) := | det f |, the condition p < N plays a fundamental role
in the study of cavitation, as it allows deformations to be discontinuous (see [3]).
It can be shown that, within the class of polyconvex energy densities, and under
suitable structure conditions, if un e WX>N(Q,RN) converges to u € W 1 * ^
weakly in W l t P , then

liminf / F(Vun)dx > f F{Vu)dxn-°° Jn Jn

provided p > N — 1. This result was first found by Marcellini [19] for p > 7^3
then extended by Dacorogna and Marcellini [8] for p > N - 1. The borderline case
p = N — 1 was considered in [15] with a partial success, and completely established
by Acerbi, Dal Maso and Sbordone [1], [9]. Improvements are due to Gangbo [13]
and Celada and Dal Maso [6]. An elementary approach has been found by Fusco
and Hutchinson [12].

The quasiconvex case is more general. Under the growth condition (1.5), and
some additional structure conditions, the lower semicontinuity property was proved
by Marcellini [19] for p > 9 7 ^ , by Carbone and De Arcangelis [5] in some further
special cases, by Fonseca and Marcellini [11] for p > q - 1. Recently, Maly [17]
extended the later result to the borderline case p = q — 1. Notice that all the
above mentioned results need some additional assumptions. Our approach allows
to eliminate additional assumptions if the growth is (1.5) and p > q^^, and it is
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where ft C RN is a bounded, open set and F : Q x Rd x MdxN —» R is a nonnegative
Caratheodory function. Here, and in what follows, MdxN denotes the set of real-
valued dx N matrices.

We are interested in problems where there is lack of convexity, which leads us
to considering various types of relaxed energies. Let p,q € [l,oo] and let u €
W1^p(Q1R

d). We introduce the functionate

q*{u,Sl) := inf (liminf / F(x,un , Vun)dx : un € ^ ( n , R d ) ,

un->u weakly in Whp(Q,Rd)\ ,

J**(u,n) := mf} jlimmf jf F(x,un, Vun)dx : un € W?«(

un — u weakly in

The value of the functional Tq>p may depend, in a rather complicated way, on
the values of p, q. and on the regularity properties of u. Consider the example
where N = d, F(:r,C,f) = F(£) = |det^|. Notice that F is polyconvex, hence is
quasiconvex (see the definitions below), and the growth condition

o

is satisfied. It is well known that

(1.2) F>>p(u,Q) > f |detVu| dx
Ju

if P,q > N ([2,3,7,21]). Recently, (1.2) was shown to hold also for q > N and
p > N — 1 (see Celada and Dal Maso [6]; for related work, we refer to [1, 8,
9, 12, 15, 18]). If u € Wl'N(Cl,Rd), then we get equality in (1.2), whereas for
u i W^N{$l,Rd) it is difficult to describe Tq*(u,Sl) (for partial results on this
direction, see Remark 3.3 and [1, 11]). We obtain

(1.3) Jr9'p(u,fi) = 0

if q < N (see [4, 14]) or if p < N - 1 (see [15] and [10]).
As it is usual, the relaxed energy is related to the quasiconvexification of F. We

recall that, when F(x,^,^) = F(f)> the quasiconvex envelope of F is defined by
(see [7, 22])

It is clear that QF < F, and F is said to be quasiconvex if QF =• F. Abo, the
polyconvex envelope, PF, of F is the supremum of all rank-one affine functions
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based on a method presented by Maly in [16], where lower semicontinuity is shown
to hold in the context of W^-weak convergence of C^functions.

Further, we investigate the dependence of ̂ ' p (u ,U) and ^c(u^U) o n t h e °P e n

subsets [ / e f t . We assume that

We prove that if p > max { g ^ , r $T7 }> aiid tf f9*^ Q) < oo, then there exists
a finite, nonnegative, Radon measure fi such that

(1.8) F>'p(u,U)

at least for open sets U C fi with n{dU) = 0. In addition, we can show that

(1.9) 7g{u,U)

holds for all open sets U C fi, where A is some finite, nonnegative, Radon measure.
The representation formula (1.8) may fail if p < Q^^, as illustrated by an example
provided by Celada and Dal Maso [6]: if F(f) := |f I*""1 + | detf | and if p = N - 1 ,
then ^*9'p(u, •) is not even subadditive (see Remark 3.3 (i)).

If F is independent of x and £, then the lower semicontinuity result (1.6) im-
plies the estimate /xa > QF(Vu)CN for the absolutely continuous part, /xa, of \x.
Actually, in all known examples the equality fj,a = QF(Vu)CN holds.

