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1. Introduction Simulations of magnetic and magnetostrictive behavior based on

micromagnetic theory exhibit hysteresis. These systems have a highly nonlinear character

involving both short range anisotropy and elastic fields and dispersive demagnetization fields.

Hysteresis occurs even in the absence of an imposed dynamical mechanism, for example, a

Landau-Lifshitz-Gilbert dissipative equation for the magnetic moment, and is symptomatic of the

way the system navigates a path through local minima of its energy space. It is not sensitive to the

particular method: we implement continuation based on the conjugate gradient method, although

the same results were obtained by other methods (eg., Newton's) as well. We strive to attain an

efficient algorithm with careful attention dedicated to the treatment of the demagnetization energy.

It is robust: computational experiments confirm that the shape of the loop is invariant over several

decades of mesh refinement. Nonetheless, the propensity of optimization procedures to become

marooned at local extrema when applied to nonconvex situations presents a fundamental challenge

to analysis. Understanding and controlling such phenomena present the opportunity to develop

predictive tools and diagnostics1.

Computational results and diagnostics, developed using contemporary nonlinear analysis, are

presented. As illustrations: Since the energy picture is mesh independent, computing on a fairly

coarse grid suffices to establish its character. In simple cases, the precise destabilization effect of

1 Supported by AFOSR 91 0301 and NSF DMS 911572 and by the ARO and the NSF through the Center for
Nonlinear Analysis at Carnegie Mellon University. Computational resources provided by the NSF through a
grant to the Pittsburgh Supercomputing Center.
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the induced magnetic field together with the width of the hysteresis loop may be determined

analytically in terms of a correction to the Stoner-Wohlfarth Theory [44].

The computation of microstructure based on continuum theory is one area where these problems

have been discussed [7,8,9,28,29,31,37], Recent related thoughts about hysteretic behavior,

principally in shape memory or pseudoelastic materials, may be found in [1,2,4,13,14,16,34,

35,38,42,45], We note in §8 that we have computed hysteresis for models of some of these

materials also. A conceptually different approach to the computation of magnetic hysteresis is

given by Giles et al. [15], cf. also [3].

A characteristic of the hysteretic cycle is that the system does not always assume a minimum

energy state. Theories and models of hysteresis (cf. [32,33,46] for compendia of these), pose

rules to describe the paths hysteresis follow, but not why hysteresis occurs. Basics of Preisach

modeling, for example, are given there and in Mayergoyz [33] and Wiesen and Charap [47]. This

type of phenomenological modeling is very useful in complex systems. It may accomodate

domain wall motion and active constraints whose precise behavior at the microstructural level is

extremely complicated.

2. Formulation We consider a two dimensional system governed by a magnetic anisotropy

energy cp(m) subjected to an external field H. This gives rise to a stored energy to which we add

the energy of the induced magnetic field, usually referred to as the demagnetization energy,

resulting in the functional

= f (<p(m)-H-m)dx + \ JlVul2dx, (2.1)

with

div (-Vu + mxn) = 0, I m I = 1 in Q.

The second equation embodies Maxwell's equations for magnetostatics. The constraint on the

magnetization m represents the requirement that the material be magnetically saturated. The

domain il is the region occupied by the magnet Equivalently, we may write

E(H,m) = f((p(m)-H-m)dx + \ fVumdx,

Typical forms for <p are

<p(m) = K(m2)2 (uniaxial) (2.2)

<p(m) = K(mim2)2 (cubic) (2.3)
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In the uniaxial case, when K > 0, ei is the easy axis and when K < 0, e2 is the easy axis. In

the cubic case, when K > 0, ei and ti are easy axes and when K < 0, ei ± e2 are easy axes.

In our simulations we chose Q = (OJL) x (0,1), a rectangle.

