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1. Introduction Simulations of magnetic and magnetostrictive behavior based on

micromagnetic theory exhibit hysteresis. These systems have a highly nonlinear character
involving both short range anisotropy and elastic fields and dispersive demagnetization fields.
Hysteresis occurs even in the absence of an imposed dynamical mechanism, for example, a
Landau-Lifshitz-Gilbert dissipative equation for the magnetic moment, and is symptomatic of the
way the system navigates a path through local minima of its energy space. It is not sensitive to the
particular method: we implement continuation based on the conjugate gradient method, although
the same results were obtained by other methods (eg., Newton's) as well. We strive to attain an
efficient algorithm with careful attention dedicated to the treatment of the demagnetization energy.
It is robust: computational experiments confirm that the shape of the loop is invariant over several
decades of mesh refinement. Nonetheless, the propensity of optimization procedures to become
marooned at local extrema when applied to-nonconvex situations presents a fundamental challenge
to analysis. Understanding and controlling such phenomena present the opportunity to develop
predictive tools and diagnostics!.

Computational results and diagnostics, developed using contemporary nonlinear analysis, are
presented. As illustrations: Since the energy picture is mesh independent, computing on a fairly
coarse grid suffices to establish its character. In simple cases, the precise destabilization effect of

1 Supported by AFOSR 91 0301 and NSF DMS 911572 and by the ARO and the NSF through the Center for
Nonlinear Analysis at Carnegie Mellon University. Computational resources provided by the NSF through a
grant to the Pittsburgh Supercomputing Center.
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the induced magnetic field together with the width of the hysteresis loop may be determined
analytically in terms of a correction to the Stoner-Wohlfarth Theory [44).

The computation of microstructure based on continuum theory is one area where these problems
have been discussed [7,8,9,28,29,31,37]. Recent related thoughts about hysteretic behavior,
principally in shape memory or pseudoelastic materials, may be found in [1,2,4,13,14,16,34,
35,38,42,45]. We note in §8 that we have computed hysteresis for models of some of these
materials also. A conceptually different approach to the computation of magnetic hysteresis is
given by Giles et al. [15], cf. also [3].

A characteristic of the hysteretic cycle is that the system does not always assume a minimum
energy state. Theories and models of hysteresis (cf. [32,33,46] for compendia of these), pose
rules to describe the paths hysteresis follow, but not why hysteresis occurs. Basics of Preisach
modeling, for example, are given there and in Mayergoyz [33] and Wiesen and Charap [47]. This
type of phenomenological modeling is very useful in complex systems. It may accomodate
domain wall motion and active constraints whose precise behavior at the microstructural level is
extremely complicated.

2. Formulation We consider a two dimensional system governed by a magnetic anisotropy
energy @(m) subjected to an external field H. This gives rise to a stored energy to which we add
the energy of the induced magnetic field, usually referred to as the demagnetization energy,
resulting in the functional

EMHm) = nj (@m)-Hm)dx + 3 {qulzdx. @.1)

R
with
div(-Vu + myq) = 0, Iml =1 in Q.

The second equation embodies Maxwell's equations for magnetostatics. The constraint on the
magnetization m represents the requirement that the material be magnetically saturated. The
domain §Q is the region occupied by the magnet. Equivalently, we may write

EMm) = d[ (¢(m)- Hm)dx + %JVu-m dx, Q.1

Typical forms for ¢ are
®(m) = x(m2)? (uniaxial) .2)

X (m1m3)?2 (cubic) 2.3)

¢(m)



The hysteretic event in the computation of magnetization 3 4/12/95

In the uniaxial case, when x > 0, e; is the easy axis and when x < 0, ey is the easy axis. In
the cubic case, when x > 0, e; and e; are easy axes and when k < 0, e; £ ¢; are easy axes.
In our simulations we chose = (O,L) x (0,1), a rectangle.