This paper is organized as follows:
In Section 2 we construct a linear operator Tu from Wl'p into WljP which

conserves boundary values and improves integrability of u and Vu. Namely, the
W^-norm of Tu is estimated in terms of a special maximal function if p > q^jj^-
We use this trace-preserving operator to "connect" two functions across a thin
transition layer and to estimate the increase of the energy. We remark that the
standard way to perform this connection, by means of convex combinations using
cut-off functions, would not achieve a comparable result, namely an arbitrarily small
increase of the energy on an arbitrarily thin transition layer, since the admissible
sequences may not remain bounded in Wx'9(fi,Rd).

In Section 3 we prove that Ffcc (u> *) *s a Radon measure and we obtain a rep-
resentation of Fq>p(u, •) by means of a Radon measure /x, in the sense described
above (see (1.8), (1.9)). Moreover, we show that (1.8) holds for all open sets U C fl
provided it exists a Radon measure v such that

(1.10) F**(u,U)<v{U)

for all open subset U C Q. In Remark 3.3 we provide a couple of examples to
illustrate the sharpness of these results.

In Section 4 we establish that (1.1) is lower semicontinuous in WljP-weak if F
is quasiconvex (see Theorem 4.1). This enables us to obtain a lower bound for

> f QF(Vu(x))dx.
Ju
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In particular, when (1.10) holds then the absolutely continuous part of /x with
respect to CN, /xa, satisfies

Ha{x) > QF{Vu{x))

for CN a.e. x € £2. Here, and in what follows, CN denotes the TV-dimensional
Lebesgue measure. If, in addition, u € W1>9(fi,Rd), then we obtain the usual
relaxation result,

U) = / QF(Vu{x))dx.
Ju

The extension of this lower semicontinuity result to more general energy density
functions F = F(x, £,£) is addressed in Remark 4.3 and Example 4.4.

2. TRACE-PRESERVING OPERATORS

Throughout this section we consider fixed exponents r,q > 1, and

Further, let 77 G C£°(fi) be anonnegative function, and [fci,$2] C (0, H^Hoo). Suppose
that 0 < IV77I < A on {ti < fj < ^2}. Given a subinterval (a, 6) C (ti,t2), we write
Z\ := {a < V < b}.

In the sequel we will need an operator on W l iP(fi) which improves the integra-
bility properties of a function and its gradient in Zh

a, while conserving the function
values elsewhere.

Fix to € (£i,*2) and consider the level set Tto := {77 = to}. There exists a
diffeomorphism $t0 of rto x [ti,^] o n t o %tx

 s u c ^ that

(2.1)

for all 2: € rto,t € [t\M]' Precisely, given z € Fto it suffices to consider the flow hz

verifying
* dh± _ VTj(h(t))

It -

and set $to(2»0 : = ft*(0- The mapping $ t o satisfies the bi-Lipschitz condition and
the jacobians of $t0 and $^o

l are bounded. Also, using $t0 and by virtue of the
Sobolev imbedding theorem on smooth N — 1-dimensional manifolds, one can show
that if t; is a smooth function then

(2.2) ( / \vYdHN-*)1/r <C(( (M' + IVv

where 1 < /?, and either 0>N-lorr< §zj=$, and C = C(N,P,r,r},tx,t2)-
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2.1. Lemma. Consider s G (ti,*2) and p > 0 such that [s - p,s + p] C (*i,t2)-
Let f be a nonnegative measurable function on fi. Then

f ( f f(y) dy) dHN-\z) < CpN'1 f f(y) dy

where C = C(N,rj,ti,t2)-

Proof It can be seen easily that if z € Ta then B(z, ̂ ) C Z8
8t

p
p. Hence, using the

change of variables y = $«(z, t) and (2.1), we obtain

f{y)dy)dHN-l{z)

^ C I ( r \ I fo*,(<x,t)dHN-\cr)) dt) dHN-\z)

= C I ( /'+"( / fo$.(o,t)dHN-\z)) dt) dH"-1^)
Jr. V . - p V{*€r.: |*.(a,t)-4>.(z,«)|<^} X y

< C /
r.x(e-p,»+p)

€ r,: |$s(a,i)-$8(z,

<CpN~l f f(y)dy,

since, due to the Lipschitz continuity of the mapping Qj1,

HN~l{{z e T8: |*,(<r,t) - «f(z,«)| < £}) < Cp^"1 .

2.2. Lemma. Le< ti < a < b < t2. There exists a linear operator T: Wl>p(Sl)
W^iQ) such that Tu = u ontl\ Zb

a1 and

(2.3)

u\\wliq{Zb) + \\Tu\\Lr{Zb)<C(b-a)r( sup (t - a)~l/*> \\u\\wl,p{zt)

sup ( 6 -
t€(a,b)

where C = C{N,p,q,r,r),ti,t2) and r = r(AT,p,g,r) > 0.