Our computational technique applies equally well to linear magnetostriction, cf. Clark [6]. A

major reason for studying both rigid magnets and linear elastic ones is to gain experience useful to

analyze highly magnetostrictive materials, cf. [10,11,12,17,18,193,21,22,23,24,25,26,41]. In

two dimensional linear magnetostriction, the material is endowed with a stored energy cp(e,m)

which has the form

<p(e,m) as cpei(e) + <pei/mag(e,m) + cp

e s i(Vy + VyT), I m I = 1, y the displacement.

The elastic energy <pel(£) is a typical linear elastic energy with cubic symmetry or lower. The

elastic/magnetic interaction has the form

9el/mag(£0n) = 1 bij Eij mimj .

Note that it is even in m. The anisotropy energy cpan(ni) is given by (2.2) or (2.3). The

analogue of (2.1) is

E(H,y,m) = J (cp(e,m) - m-H) dx + \ flVuPdx. (2.3)

Recently we have computed (2.3) for magnetostriction, we have not as yet obtained any estimates

which include the effects of elasticity [24].

For minimum energy at given H, one seeks

inf E(H,m) or inf E(H,y,m) subject to boundary conditions.
{Iml = 1} {Iml = 1}

The presence of a hysteresis curve in the ensuing computation is evidence that minimum energy is

not actually achieved. Nonetheless, it remains useful to know the relaxation of the energy E(H,m)

or E(H,y jn). We have computed some cases of the latter with Chipot [5] along the lines of

argument described in Kohn [27].

3. Description of hysteresis We describe the hysteretic event The hysteresis diagram for

the energy (2.1) is computed by continuation of resolved solutions with respect to decreasing and

increasing magnetic field applied parallel to the xi-axis, which is also the easy axis. The shown

curves in Figs 4 and 5 are the overlaid graphs of computed energies vs. a decreasing sequence of

applied fields and an increasing sequence of applied fields.



The hysteretic event in the computation of magnetization 4 4/12/95

The computational domain is a rectangle Q = (OX) x (0,1), usually with L = 2, and oriented

so that the xi axis is an easy direction. We partition Q into N1XN2 squares of side length h

= IVNi = I/N2 denoted by

Qij = {x e Q: ih < xi < (i + l)h, jh < X2 < (j| + l)h},

i = 0, . . . , N i - l , j = 0,l , . . . ,N2-1. The minimization of (2.1) is approximated in the space

Ah by the Polak-Ribiere version of the conjugate gradient method [40,43] where

Ah = { m: m is constant on each fty, i = 0 N i - 1 , j = 0,1,...,N2- 1}.

For a given initialization n, let TQi) denote the computed minimizer for the functional (2.1). Let

Ho be the maximum external field strength, n be a positive integer, and 6 = 2Ho/n. We

simulate the hysteresis by this algorithm:

1. Initialize m, set H = (Ho,0), and compute m° = T(m).

2. For k = 1,2,...3, set Hk = (Ho-k5,0) and compute mk = T(mk-*).

3. For j = 1,2,...41, set Hi = (-Ho+j8,0) and compute mi = T(mH1),with m° set

to mn from 2.

The shown diagrams in Figures 4 and 5 are then the overlaid graphs of (Hk, E(Hk,mk)) and
(Hi, E(HJ,mJ)).

We recall the essential features of this conjugate gradient algorithm. It is an optimization method

which resolves the magnetization (and displacements, when elastic effects are included) in all the

cells simultaneously. The induced or demagnetizing field is taken as a function of the

magnetization. The minimization algorithm requires the computation of energy and also the

gradient of the energy with respect to the discrete variables for a given set of m e Ah. We remark

that the most expensive feature of these computations is the determination of the averages of Vu

on the cells Qij, i.e.,

„- 1

We refer to Luskin and Ma [28,29] for details.

Our implementation is efficient; the subsequence hysteresis loop is computed in about three

minutes of CPU time at over 300 MFLOPS of the CRAY YMP-C90 at the Pittsburgh

Supercomputing Center.