Our computational technique applies equally well to linear magnetostriction, cf. Clark [6]. A
major reason for studying both rigid magnets and linear elastic ones is to gain experience useful to
analyze highly magnetostrictive materials, cf. [10,11,12,17,18,19,20,21,22,23,24,25,26,41]. In
two dimensional linear magnetostriction, the material is endowed with a stored energy ¢(g,m)
which has the form

®Em) = Qcl(E) + Peymag(E;m) + Qan(m),
€ = %(Vy + VyD), Iml = 1, y the displacement.

The elastic energy @el(€) is a typical linear elastic energy with cubic symmetry or lower. The
elastic/magnetic interaction has the form

Qelmag(€Em) = X bjj & mim;.

Note that it is even in m. The anisotropy energy @an(m) is given by (2.2) or (2.3). The
analogue of (2.1) is

EHym) = “[ (@Eem)-mH)dx + 1 I IVul? dx. 2.3)
R

Recently we have computed (2.3) for magnetostriction, we have not as yet obtained any estimates
which include the effects of elasticity [24].

For minimum energy at given H, one seeks

inf E(Hm) or inf E(H,y,m) subject to boundary conditions.
{iml = 1} {iml = 1}

The presence of a hysteresis curve in the ensuing computation is evidence that minimum energy is

not actually achieved. Nonetheless, it remains useful to know the relaxation of the energy E(H,m)

or E(H,y,m). We have computed some cases of the latter with Chipot [5] along the lines of

argument described in Kohn [27].

3. Description of hysteresis We describe the hysteretic event. The hysteresis diagram for
the energy (2.1) is computed by continuation of resolved solutions with respect to decreasing and
increasing magnetic field applied parallel to the xj-axis, which is also the easy axis. The shown
curves in Figs 4 and 5 are the overlaid graphs of computed energies vs. a decreasing sequence of
applied fields and an increasing sequence of applied fields.
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The computational domain is a rectangle Q = (0,L) x (0,1), usually with L = 2, and oriented
so that the x; axis is an easy direction. We partition Q into Nj x Ny squares of side length h
= L/N; = 1/N; denoted by

Q = {xe Q ih < x3 < (@i+Dh jh <x2 <G+ Dh},

i=0,..,N;-1, j = 01,...,N2 - 1. The minimization of (2.1) is approximated in the space
Aj, by the Polak-Ribiére version of the conjugate gradient method [40,43] where

Ap = {m: m isconstantoneach i =0,....,N1-1, j =0,1,...N2-1}.

For a given initialization y, let T(u) denote the computed minimizer for the functional (2.1). Let
H, be the maximum external field strength, n be a positive integer, and & = 2Ho/n. We
simulate the hysteresis by this algorithm:

1. Initialize m, set H = (H,,0), and compute m® = T(m).
2. For k = 1,2,....n,set Hk = (H,-k5,0) and compute mk = T(mk-1).

3. For j = 1,2,....n,set H = (-H, + j8,0) and compute mi = T(mi!), with mO0 set
to m? from 2.

The shown diagrams in Figures 4 and 5 are then the overlaid graphs of (Hk, E(HX,m¥)) and
(HJ, E(Hi,mJ)).

We recall the essential features of this conjugate gradient algorithm. It is an optimization method
which resolves the magnetization (and displacements, when elastic effects are included) in all the
cells simultaneously. The induced or demagnetizing field is taken as a function of the
magnetization. The minimization algorithm requires the computation of energy and also the
gradient of the energy with respect to the discrete variables for a given set of m € A;. We remark
that the most expensive feature of these computations is the determination of the averages of Vu
on the cells Qj;, i.e.,

Vy; = # Q‘."‘Vudx.
ij

We refer to Luskin and Ma [28,29] for details.

Our implementation is efficient; the subsequence hysteresis loop is computed in about three
minutes of CPU time at over 300 MFLOPS of the CRAY YMP-C90 at the Pittsburgh
Supercomputing Center.

The configuration begins at an absolute minimum of energy, or nearly so, for a large value
of H, and remains in this state until Hk changes sign. For these values of HK, mk = m0,
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which we refer to as the precursor magnetization. This precursor magnetization is quite close to
el.