Proof Set

T U ( X ) : = / B O I U ( X + *'

where

( 0

:= £ j max{0, min{77(x) - a, b -

if r?(x) > 6

if T (̂X) < a.
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It is clear that Tu(x) = z if z £ Z*, and

u(z) dz

for x e Zh
a. Let c := *±£ and denote

M o := sup ( t - a ) - 1 / \u\pdy,
te{a,b) Jzi

Mi:= sup (t-a)-1 f (\u\p + |Vu|
t€(o,6) JZ*

Assume, first, that u is smooth and fix a > p. If p € (0, ̂ (6 — a)) and if z € {TJ =
a + 2p}, then 6{z) = ̂  and B(z,6(z)) C Z ^ p . Thus,

f

\Tu(z)\°<Cp-N"([ \u(y)\dy)Q

Hy)\»dy)

f^[ My)\*dy).
JZ JB(Z,$) J

Using Lemma 2.1, we obtain

\Tu\°(z)dHN-\z)

1 / / \u(y)\"dy)dHN-l(z)

\u(y)\"dy)

[
Za+p

\u(y)\>dy)f.
/

By virtue of the co-area formula and (2.4) for a = g, and since |Vry| is bounded
away from zero, we obtain

/ \Tu\q(x)dx<C / (/ \Tu\q(z)dHN-l(z))dp
Jz% Jo ^J{T?=a-f2p} ^

<C I p-*+N-l([ \u(y)\rdy)*dp.

The latter inequality has been proven for smooth functions u. Using a standard
approximation argument, together with Fatou's Lemma, it can be seen easily that
it is still valid for any u€ 1^(0,). In addition, and since
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we have

\Tu\*{x)dx<CMf
(2.5) Jz% Jo

<CMf(b-a)<Tl,

Wheie N-l N
n := + —.

P 9
By means of an entirely similar argument we conclude that

\Tu\"(x) dx < CMl (b - a)qTl.
z%

Now we obtain estimates on the gradient of Tu. We have

and thus

(2.6) |VTu| < CT\Vu\.

It follows that the Lq estimate (2.5) holds also for derivatives, so that

l|ru|livi.«(zj) <C(6-a)Tl(^sup (t-a)-l/*\\u\\wl,p{Zi)

+ sup (b-t)-1/p\\u\\wltP(zi)y

Note, however, that the right hand side of the above inequality may not be finite.
Next, using the co-area formula, (2.4) with a = p, and (2.6), we obtain, for smooth
functions u,

<C ( \Tu\*(z) + \VTu\*(z)dHN-l(z))dp
J0 vJ{T7=a+2p} y

(2.7) J°

-cL ( / W H ^ ) ) ) dp
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A similar bound holds for

/ \Tv\p + \VTv\p)dy.

It is easy to see that Tu is weakly differentiable on ft (and thus, by the above
estimates, Tu € WltP(il) and (2.7) holds with Z% and Zh

a replaced by ft) if u is
smooth enough. If v € W1)P(ft) and if {un} is a sequence of smooth functions
converging to v in W1)P(ft), then clearly Tun(x) —> Tv(x) for all x € ft, while,

fi—*OO

by (2.7), {Tun} is bounded in W1>p(ft). Thus, a subsequence of {Tun} converges
weakly in W1)P(ft) to v and by (2.7) we have

/ (\Tv\* + \VTv\p)dy<C f (\v(y)\* + |Vt;(t/)f)dy,
n Jo.

and we conclude that T is a linear continuous map from WltP(Ct) into WliP(Q). It
remains to prove the Lr-estimate. Fix /? > 1 such that

<2-8>

Given a smooth function it, by (2.2), by (2.4) with a = /?, and by (2.6), we have

( I \Tu\r(z)dHN-\z))0/r< C I (\Tuf(z) + \VTu\*(z))dHlt-1(z)

< Cp-^+x-i ( I (|u(y)|P + |Vu(y)|*) dy) ' ;
JZa+p

hence, just as in the proof of (2.5), we obtain

\Tu\r<C / * p-^+^ff (\u(y)\^ + \Vu(y)fdy)f dp.

Using a density argument we conclude that this inequality is still valid for u €
W1<p(il), from which we obtain

f \Tu\r(x)dx<CM{ [* p-ir+LLi!fS1+p dp
Jz% Jo

<CM{(b-a)rT3,

where T2 := £ - (N - !)(£ - ^) > 0. This concludes the proof.
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2.3. Elementary lemma. Let rp be a continuous nondecreasing function on an
interval [a,6], a < 6. There exist a' € [a,a + \{b - a)]," 6' € [6 - \{b - a),b], such
that a<a' <V < 6, and

(29)

forallt€(a\b').

Proof. Without loss of generality, we may assume that a = 0, ip(a) = 0. Let a! be
a point of [0, b] where

attains its maximum and let bf be a point of [0, b] where ip attains its minimum.
It is clear that formulas (2.9) hold. To show that a1 < | , it suffices to remark
that <,p(0) = 0, while <p(t) < 0 whenever t > | . Indeed, as ̂  is nondecreasing,
it^p- > ip(b) > tp(t). In a similar way, one can show that V > b - ±b.