The configuration begins at an absolute minimum of energy, or nearly so, for a large value
of HQ and remains in this state until Hk changes sign. For these values of Hk, mk « m°,



The hysteretic event in the computation of magnetization 5 4/12/95

which we refer to as the precursor magnetization. This precursor magnetization is quite close to

The system then traverses a metastable regime where it does not achieve minimum energy.

Some small oscillations are observed in this regime. The metastable regime ends in a critical field

range which appears to be characterized by the condition that the precursor magnetization becomes

unstable at the critical field,

E(Hcrjn) < ECHom0) for appropriate m.

In fact, it seems that the computation seeks to resolve the closure domains, or boundary columns

of the computational grid, first. We shall use this as the basis for our estimate of Her-

Near H = Her, the system suffers instability and witnesses rapid interior oscillations, the

evolution of microstructural domain configurations, and finally resolution to a nearly uniform state

of approximately absolute minimum energy. The behavior of the system is analogous to the

classical Stoner-Wohlfarth scenario [44], which we review below. Miiller and Xu [35] also

observe a stable/ metastable/ unstable/ stable sequence in the extension of shape memory ribbons.

We do not see this behavior when the applied field H is parallel to the hardest axis, which is X2

in the uniaxial case and xi ± X2 in the cubic case. Indeed, there is almost no hysteresis in the hard

axis uniaxial situation.

Here we are discussing only the major loops of the system, which are the overlaid graphs

mentioned above. We have also computed minor loops and the virgin magnetization curve.

Explicit computation of virgin magnetization curves based on minimum energy, cf. below, have

been given by DeSimone.

4. An elementary observation, the Stoner-Wohlfarth theory A glimpse at the Stoner-

Wohlfarth theory shows that the general outline of the energy portrait is already present when the

demagnetization energy is neglected and the system evolves by exchange of stability among local

minima. In their fundamental work, Stoner and Wohlfarth studied the behavior of the

homogeneously magnetized ellipsoid, exploiting the property, known to Dirichlet, that if the

magnetization is a constant vector parallel to a principle axis of the ellipsoid £2, then the solution of

Au = divmxn in R3

is linear when restricted to Q. In two dimensions, for example, with B the unit ball, it is easy to

check that for u satisfying

Au = div £XB in R2, £ constant, with Vu e L,2(R2),

we have that

Vu = | ^ in B and
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1 fVu-Edx = \ f l V u l 2 d x = f l £ l 2 . (4.1)
2 B 2 R 4

So if m is constant and I m I = 1, the induced field energy in (2.1) is simply a constant. In the

basic Stoner-Wohlfarth framework, the system is regarded as homogeneous with energy given by

the function

E(H,m) = cp(m) - m • H + \ (4.2)

per unit area.

Consider the uniaxial case with easy axis the xi-axis and choosing H = (Hi,0). Here,

E(H,m) has the appearance of a double well potential since it is given by

E(Hon) = -K(mi + —L)2 + const.

Following the easy axis starting with large positive Hi, we see that m = ei is an absolute

minimum for Hi > 0, it is stable for - 2 K < H I < 0, and unstable for Hi < - 2 K . In the

region Hi < 0, the absolute minimum is attained by - e i . We have drawn in Figure 1 the

absolute and relative minimizing energy curves obtained by following a cycle from (Ho,0) to (-

HQ,0) and returning to (Ho,0). The critical field is Hsw = 2K. We refer to this value as the

Stoner-Wohlfarth critical field.

Turning to the uniaxial case with hard axis the xi-axis, E(m,H) will have the appearance

of a convex function, indeed, denoting the anisotropy constant by -K, with K > 0,

E(Hjn) = K(mi - - 1 ) 2 + const.

Following the hard axis, we see that the system remains in a state of absolute minimum given by

m •!•<•
2K

]
-ei :

Hence the Stoner-Wohlfarth analysis gives a good cartoon of what we see in the computation.
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The curve of minimum energy is

different. It is not even the black A of Figure 1.