The system then traverses a metastable regime where it does not achieve minimum energy.
Some small oscillations are observed in this regime. The metastable regime ends in a critical field
range which appears to be characterized by the condition that the precursor magnetization becomes
unstable at the critical field, H,,

E(Hgm) < E(Hc,mO for appropriate m.

In fact, it seems that the computation seeks to resolve the closure domains, or boundary columns
of the computational grid, first. We shall use this as the basis for our estimate of Hgr.

Near H = Hg, the system suffers instability and witnesses rapid interior oscillations, the
evolution of microstructural domain configurations, and finally resolution to a nearly uniform state
of approximately absolute minimum energy. The behavior of the system is analogous to the
classical Stoner-Wohlfarth scenario [44], which we review below. Miiller and Xu [35] also
observe a stable/ metastable/ unstable/ stable sequence in the extension of shape memory ribbons.
We do not see this behavior when the applied field H is parallel to the hardest axis, which is x2
in the uniaxial case and x) £ x5 in the cubic case. Indeed, there is almost no hysteresis in the hard
axis uniaxial situation.

Here we are discussing only the major loops of the system, which are the overlaid graphs
mentioned above. We have also computed minor loops and the virgin magnetization curve.
Explicit computation of virgin magnetization curves based on minimum energy, cf. below, have
been given by DeSimone.

4. An elementary observation, the Stoner-Wohlfarth theory A glimpse at the Stoner-
Wohlfarth theory shows that the general outline of the energy portrait is already present when the
demagnetization energy is neglected and the system evolves by exchange of stability among local
minima. In their fundamental work, Stoner and Wohlfarth studied the behavior of the
homogeneously magnetized ellipsoid, exploiting the property, known to Dirichlet, that if the
magnetization is a constant vector parallel to a principle axis of the ellipsoid £2, then the solution of

Au = divmygq in R3

is linear when restricted to Q. In two dimensions, for example, with B the unit ball, it is easy to
check that for u satisfying

Au = divExp in R2, & constant, with Vue L2(R2),
we have that

Vu = & inB and



The hysteretic event in the computation of magnetization 6 4/12/95

%JVu{dx = %R!IVulzdx = Jige. @.1)

So if m is constant and Im | = 1, the induced field energy in (2.1) is simply a constant. In the
basic Stoner-Wohlfarth framework, the system is regarded as homogeneous with energy given by
the function

EMm) = om) - m-H+ § “2)
per unit area.

Consider the uniaxial case with easy axis the xj-axis and choosing H = (Hj,0). Here,
E(H,m) has the appearance of a double well potential since it is given by
E(Hm) = —x(m; + %%)2 + const.

Following the easy axis starting with large positive Hj, we see that m = e; is an absolute
minimum for H; 2 0, it is stable for -2x € H; < 0, and unstable for H; < -2x. In the

region H; < 0, the absolute minimum is attained by —e;. We have drawn in Figure 1 the

absolute and relative minimizing energy curves obtained by following a cycle from (Ho,0) to (-
Ho,,0) and returning to (Ho,0). The critical field is Hsw = 2x. We refer to this value as the
Stoner-Wohlfarth critical field.

Turning to the uniaxial case with hard axis the xj-axis, E(m,H) will have the appearance
of a convex function, indeed, denoting the anisotropy constant by —x, with x > 0,

EHm) = x(m; - %)2 + const.

Following the hard axis, we see that the system remains in a state of absolute minimum given by

.
el E]'21
2x
{4 & 1-(-;—'12 A
m = (21c’ K) ) 2x
-1 §1_<__1
\ 2x

Hence the Stoner-Wohlfarth analysis gives a good cartoon of what we see in the computation.
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The curve of minimum energy is
E different. It is not even the black A of Figure 1.
This is because, as described in [10,11,18], fine
phase laminates may result in homogeneous
macroscopic magnetizations § with 1§11 < 1.
More precisely, we may find a sequence mk e
L=(R2;S!) with

H
/ \ mk > £ = (£1.0) and
/ \ E(Hmkxp) — L€ - EH,.