2.4. Lemma. Let V CC fi and W C ft 6e open sets, f! = V U l ^ , u G W1'
and w € W ^ W ) . Let m € N. Tftere ezzs* a function z € W££(fi) and open
V'CV and W C H7, rach that V UW' = SI, z = v inSl\Wf, z = w onQ\V,

(2.10) £ N (V r / nW)

and

(2-11)
< Cm TI IMlHM.»M/nuA + ll^llu/l.pfl/ou/^ + m Iliy — •

C = C(p, o, r, V, W) and r = T(«/V,p, ̂ , r) > 0.

. Let 77 € C~(fi) be such that

(2.12) r7 = 0 o n f i \ V and rj = 1 on ft \ Ŵ.

By Sard's Lemma, the image of the set of all critical points of 77 is a closed set of
measure zero; hence, there is an nondegenerate interval [a, b) C (0, l)\ri({Vr) = 0}).
Choose m € N and define

/ := l + \W\P + \Vw\p + \v\p + \w\p + mp\w - v\p.

Since {a < 77 < 6} C V n W, we may find & € {1 , . . . , m} such that

(2.13) / fdx<- f fdx,
J{ak<T)<bk}

 m JVnW
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where ak:=a+ <fc~1W>~°\ bk := a + 42=21. Using Lemma 2.3, with

fdx,- [
Jf)<tr)<t

we find [a', 6'] C [a*, bk] such that 6' — o! > |(6^ — a*), and

3 /
o -a J{a,<ri<b>}

J{t<T,<b'} b -a J{a'<n<b'}

for all t € (a', 6')- Set

V := Q n {77 > a'}, W := fi D {q < b'},

{ v, on {77 > 6'},

if, on {77 < a'}.
By (2.12), it is clear that V C V, W C W, and F' U W = fi. Also, (2.10) holds
because |V?7| is bounded away from zero on {a < q < b} and b1 — o! < &=&. A
direct computation shows that

\u\p + \Vu\p < Cf

on {a' < 77 < 6'}- Using (2.13), (2.14) and Lemma 2.2, we find a function z €
Wl*(Q) such that z = u = v on {77 > &'} = J2\W;, z = u = w on {77 < a'} = Q\V
and (2.11) is satisfied.

3. T H E RELAXED ENERGY: DEPENDENCE ON THE DOMAIN

Let fi be a Radon measure on Q. We say that \x (strongly) represents Tq'p(u, •)
if

for all open sets U C Q. We say that \i weakly represents ^*9'p(u, •) if

for all open sets U C Q. Strong and weak measure representations for Fi£{u,-)
are defined in an similar way. In this section we will study measure representation
properties of the relaxed functional T$£(it, •) for a functional (1.1) satisfying (1.7).
We show that if

r, q > p,
(3.1) f J V - 1 J V - 1

' p> max J ^ -

then ^'^(w,*) can be represented by a Radon measure and ^ > p (u , - ) is weakly
represented (see Theorems 3.1, 3.2). We characterize the case where strong mea-
sure representation for Tq'p(u, •) occurs. We include an example of weak measure
representation which is not strong and an example which illustrates that measure
representation properties may fail altogether if the condition (3.1) is violated.

First we state the main results which will be proved later in this section.
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3.1. Theorem. Let F be a Carathiodory function satisfying (1.7) and letp,q,r
verify (3.1), u € Whp(Q,Rd). If^(u,Q) < oo, then there exists a nonnegative,
finite Radon measure X on Q which represents J^^{u,Q).

3.2. Theorem. Let F be a Carathiodory function satisfying (1.7) and letp,q,r
verify (3.1), u € Wl>pJ$l,Rd). If fq*{u,Sl) < oo then there exists a nonnegative,
Radon measure /x on Q which weakly represents Tq>p(u,Sl).

3.3. Remark.
(i) The latter result is sharp, in that we may find p = q^1 and u € Wl>p(Sl,Rd)
such that Fq>p(u, •) cannot be weakly represented by a measure. Indeed, let B
stand for the unit ball in RN, let q = d = iV, r = p = N - 1, u{x) := ^ and

Then u € Wl'*(B,RN) for all s < TV, in particular for s = p,

r

JpB

is of order p at 0, whereas

^9'p(u, B\pB)~ I F(Vu)dx = 0.