This is because, as described in [10,11,18], fine

phase laminates may result in homogeneous

macroscopic magnetizations £ with I £ I < 1.

More precisely, we may find a sequence mk e

with

m1 = £i,0) and
±F2

*1

Figure 1. Hysteresis along the easy axis of the ""» expression for the limit energy on the right is

Stoner -Wohlfarth system. minimized at %i = 2 H i for I H i I < \ .

DeSimone [10] has shown that the minimum is represented by the average magnetization \ and

results from the minimizing sequence (mkXB> with

6 1 - • - -

: + j , -o° < j < oo, and
-ei k + k < x 2 < k

1).

We then have for H = (Hi,0)

I? IHil < ̂

as shown for comparison in Figure 2. More generally, there is a relaxed functional which gives

the minimum energy of the system, cf. DeSimone [10] and Pedregal [39].

Figure 2. Sketch of minimum energy curve as
applied field varies along an easy axis
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5. Critical field and width of the hysteresis loop for the easy axis We shall exploit the

observation that the computation first seeks to resolve the closure domains, the first and last

columns of the computational domain, to estimate the critical field and the width of the hysteresis

loop. At this field value, the precursor magnetization m° ~ ±ei loses stability. The estimate is

sought as a domain dependent correction to the Stoner-Wohlfarth critical field value Hsw = 2K.

The most important feature of this estimate is that it is independent of the mesh size.

Subsequently, we show that the new configuration, or any configuration with the magnetization of

end domains parallel to the applied field, is energetically unstable. Thus the energy falls, as in the

Stoner-Wohlfarth scenario, to its minimum value.

Assume that the applied field is decreasing so that m° • ei. Let Qh denote the first and last

columns of fit, the closure domains, and set

m =

We now write the energy

EOlm) = E ( H , e 1 ) - H E ( H j P
| ^

( H > e i ) I Q M

and determine a shadow energy

Es(H,m(h)) = E(H,ei) + lim { m
 | Qh P " ^ * ' }\Qh\ (5.2)

Set

"" - E(H,ei)) and y<°)(H,£) = lim \|^h)(H,^). (5.3)

The convergence above is uniform in H and £ as h -»0. The shadow energy will be

Es(H£) = E(H,ei) + I Oh I y*°>(H£) (5.4)

A technical feature of working in two dimensions is that solutions of the equation

Au = divf,with f€ L2(R2) (5.5)

are not in HJ(R2) since the function u need not be square integrable over the whole space. Of

course, we never need u but only Vu, which is square integrable over the whole space, so we

introduce the space

V = {ue Hjoc(R2):VueL2(R2)}. (5.6 )
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Solving (5.5) in V leads to a slight ambiguity, which will be ignored, since u need not be

unique, although Vu is.

Consider the quantity

E(H,m(n)) - E(H,ei) = J ((p(m(h))-<p(ei)--(m(n)--ei)-H)dx

+ \ f(|Vu(h)|2-|Vwp)dx, <5-7>
R*

where

w e V:Aw = •?— %Q and u ^ e V: Au(h) = divm(h)xa i*1 R2- (5.8)

Also introduce w0 by

w o e V: Aw0 = XQ. in R2-

We express the difference of the field energies in (2.1) as an integral over Clh by writing

= j V(u(h> + w).(m(h> - ei) dx

ei)dx . (5.9)

In order to evaluate the integral in (5.9), we use some facts about w and u^) which are

discussed in the appendix. Now u^) is the solution of

= div:

= div eiXT2 + div (£ -

Introducing the functions

w{ h ) e V: Awfh) = ^ X Q h and

wi e V: Av/X = 5T"XQh • (5.10)
2 ^ dX2 ^

we may write
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w = 2w + (£i - l)wf° + fcwj0 , and

-* (h) -, (h)
dw OW 1 OWj

We rewrite this expression using (A.4). Before performing this reduction, note that, wo(x)

wo(xi,l - X2>. This also holds for w. Thus this symmetry property implies that

J | ^ d x 2 = 0, 0 < a < L. (5.11)
}

The same is true for wj . Hence

I dx = 0.