Figure 1. Hysteresis along the easy axis of the ~ I1D€ €xpression for the limit energy on the rightl is
Stoner -Wohlfarth system. minimized at &; = 2H; for | H;l < 3.

DeSimone [10] has shown that the minimum is represented by the average magnetization £ and
results from the minimizing sequence ( mkyg) with

k( €1 ‘i‘< x2<£‘+‘k‘
mX(x) = : : , —o < j < oo, and
- t+£‘- <x3 <-‘%1-
1
A= 2(@HL + D).
We then have for H = (H;,0)
H O oM<

LS S X
.

Emin(D) = { AHjl+;  Hyl2

as shown for comparison in Figure 2. More generally, there is a relaxed functional which gives
the minimum energy of the system, cf. DeSimone [10] and Pedregal [39].

-1 -0,.5 Jo) 0,5

Emin

N o0 o W N - o

Figure 2. Sketch of minimum energy curve as
applied field varies along an easy axis



The hysteretic event in the computation of magnetization 8 4/12/95

5. Critical field and width of the hysteresis loop for the easy axis We shall exploit the
observation that the computation first seeks to resolve the closure domains, the first and last
columns of the computational domain, to estimate the critical field and the width of the hysteresis
loop. At this field value, the precursor magnetization m0 = te; loses stability. The estimate is
sought as a domain dependent correction to the Stoner-Wohlfarth critical field value Hsw = 2x.
The most important feature of this estimate is that it is independent of the mesh size.
Subsequently, we show that the new configuration, or any configuration with the magnetization of
end domains parallel to the applied field, is energetically unstable. Thus the energy falls, as in the
Stoner-Wohlfarth scenario, to its minimum value.

Assume that the applied field is decreasing so that m0 = ¢;. Let Qb denote the first and last
columns of £, the closure domains, and set

i h
m=m® = { S oaan =L 5.1)

We now write the energy

E(Hm) = E(Hep) + E(H‘“l)‘;hl:l‘m’“) 1Qh |

and determine a shadow energy

M) —
EsHm®) = E(Hep + lim E(H.m®) - E(H.e;)

im_ { o Ji Qb (.2)

Set

YOHE = gy EHm®) - EHe) and yOHE = lim yOHD. 63)

The convergence above is uniform in H and & as h — 0. The shadow energy will be
Es(HE) = E(Her) + QP yOXHE) (5.4)
A technical feature of working in two dimensions is that solutions of the equation
Au = divf, with fe L2(R2) (5.5)

are not in H!(R2) since the function u need not be square integrable over the whole space. Of
course, we never need u but only Vu, which is square integrable over the whole space, so we
introduce the space

V = {ue Hp (R2): Vue LAR?)). (5.6)
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Solving (5.5) in V leads to a slight ambiguity, which will be ignored, since u need not be
unique, although Vu is.

Consider the quantity

EHm®) - EMHe;) = J (@@m®) - p(e) - (m® - e)-H) dx

+3 l(IVu(h)lz — IVw?) dx, .7
R

where
9 h i h i 2
we V:Aw = 3 X and ube V:Au) = divmMyg in R2. (5.8)
Also introduce w, by
woe Vi Aw, = Xq in R2,
We express the difference of the field energies in (2.1) as an integral over Qb by writing

1 (IVu®2 - [Vw]2) dx = ! Vu® + w)-Vu® - w) dx
R R

ﬁl Vu® + w)-(mt) —e;) dx

{V(u(h) +wrE-endx . (5.9)
Q

In order to evaluate the integral in (5.9), we use some facts about w and u® which are
discussed in the appendix. Now u® is the solution of

Au() = divmyg

diveixq + div (€ - epyqh.
Introducing the functions
wgh) eV: Awfh) = a%lxgh and
wi) e v aws” = 3%7‘0"' (5.10)

we may write

u® = w o+ € - DwiD + Eawi?,
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M+ w= 2w + E; - l)wih) + §2w§h) , and

h
ow ) 3w§ ) 2 aw;(!h)

Py w awgh)
+ % + Bal1- gy + )

We rewrite this expression using (A.4). Before performing this reduction, note that, wo(x) =
Wo(x1,1 —x2). This also holds for w. Thus this symmetry property implies that

ow
éx_zdxz =0 O<a< L. (5.11)
Qr\{x1=a}

(h)

The same is true for w; . Hence

Vow+u®)er-8) = 2@1- D5+ €& - D&, - (+Exan + L(512)

where by (5.11),

j;ldx = 0.
Q

From (5.12) we have

(h)

p) ow
R! (Va®R2 = [Vw 2y dx = 2¢ -1) J‘Qhﬁdx + (§1-1)Iah (2175, — - (1 +ED) dx.