Hence, /*9P(u, •) cannot be additive. The same argument works here also for
F\oc{u, •)• This example is essentially due to Acerbi and Dal Maso [1],
(ii) In (i) the additivity property failed due to the fact that p < q^j^- Now we
will see that, in spite of requiring p > q^1, the measure representation may not
be strong. Let q = d = N and u(x) := A , but now p > N — 1 (which is the case
in which Theorems 3.1 and 3.2 are valid), and

Let ii := CN(B)60 be the ^^(BJ-multiple of the Dirac measure at 0. Then (see
[11], Theorem 4.1),

(3.2) 7<*(u,U)

if fi(dU) = 0. If U = {x € B: xx > 0}, then we have

(this can be seen using the approximation un(x) = u (x + £ei)). In the case where
U := J5 \ {0}, we have

(3.3) J"*(,if U) =
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as each t; € Wl«(U,Rd) is also in Wl>q(B,Rd) (the point 0 is a removable singu-
larity). Clearly, Tq*(u, •) cannot be a measure since in this case, and by (3.2), it
would have to be the measure /i, contradicting (3.3).

Theorem 3.1 ensures that a similar example does not exist for the relaxed en-
ergy T\£(u, -)-situation; notice that it may happen that v € W^£(l7,Rd) and

(iii) If U CC V C ft, then, obviously,

*£?(u,U) < J*«(u,U) < J£*(tifV).

Hence, if the measures \x and A from Theorems 3.1 and 3.2 exist, then A = /x[ft.

3.4. Lemma. Let F be a Caratheodory function satisfying (1.7), and let p,q,r
verify (3.1). Let V, W C ft fre open sets, V CC ft and ft = V U W, and let

^ ^ ) . Then

(u, ft) < ̂ ' p ( u , V) + J^'p(u, W).

Proo/. Choose e > 0. We find open sets V ' c V and ff'cW such that ft = V'uW
and V nW C V n W. Using the definition of relaxation and Rellich's compact
imbedding theorem, we find vn € Wx^(V,Rd) and wn € W^ '^R 1 *) such that

vn —k u weakly in W1»p(V,Rd),

wo < ",

0dx<^'p(u,V)-f e,xIV
wn —k tx weakly in W/1)P(V

Ikn - ullLP(V'nW') < - ,

:,it;n, Vit;n)dx <

By virtue of Lemma 2.4, we may find open sets Vn C V , Wn C W\ and functions
zn e Wl*(n, Rd), such that VnUWn = ft, zn = vn on ft \ VTn, 2n = wn on ft \ Vn,
and, by (1.7),

F(x,zn,Vzn)dx<C f

-jn<Cn

"' - n

where r is as in Lemma 2.4. It follows that

< / F(x, vn, Vvn) dx
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hence
Urninf / F(x, zn, Vzn) dx < F>*(u, V) + F>*(u, W) + 2e.
n-oo JQ

It remains to prove that zn —> u weakly in W1)P(fi). It is easy to check that
the sequence is bounded in WliP(ft,Rd). Furthermore, taking into account that
CN(Vn n Wn) —• 0 and Rellich's compact imbedding theorem, we see that each
subsequence of zn contains a sub-subsequence converging to u a.e. It follows that
zn —* u which concludes the proof.

3.5. Remark. A similar assertions holds for ^ ^ ( u , •), with essentially the same
proof.

Proof of Theorem 3.2. We write

First we assume that the coercivity assumption

(3.4) F(x,CO>c(ICIp + Klp)

is satisfied. Let un € Wl}q(Q,Rd) be a minimizing sequence such that un —* u
weakly in W1*(SI,1L% and

lim / F{x,un, Vun)dx =

Passing to a subsequence, if necesssary, there exists a nonnegative Radon measure
fi on Cl such that

w*- lim F ( V u n ) £ N i n = /i

(weak* convergence in measures on Q). In particular, we have

(3.5) fi{Tl) = ^(Q)

and for every open set V C Ct

(3.6) JF(K) < Urn inf / F(x,un,Vun)dx < /i(T7).
n—>oo J y

Conversely, let V C fi be an open set and fix e > 0. We find an open set Z CC V
such that

Then, using Lemma 3.4, (3.5), (3.6), we have

Letting £ —• 0 we obtain
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Now, we remove the assumption (3.4). By the above part of the proof, and for every
e > 0, we obtain a measure /xc representing the relaxation Tt of the functional

/ (F(s, u, Vu) + e\u\v + e\Vu\p) dx.
Jn

Since
esup IKHWTLP < C,

n
we may select £* —• 0 such that the subsequence fiCk converges weak* in the sense
of measures to a finite, nonnegative, Radon measure /x. Let U C il be open. Then,
obviously,

and passing to the weak* limit,

Conversely, given e9 > 0, there exists a sequence vn such that vn —* u weakly in
Wl*(U) and

[
u

Then, for k large enough, we have

[ (F{x,Vn,Vvn) + ek\vn\* •
Ju

thus

Passing to the weak* limit and letting e9 —• 0 we conclude the proof.

We show that (1.10) is a necessary and sufficient condition for strong represen-
tation. This will be a consequence of the following lemma.