3w [
V(w + u<»).(ci - §) = 2(gi - 1) ̂  + £1 - l)(2£i - ^ - (1 + SOxnh) + I, (5.12)

whereby (5.11),

J

From (5.12) we have

|(|Vu(h)|2-|Vw|2)dx

(5.13)

from (5.2) and (5.13), we have that

|^dx + 2fti-i)^-(26i-5j--(i + 6i))fc. (5.14)

9w
To pass to the limit as h -> 0 in (5.14), we refer to the appendix to note that K— and

may be represented in terms of certain subtended angles and are continuous in Qh, h > 0, from
which it follows by (A.9) and (A. 13) that
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1
1 l f ~ ' v ' = K and (5.15)

dw<°>
<5 1 6>

where H = { xi = 0,0 < X2 < 1 }.

This gives that

V«»(H£) = <p£) - 9 ( e i ) + ( g i - l X X - Hi)+ ± ( $ i - l ) 2 . (5.17)

At this point it is convenient to introduce

f(t£) = » ® - <p(ei) + (S i - l ) t+ f ( ^ i - l ) 2 , (5.18)

so that v(°)(Hf§) = f(X- Hi,^).

Recall that if g(£), I § I = 1, has a local minimum at £o, then

£ = 0, 5o tf « 0, and

0 > 0. (5.19)

Hence 4 = e l is a stable minimum of (5.18) for

2 = K ^ J ^ i f t < 2 K , (5.20)

where K > 0. Moreover, f(2K,£) has its unique local minimum at t, = -ci.

Consider now the uniaxial or cubic anisotropy energy with xi - axis easy. We see that the

precursor magnetization m = ei of the shadow system is stable for

Hi > -Her where Hcr = 2K - X, (5.21)

(5.22)

We refer to X = ML) as the "magic number" of (0,L)x(0,l).

At Hi = -Her, the stable magnetization is given by
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infth

= m(h) = { "ei -:

6. Complete shadow energy The shadow energy for the system (2.1) represents an effort to

account for the effect of the demagnetization energy in a more general region than a disc but

sufficiently simple that it can be easily calculated. Consider the special case Q = (OX) x (0,1)

which we regard divided into square elements as described in §3. To assemble the shadow

energy, we shall assume that the magnetization m is constant in each column. By reducing in this

way the number of degrees of freedom, we are able to accumulate the effects of the oscillations in

the system without knowing their detailed structure. The complete simulated system, described in

§3, does not retain constant magentization in each column and, when the applied field is nearly

critical, evolves in a rather complicated fashion. For example, the intermediate plateaus on the

falling energy portrait have been associated with magnetization reversal of a final pair of

(horizontal) rows. Nonetheless, these events are confined to a very short interval of values of H

and the general nature of the curve is characterized satisfactorily by our shadow energy.

Divide Q = (0JL)x(0,l) into N columns Dj separated by vertical segments Tj,

Tj = { Re z = a j } , aj = jh, j = 0,.. . , N, (6.1)

with

Dj = { aj-i < Re z < aj} n £2, j = 1,..., N. (6.2)

Consider magnetizations of the form

N
m = X & D j , | £ i | « 1. (6.3)

Let

u e V: Au = div m. (6.4)

The exact induced field energy is given by

\ f Vum dx = \ X Jf Vu-£ dx . (6.5)

To approximate (6.5), begin with the introduction of the 2N functions v£ by

v£ € V: A 4 = ^ X D j . k = U , j = 1,...,N. (6.6)

We may write

u = X 4 v£ (6.7)
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and

(6.8)