(5.13)

From (5.2) and (5.13), we have that

vIHE) = @) - o) - €1 -DH; +

W
1

ow 1 d
&1-1) ‘ﬁ_axld" * 5@1-1)3%(2&1———3,‘ ~A+E A (5.14)
. aw aw"
To pass to the limit as h — 0 in (5.14), we refer to the appendix to note that aTl and Tx-l_

may be represented in terms of certain subtended angles and are continuous in Qb, h > 0, from
which it follows by (A.9) and (A.13) that
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1
lim - g—;wde = Ig—:—vl'dxz = 3+ Eliﬁfez(z)dxz = A and (5.15)

aw aw®
h"_‘f‘o;!; S & = rI, S0 = L (5.16)

where I't = {x1= 0,0 <x2< 1}.
This gives that
VOXHE) = 9@ - o)) + & - DA- H)+ 5E - 12 (5.17)
At this point it is convenient to introduce
18 = @@ - ol + E1-Di+ 5 & -12 (5.18)
so that YOXH,E) = f(L - HyE).
Recall that if g(€), 1€ = 1, has alocal minimum at &, then
VeE,) & = 0, & & = 0, and
) L.l
V2gE) - E @&y - VeE) & 2 0. (5.19)
Hence & = e; is a stable minimum of (5.18) for
2 2,2.
o€ = x& or 9@ = x & if t <2, (5.20)
where x > 0. Moreover, f(2x,£) has its unique local minimum at § = —e).

Consider now the uniaxial or cubic anisotropy energy with x; - axis easy. We see that the
precursor magnetization m = e; of the shadow system is stable for

H, > -Hy where Hy = 2x - A, (5.21)
A= ML) = jg%d)@
|
= 1+ i (arctan - 51og (1+ @?). (5.22)

Wereferto A = ML) as the "magic number” of (0,L) x (0,1).

At H; = -H,, the stable magnetization is given by
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§ o= mi = { -1 in Qb

e] inQ\Qh

6. Complete shadow energy The shadow energy for the system (2.1) represents an effort to
account for the effect of the demagnetization energy in a more general region than a disc but
sufficiently simple that it can be easily calculated. Consider the special case Q = (0,L) x (0,1)
which we regard divided into square elements as described in §3. To assemble the shadow
energy, we shall assume that the magnetization m is constant in each column. By reducing in this
way the number of degrees of freedom, we are able to accumulate the effects of the oscillations in
the system without knowing their detailed structure. The complete simulated system, described in
§3, does not retain constant magentization in each column and, when the applied field is nearly
critical, evolves in a rather complicated fashion. For example, the intermediate plateaus on the
falling energy portrait have been associated with magnetization reversal of a final pair of
(horizontal) rows. Nonetheless, these events are confined to a very short interval of values of H
and the general nature of the curve is characterized satisfactorily by our shadow energy.

Divide Q = (O,L) x (0,1) into N columns D; separated by vertical segments Tj,

T; = {Rez = aj}, aj=jh, j=0,..,N, 6.1)
with

Dj = {a-1 <Rez<a}nQ j=1,..,N 6.2)

Consider magnetizations of the form

N
m = Y &xp,, l&il=1 6.3)
1

ueV: Au = divm. ©.4)
The exact induced field energy is given by

3 J Vumdx = 32 J Vuidx. 6.5)
i
To approximate (6.5), begin with the introduction of the 2N functions v{ by

eV Avp = 3o, k=12 j= L..N. (6.6)