3.6. Lemma. Let Fbe a Caratheodory function satisfying (1.7) and let p,q,r
verify (3.1), u € WltP(il,Rd). Let U be an open subset of Q. If /x is a Radon
measure on ft weakly representing Tq'p(u, •) then

provided

(3.7) in f{^ ' " (u , U \ K): K C U is compact} = 0.

Proof. We need to establish the inequality Fq>p{u, U) < n{U). Fix e > 0 and, by
virtue of (3.7), let K C U be a compact set such that

F>'p(u, U\K)<£.
Choosing an open set W such that K C W CC U, by Lemma 3.4 we have

.F»-p(u, 17) < ^«'p(u, W) + ^ " ( u , U \ K)

(tt, W) + £

and this concludes the proof.
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3.7. Corollary. Let F be a Caratheodory function satisfying (1-V,
verify (3.1), u € Whp(Q)R

d). If n is a finite Radon measure on ft weakly repre-
senting Tq*(u, •), then \i represents / * * ( u , •) if and only if (1.10) is satisfied.

Proof. If (1.10) is satisfied, then clearly (3.7) holds for any open set U C ft. Thus,
by Lemma 3.6, /z represents Fq>p(u, •)• The converse implication is trivial.

3.8. Remark. If u € W l f«(fl,Rd), then the hypotheses of Corollary 3.7 are ful-
filled by setting

„([/):= f F(x,u,Vu)dx.
Ju

As we will see in Corollary 4.5, in this case, and if F does not depend on x and £,
we have \x = QF(Vu)CN, and, in particular,

= f QF(Vu)dx.
Jn

We conclude this section proving that ^^(u.Q) admits always a measure rep-
resentation.

Proof of Theorem 3.1. Assume, in addition, that the coercivity condition (3.4) is
satisfied. As in the proof of Theorem 3.2, we find a Radon measure A on ft such
that

for every open set U C ft. Given an open set U C ft, we are going to show that

Consider an increasing sequence of open, bounded, smooth sets Uh CC 17, h € N,
oo

such that UH C U^i for all h and U = (J Uh> By the definition of relaxed energy,

for h > 3 there exists a sequence u^n € W^(Uh \ Uh-2^d) such that

Uh,n - u weakly in Wl*(Uh\Vh-2,R
d),

n—»oo

and

(3.8) / F(x, uh^ Vuh,n) < J*£(u, Uh \ Vh-2) + 2"fc.
Ju\V

Fix positive integers a^, to be determined later in the proof, and after extracting
a subsequence from Uh,n (still denoted by u^,n), we may assume that Uh n —> tz

a.e. in Uh \ £//i-2
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We make use of Lemma 2.4 to connect Uh,n to Uh+i,n across Uh \ Uh-i- There
exist open sets V+n,Vf+hn such that V+n C Uh\Uh.2, Vf+ln C Uh+1 \Vk.lt

and there exist functions Zh n € WliQ(Uh+i n \ ^/i-i»Rd) such that Zh n = v>h
(Uh \Ffc-0 \ Vh~+1<n, zKn = ufc+Ln in (%+, \ t f^a) \ V+n, and

F(x

n

,zh,n,Vzh,n)dx<C f (1 + \zh,n\r + |V*fcfB|«)dx

where T is as in Lemma 2.4 and Ch depends on h. Now we specify the choice of
Qh so that alrqCh < 1. Let zn € W ^ ( n \ ^i,Rd) be given by zn = zh,n on
^tn n V7+1)n, zn = « h + 1 , n on (%+1 \ ^ . x ) \ (V+n U Vfc-+2>n). Fix fc e N, fc > 2.
We have

F(x,zn,Vzn)dx<

/ F(x,^in,Vzfc,n)dx>
' v£ w nv f c - + l i n J

< 6X(U \ Uk-i) + 2- f c + 1 + C2~9T(nH-fc).

Due to (3.4), (3.8), and since ^'c(^»fi) < <x>, the sequence 2n is bounded in
WliP(U\Uk), and, as in Lemma 3.4, we show that zn -> u weakly in Wl*(U\Uk)-
We infer that

^o'c
p(u, C7 \F f c ) < 6A(C7 \ C/fc-x) + C2~ fe+1.

Hence, (3.7) is verified and, by virtue of Lemma 3.6, we conclude that

\(U) = F?£(u,U).
Now, using the same argument as in the proof of Theorem 3.1, we remove the
additional assumption (3.4).