Note that (v\ .v^) satisfy the conditions (A.4). Using this and symmetry considerations, the

second integral is seen to vanish and we may write (6.8) in the form

We shall approximate the integrals over the Dj by integrals on the vertical segments Tk. We use
the approximations

for

- h J 5- idx 2 = - h a j k for k < j , (6.10)

Tj-1

with the convention that ajj = 0. It is easily verified that ajk = akj > 0. For j = k, we resort
to our usual limiting process. Let O^z) denote the angle subtended by Tk and z. Then, cf. A.9,

l •= i(8J(z) + BJ-l(z)), ZG Dj,

f M f 3 v l
^rr-dx « h ^rdx2 ,and

I^r i 1 + O(h) as

Similarly,

J ^ d x =0012) as h-»0 .

We shall neglea the O(h) terms in these coefficients. For k> j , note that
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dvk d J
j

Now ajk = O(h), but we do not discard it since these terms are summed at various places. In

fact, note that

1

f(ak-a) = ^ J 9fc(z)dx2 = £ farctan-^dt, a < ak.
Re z = a o

J
Re z = a

For a = aj, ak-aj = h ( k - j ) and thus

l

ajk = f((k-j-l)h) - f((k-j)h), f(o) = J farctan^dt.

0

Identical considerations lead to the same formula for ajk when j > k.

Using these approximations, we obtain a shadow approximation version of the induced

field energy

\ h X(Sl)2 + \ h 1^ ajk 0&2 " &\) (6.15)

with the ajk defined by (6.10). The complete shadow energy is

= h X((p($) + i ( ^ ) 2 - $\Hi) + ^h .5^ ajk

This expression contains, of course, all the information of the preceding analysis, but is perhaps

more difficult to manipulate, at least in the form given by (6.16). Let us use it to describe the easy

axis picture.

Introduce the angles tj by

£i = (cos tj, sin tj), 0 < tj < 2rc, j = l N, and

g(tj) = <(X£).

The shadow energy assumes the form

Es(H,t) = h X(g( t j ) + ^cos2tj - Hicostj) - \ h . 5 ^ ajk cos(tj + tk) (6.17)

The equilibrium and stability conditions for a magnetization m of the form (6.3) are
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VtEs = 0 and VJE, > 0. (6.18)

Note that

1 dEs l
"5T 8f(t) i 2 tT 8(j) 2 j + Hsintj + J>,ajksin(tj + tk), (6.19)

= g"(tj) - cos2tj + Hcostj + JLajkCos(tj + tk), (6.20)

H
l~~* ' ),}*k. (6.21)

Our tactic will be to solve (6.19)-(6.21) to within order h. For this reason we regard (6.21) as

being satisfied. The stability condition of (6.18) then reduces to checking the definiteness of a

diagonal matrix whose terms are given by (6.20). For ease of notation, we have replaced Hi

with H. Consider the case where

cp(£) = K ^ or g(x) = Ksin2!, K > \ . (6.21)

corresponding to a uniaxial material with easy axis parallel to the side of the rectangle. Pertinent

here is that g*(0) = g'(rc) = 0 so that m = eiXn corresponding to ti = t2 = ... = tN = 0 is

always an equilibrium as well as m = -eiXQ o r ^ y combination of tj = 0 or n. In these

cases the critical field condition

E l l - O ' J ' - 1 N

is always satisfied. For large (positive) H, m = ciXo. is a stable minimum. The condition

(6.20) which governs its stability is

= 2K - 1 + H + Xajk ^ 0, j = 1 N. (6.20)

and we ask for the value of H where a mode becomes unstable, that is, where one of the terms

above becomes negative.