We may write

w=28 6.7)
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and

0 e
%Jvumdx = %le)‘(g gtax; +§ §2ax2)dx+2 Zg(ézgllcéx—l +§ §23X2)d
J J

6.8)

Note that (v’; .vjz) satisfy the conditions (A.4). Using this and symmetry considerations, the

second integral is seen to vanish and we may write (6.8) in the form
1 1 ik ks [ OV
2 d’ Vumdx = 3 j;@’xél - &%) g-a_ﬁd"
j
v AV
1 2 1 2 2
+ 3 @D ]_!j-a—x?dx+(512) b[szdx) 69)

We shall approximate the integrals over the D; by integrals on the vertical segments Tx. We use
the approximations

™ Al
D.E = h.l'!.a—;ldxz = ~-hax for k >j,

J J

k k

ov av

~Ltax ~h [ =tdx2 = -hag for k<j, (6.10)
B 9x1 1o, X1

J i

with the convention that aj; = 0. Itis easily verified that ajx = ay; > 0. For j = k, we resort
to our usual limiting process. Let 6%(z) denote the angle subtended by Ty and z. Then, cf. A9,

ST
E(Z) = 5,02 + 6-'(2)), ze D;,

hj dxz and

av"
Tjgx—:-dxz = j'2—n(1c+e)—1(z))dx2 =1+ O®) as h—0.

Similarly,
j dx O®M?) as h—0.

We shall neglect the O(h) terms in these coefficients. For k > j, note that
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M | = — (6K - ek-1
31 @ = 35 6%2) - &1(2)),
1
ak = - I dexz . I 5q (6%1(z) - 6K(2)) dx2,
T 1 T

Now ajx = O(h), but we do not discard it since these terms are summed at various places. In
fact, note that

t
ay-a

1
f(ax—a) = 511; I 6k(z) dx; = :—tfarctan dt, a < ag.
0

Rez=a

For a = aj, ax—aj = h(k - j) and thus
1
. . 1 t
ax = f(k-j-Dh) - f(Gk-jh), f0) = * J’ arctan = dt.
0

Identical considerations lead to the same formula for ajx when j>k.

Using these approximations, we obtain a shadow approximation version of the induced
field energy

. - -
Jh2E)* + 3h j; ajk (B3¢ — ELED) 6.15)
with the ajx defined by (6.10). The complete shadow energy is
E(HE) = b Xo@) + 3@ - EH) + 3h X ax (el - ElE) (616

This expression contains, of course, all the information of the preceding analysis, but is perhaps
more difficult to manipulate, at least in the form given by (6.16). Let us use it to describe the easy
axis picture.

Introduce the angles t; by
& = (cost,sint), 0 <t < 2w j=1,..N, and
gy = oE).

The shadow energy assumes the form

1 1
EsHt) = h JZ(g(tj) + 3cos?tj - Hycost) — Ehj;‘ axcosti+t)  (6.17)

The equilibrium and stability conditions for a magnetization m of the form (6.3) are
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ViEs = 0 and VE; 2 0. 6.18)
Note that
%%Ef = g() - 3sin24 + Hsing + X agsin(t+ 1, (6.19)
%Q;‘_Es = g"(t)) — cos2tj + Hcostj + Z,ajk cos(t; + ty), 6.20)
j
%g—;g‘& = ajxcostj+ 1), j#k. (6.21)

Our tactic will be to solve (6.19) - (6.21) to within order h. For this reason we regard (6.21) as
being satisfied. The stability condition of (6.18) then reduces to checking the definiteness of a
diagonal matrix whose terms are given by (6.20). For ease of notation, we have replaced H;
with H. Consider the case where

¢ = x& or gr) = Ksin2t, kK > 3. ©6.21)

corresponding to a uniaxial material with easy axis parallel to the side of the rectangle. Pertinent
here is that g'(0) = g'(r) = Osothat m = e;)xq correspondingto t; =t = ... = tN = 0 is
always an equilibrium as well as m = —e;xq or any combination of t; = 0 or . In these
cases the critical field condition

is always satisfied. For large (positive) H, m = ej)Xn is a stable minimum. The condition
(6.20) which governs its stability is

19%E;

h .2
o;

=2-1+H+2ak 20, j=1..N (6.20)

and we ask for the value of H where a mode becomes unstable, that is, where one of the terms
above becomes negative.