3.9. Remark. The growth condition (1.7) can be further weakened. The constant
1 may be replaced by an integrable function. If p > N — 1, then, in view of the
Sobolev imbedding theorem, the function z in Lemma 2.4 is bounded. In this case,
it is enough to assume, instead of (1.7), that

o<F(x,c,0<
for some increasing function c.
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4. THE RELAXED ENERGY: A LOWER BOUND

4.1. Theorem. Suppose that q>l and p > q{N - l)/N. Let F be a quasiconvex
function on MdxN satisfying (1.5). Letu€ Wl*(tt,Rd), un € Wl«(Q,Rd), un —
uinWl*(n,Rd). Then

liminf / F(Vun)dx > f F(Vu)dx.n"-°° Jn Jn

Proof. The proof will be carried out in two steps.
Step 1. Suppose that fi = B = B(0,1) and u is linear, u(x) = £ox for f0 € MdxN.
In view of Rellich's compact imbedding theorem, passing to a subsequence we may
assume that

Let R < 1, and set p := ^^. We apply Lemma 2.4 to v := un, w := it, V = pB
and W = B\RB to obtain functions zn € W^iB.R6) and open sets Vn CC V
and l ^ n C ^ such that Vn U Wn = B, zn = unon B\ Wn, zn = u on B \ Vn and

n

T > 0. Since zn — u € W0
1>9(B,Rd), due to the growth condition (1.5) it is legitimate

to test the quasiconvexity of F with zn and we obtain

/ F(Vu)dx< f F(Vzn)dx.
JB JB

It follows that

F(Vu)dx- f F(Vun)dx < f F(Vzn)-F(Vun)dx
JB JB

(F(Vu) - F(Vun)) dx + / (F(Vzn) - F(Vun)) dx
B\vn Jvnnwn

< I F(Vu)dx+ / F(Vzn)dx
JB\Vn JVnDWn

<c(cN
B\V

N(B\Vn)+ I
< C (CN(B \ RB) + C(R) n'qT)

To conclude, it suffices to let first n —• oo and then R-+1.
Step 2. Let u € Wl*(n,Rd), un € Wl«(Sl,RN), un-> u weakly in
Without loss of generality, we may assume that

•Xsup / F(Vun) dx < oo.
J
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Passing, if necessary, to a subsequence, we obtain the existence of finite, Radon,
nonnegative measures fi and v such that

liminf / F(Vun)dx = lim / F(Vun)dx
n—°° Jn n-*°°Jn

and

M = w*- lim F(Vun)£N,

v = w*~ lim \Vun\pCN.
n->oo

We are going to show that

holds true for almost every XQ € fl. Assuming that (4.1) is verified, for any if €
Cc(f2), 0 < tp < 1, we have

lim / F(Vun)dx> lim /

= / ipdfi
Jn

dx

It suffices to let ip to converge increasingly to 1 and to apply Lebesgue's monotone
convergence theorem, to conclude that

lim f F(Vun)dx> f F(Vu)dx.n^°° Jn Jn

It remains to prove (4.1). To this end, we consider XQ € fi such that

(4.2) J , ( x 0 ) = £lun+ C ^ Q % exists and is finite,

(4.3) ^ ( x o ) = ̂  / i g g ; ^ ) exists «d is finite

and

(4.4) lim - / \u(y)-u(xo)-Vu(xo)(y-xo)\dy = O
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We select ek -> 0+ such that n(dB(xo,ek)) = Q,v{dB(xo,ek)) = 0. It is well
known that conditions (4.2), (4.3) and (4.4) are satisfied by all points x0 € fi,
except maybe on a set of CN measure zero. Then

Um f F{VUn{x))dx

= lim lim

where

un k(y) •=
€k

and
limsupUmsup||Vun,fc||LP(B) < -T^(X0) < oo,

where uo(x) := Vu(xo)x. Hence, we may extract a subsequence vk = unfc,fc such
that (passing, if necessary, to a subsequence) vk —> ito weakly in Wl'p(B(0, l ) ,Rd) ,
a n d A r

o ) = Urn/ F(Vt;fc(y))dv.k°°Jk-*°°JB(Q

Prom Step 1, we deduce that

> F(Vu(x0)).

This shows (4.1), and thus it concludes the proof.

4 . 2 . Coro l lary . Suppose that q>l andp > q(N — l)/N. Let F be a function on
MdxN satisfying (1.5), and let u € Wl^(Q,Rd). Then

>>p(u,n)> f QF(Vu)dx.
Jn

Proof Since 0 < QF(£) < F ( 0 , it follows that QF satisfies the growth condition
(1.5), i.e.

Hence, if un € ^ ^ ( f l , ^ ) and if un -* u weakly in W 1 ' *^ , !^) , then by Theorem
4.1

liminf / F(Vun)dx > liminf / QF(Vun)dx

> f QF(Vu)dx.
Jn

Taking the infimum over all such sequences we obtain

^p(u)> f QF{Vu)dx
Jn

as required.
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4.3. Remark. It is easy to verify that the blow-up argument of Theorem 4.1,
Step 2, can be used to prove that

(4.5) F>*(u, Q) > ( QF(x, u, Vu) dx,
Jn

in the case where F(x, C, 0 = a(x)p(0? a is nonnegative, continuous, and g satisfies
(1.5). The generalization of (4.5) to more general energy density functions F =
F(x, £, f) can be obtained under some smallness assumptions on

\F(x,C,O-F(x',C',i)\.