The most systematic way to compute the sum in (6.20) is to return to the definition of the terms,
which allows us to interpret it in terms of the magic numbers of subdomains of Q. Now

-1 N
K = x o+ a
‘Sk:'a’k z%k kZ‘»’A 3k
N

-1 k k
avl avl
= —{Zn[ladxzi- k;l-i’;xldXZ}'*O(h).
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Let wi denote the solution of

. d
Awl = aTlej_l, Qj-l = Dju...UDj,

i1
sothat wi = Zv‘f and

owJ - I

3 002) - 6-1(2)) dxz
Tj-1 Tj-1

|
oy

=%

ted

[

|

| 3 6%) - mydx

Tj-1

1
[ 3:0%) + mydxz - 1
Tj—1

MG-Dh) - 1 = AGh) - 1 + Oh),

where A(s) is the magic number of (0,s) x (0,1). Thus

=1
gajk = 1 - Mjh) + O(h).

Similarly,

(@ = 1= ML-jh) + Ofh), and

ax = (1 - AGh) + (1 - ML-jh) + O).
In particular, note that A(0) = 1 so

ai = Xank =1 - ML) + O@).
This gives that

2% - ML) + H+ O(), j=landj=N, (6.21)

2x + 1 + H - (AGh) + ML -jh)) + O(h), j = 2,... ,N-1. 6.22)

1
h
192
h

QL Qv
E S dr

We now claim that

AMo) + ML-0) < Mo*) + ML-0*) < ML) +1 = ML) + M0), 0<o*<0o< ]2:
(6.23)
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To check this recall that

Ao) = % + f(o)
so that (6.23) reduces to checking that

f(o) + f(L-0) < f(c*) + f(L-0*) < f(L) + % = f(L) + f(0), 0<o*<0< I5".(6.24)

Now
1
f(0) + f(L-0) = ;‘;I(arczanlasmmn—l—) dt
(4] L-o
0
and
) t t =1_ 1 L
— tan— +arctan—— ) = t <0 for 0<o<35.
ao(a’° o T L-c) (o2+12+ (L—c)2+t2) or 2
2
Thus (6.24) holds. Hence, a212ss = é—zE;s , j € [N2], and
A

2 2 2
-a—E—s<i—E—s< <§2£$-. (6.26)

2 2 cee
oty ot %Np)

2
The first modes to become unstable are j = 1 and j = N and solving a_a:% = ( yields that
1

H = -Hi; + O(h) = -2x + AL) + O(), 6.27)
in agreement with our prior result.

At Hg,, the new configuration obtained by variation of the unstable 15t and Nth modes is given by

ti] =tn== and t2 = ... = tN-1 = 0. From (6.20), we obtain the stability condition
1 92E; .
h 32 = 2k -1 - Hy - z:ajk + 2a)N, i=1N (6.28)
3
2
%a l;:s = 2k -1+ He + ;aZk - 2(a;2 + a2N), j = 2,N-2, (6.29)
ot:

J

with similar expressions for 2 <j<N-2. We claim that (6.29) is negative at Hcy, and thus
the columns the closure domain are rendered unstable by magnetization reversal in the closure
domain. Repeating the argument we find that the stable configuration at H = —H; is given by



The hysteretic event in the computation of magnetization 18 4/12/95

m = -e1)Q, in other words, the system is unstable at -H;; and undergoes complete
magnetization reversal.

We evaluate (6.29) for j=2 which gives that

2
L% AL + 1- M2h) + ML-20) - 2aiz + a2
o

140 + 1= (§+ f2h) + 3+ fL-2h) - 2(3 - f)) + O(h)

—1+16m +0m) < 0

since f is decreasing and f(0)= 3.

As we mentioned above, the configuration givenby tj =t = tN-1j =tN =% and t3 = ... =
tN—2 = 0 is now unstable, and so forth.

Another situation easily amenable to the same analysis is when the applied field is varied along the
hardest axis corresponding to the present geometry with

o€ = xE?.

In this case, the precursor field m = e; loses stability at H = 2x+ A and, in contrast to the

easy axis situation, there is no critical event, but the magnetization slowly evolves until reversal is
complete at H = —(2x + A). Brief inspection shows that to satisfy (6.19) and (6.20) in this case,

JE;
j

o = 8@ - ';’sin 2tj + Hsinyj + ;ajk sin(tj + t) 0, (6.19)

-

with g(T) = X cos2t, gives rise to the equation

QU

%% = (<2x+1)cost; + H)sintj + 2ajksin(lj+lk_) = 0.
This is satisfied approximately by

costj = 21(%): for H near 2x+A.

and moreover in this range, (6.20) is positive.

7. Comparison with computation The table below summarizes our computational results. The
data for both cases were taken from computations on a 16 x 8 grid but these were identical to the
results from a 32 x 16 grid. In the uniaxial case the predicted value is nearly identical to the
computed one. Samples of graphical renderings of the computations appear in Figures 4 - 7. The
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range of values of the anisotropy constant x was chosen so the energy stored in a body of

constant magnetization was comparable to the induced field energy. To calculate the predicted
values of the critical field we used (5.23) for L =2 which gives a value A = 0.6 and

He = 2x - 0.6. 7.1)

uniaxial cubic
X Her ' Her Her
(predicted) (computed) (computed)
1 14 1.6 13
12 1.8 1.8 17
14 22 23 21
16 26 26 23
1.8 30 30 26
20 34 34 3

Table 1. Tabulated comparison of predicted and computed critical fields

We suspect that the variation we see in the cubic case owes primarily to the inadequacy of
m, = €] to serve as a precursor magnetization. A better precursor magnetization in this case
might be somewhat tilted from the xj - axis at the four corners of £. Inspection of Es as a
function of & for a range of values of H suggests that e; dwells in a more shallow well in the

cubic case than in the uniaxial one.

Computations of (2.1) with field varying along a hard axis have also been attempted. Our
preliminary results indicate that the computed and predicted applied fields at which the uniform
magnetization loses stability are in good agreement. In particular, the computations confirm that
the demagnetization energy acts to destabilize the precursor field, which is also the situation for the
field varying along the easy axis.
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3.5
3
2.5
2
—@— Her (predicted)
1.5 wocfflf <o uniaxial Her (computed)
—a— cubic Her (computed)
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Figure 3. Comparison of predicted and computed critical fields

<
©

40

20

Energy

=20

-4.0

-6.0

1 1 A ] 1 1 Jd 1 [l

40 -30 20 -10 00 10 20 30 40

Hi
the first component of the applied field

-8.0

Figure 4. Computed hysteresis picture for uniaxial anisotropy energy (2.2) with x = 1.6.
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Figure 5. Computed hysteresis picture for cubic anisotropy energy (2.3) with x = 1.6.
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Figure 6. Computed magnetization configuration for uniaxial anisotropy energy (2.2)
with x = 1.6 at field value H = (~2.1,0). This is in the metastable range.
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Figure 7. Computed magnetization configuration for uniaxial anisotropy energy (2.2)

with x = 1.6 at field value H = (-2.32,0). This is in the unstable range.

8. Other systems  Our conception is that most nonconvex computational optimization
problems result in hysteretic behavior. As an example we have begun investigation of the
Ericksen bar [13], which is a one dimensional version of a shape memory or pseudoelastic
material. Hysteretic patterns of stress vs. load parameter in the extension of shape memory
ribbons have been reported by Miiller and Xu [35] and by Ortin [38], as cited earlier. Their
observations, while quite different, share certain features, in particular the sequence of states
passing from stable to metastable to unstable. These experiments, in which the orientation of the
sample was not recorded, suggest attempting a simulation in one space dimension with an energy
density which is not convex. This amounts to studying the well known Ericksen bar, which is
also the topic of the analytic studies of Fedelich