However, these conditions are far from being 'natural'. By analogy with the case
where p > q, we consider to be 'natural' those conditions of the form

\F(x,c,0 -F(x',c',OI < "(I*-x'| + IC-CDKi + \t\9),

where a; is a bounded modulus of continuity. The latter ensures (4.5) if p > q.
We recall that Gangbo [13] proved that lower semicontinuity holds when d = N =

q, p > N — 1, F(x, C, 0 = fl(x, ()g(x, £), a is continuous, nonnegative and bounded
away from zero, g is continuous, and g(x, •) is a polyconvex function for all x € 17.
In that same paper, Gangbo used heavily the fact that d = N, without which
lower semicontinuity may fail (see Example 4.4). In addition, he showed that the
continuity of the integrand function is an important feature. Indeed, he exhibited
an example where F(x,£) = XK{X) det £, \K is the characteristic function of a
compact set K, and where, given N — 1 < p < N,

I
JK

I det Vu| dx
K

is lower semicontinuous in W1'p(fi,RiV) if and only if CN(dK) = 0.

4.4. Example. This example is similar to examples by Ball and Murat [4] and
Maly [15].

Here Q denotes the cube (-1,1)N in RN, and N - 1 < p < N. Let un :
Q —* RN + 1 be a 2/n-periodic function, given by un(x) := (<pn(\x\)x,ipn(\x\)) if
x € [ - l /n , l /n ] N , where

1, r > n"fc

0, r < n~fc.

The integer k is fixed so that {tin} remains bounded in Wr l jP(n,RN+1), precisely
(k — l)(N — p) > N. Then un are Lipschitz-continuous, and un —> u := (x, 1) in

1 N + 1
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Now, define F : RN+1 x M(N+»*N -* [0, +00) by

with

As it turns out,

2N 6(1) + aN (6(0) - 6(1)) = liminf / F(un,Vun)dx,
n->+oo Ju

where a# denotes the volume of the unit ball in RN. Note that a(£) := 6(£N+I) is
continuous, bounded away from zero, and

|F(C,0 - F(C',OI <«(IC -C'DKi + l€lw),

where a; is a bounded modulus of continuity. It is well know that the latter condition
provides W1'7V(£2,RN+1) weak lower semicontinuity.

4.5. Corollary. Suppose that q>\ andp > q(N — 1)/N. Let F be a function on
MdxN satisfying (1.5), and let u € W^(Q,Rd). Then

™(u,n)= [ QF(Vu)dx.
Jn

Proof Since u € Wl'q(Ct,Rd) and (1.5) holds, the standard relaxation results apply
(see [2, 7]). Thus, we may find a sequence of functions un € W/1'9(fi,Rd) such that

Urn / F(Vun)dx — / QF(Vu)dx,n">o° Jn Jn

and so
^'p(u,ft)< [ QF{Vu)dx,

Jn
which, together with Corollary 4.2, yields the desired representation.

4.6. Remark. Notice that if QF is convex, i.e. QF = F** where F** denotes the
lower convex envelope of F, then

for every u € Wl>p(Q,Rd), for every p > 1, and every open set 1/ CC fi.
The result is trivial in the case where p > q, since the standard relaxation

theorems can be applied (see [7]).
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Suppose now that p < q. If the sequence {un} C WliQ(ft,Rd) converges to
u € Ty l tP(n,Rd) in W^ljl-weak, since F** is convex we have

lim f F(Vun)dx> lim [ F**(Vun)

> f F**(Vu)dx.
Jn

Conversely, consider a smooth kernel u > 0 in RN with support on i?(0,1),
fRNu(x)dx = 1, and given k € N we set Vk(x) := kNu(kx). For each A: € N
select a sequence i>*jn € W"1'9^,!^) such that

and

lim

As p < q we may extract a diagonal subsequence uk := vk^k) such that

\\uk - u>k * u\\wltP < - ,

I / F(Vuk)dx - [ F(V(uk * u))dx
\Ju Ju

Therefore uk -* u in Wl^{U,Rd), and

u,C7) < liminf / F{Vuk)dx

= liminf / QF(V(u>k * n))dx.

However, since QF is convex and as the measure /i*, given by

<fi*,<p>:= / uk{x-y)<p{y)dy,
Ju

is a probability measure, using Jensen's inequality we have

liminf / QF(V(u>k * u))dx = liminf / QF (< / A Vu >) dx
k-+oc Ju k-+oo Ju

< liminf / < n*QF(Vu) > dx
*-<» Ju

= / QF(Vu(x))dx.
Ju

We conclude that
(u,l7)= I QF(Vu)dx.

Ju
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