The most systematic way to compute the sum in (6.20) is to return to the definition of the terms,

which allows us to interpret it in terms of the magic numbers of subdomains of £2. Now

N

j - l - \ k N -vk
S CV CFVi iM1 y
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Let wi denote the solution of

Awi =

so that wi = X Vj and

J l?7d x2 = J 2
Tj-i O X 1 Tj-i

= J ^(eO(z)-7C)dx2
Tj-i

= J ^(e°(z) + Jl )dx 2 - 1
Tj-i

- 1 = 7d(jh) - 1 + O(h),

where Ms) is the magic number of (0,s)x(0,l). Thus

i-i
La jk = 1 - XGh) + O(h).

Similarly,

N

X ajk = 1 - X(L-jh) + 0(h), and

O(h).

In particular, note that X(0) = 1 so

£ a i k = ^ a N k = 1 - X(L) + O(h).

This gives that

= 2K - ML) + H + O(h), j = 1 and j = N, (6.21)

= 2K + 1 + H - (X(jh) + ML-fr)) + O(h), j = 2 N-l. (6.22)

We now claim that

X<a) + X(L-a) < Mo*) + ML-c*) < X(L) +1 = X(L) + X(0), 0 < a * < a < | .

(6.23)
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To check this recall that

X<c) = \ + f(a)

so that (6.23) reduces to checking that

f(G) + f(L-G) < f(o*) + f(L-G*) < f(L) + 5 = f(L) + f(0), 0<G*<G< | . (6 .24)

Now

f(c)

X

+ f(L-G) = - [(arctan- + arctan ) dt
J G L-G

and

— (arctan - + arctan; ) = ( ~ + „ ~ 0 ) t < 0 for 0 < a < « .
do G L-G G2 + t2 (L-G^ + t2 2

Thus (6.24) holds. Hence, — y = - y 8 - , j < [N/2], and
3t dtdtN_j

dt2 dt2 []

The first modes to become unstable are j = 1 and j = N and solving — y = 0 yields that
dt

H = -Her + O(h) = - 2 K + JL(L) + O(h), (6.27)

in agreement with our prior result.

At Her, the new configuration obtained by variation of the unstable 1st and N1*1 modes is given by
tj = tN s ft and t2 = ... = tN-i = 0. From (6.20), we obtain the stability condition

a 2K - 1 - Her - Zajk + 2aiN, j = 1.N (6.28)

= 2K - 1 + ^ + Xa2k - 2(ai2 + a2N), j = 2 , N - 2 , (6.29)

with similar expressions for 2 < j < N - 2. We claim that (6.29) is negative at Her, and thus

the columns the closure domain are rendered unstable by magnetization reversal in the closure

domain. Repeating the argument we find that the stable configuration at H = -Her is given by
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m = -eiXQ* m o t h e r words, the system is unstable at -Her and undergoes complete

magnetization reversal.

We evaluate (6.29) for j = 2 which gives that

1
n ^ = X(L) + 1 - <M2h) + A<L-2h)) - 2(a!2 + a2N)

= \ + f(L) + 1 - {\ + f(2h) + 5 + f(L-2h)) - 2(5 - f(h)) + O(h)

= - \ + f(h) + O(h) < 0,

since f is decreasing and f(0) = ^ •

As we mentioned above, the configuration given by ti = t2 = tN-i = tN = TC and t3 = ... =

tN-2 = 0 is now unstable, and so forth.

Another situation easily amenable to the same analysis is when the applied field is varied along the

hardest axis corresponding to the present geometry with

j) - ^sin2tj + Hsintj + X ajk sin(tj + tk) = 0, (6.19)

In this case, the precursor field m = ei loses stability at H = 2K + X and, in contrast to the

easy axis situation, there is no critical event, but the magnetization slowly evolves until reversal is

complete at H = -<2K + X). Brief inspection shows that to satisfy (6.19) and (6.20) in this case,

j ^ " ^ 1 =

with g(x) = K cos2!, gives rise to the equation

j - ^ j - 1 = ( - (2K + 1) cos tj + H)sintj + X ajk sin(tj + tk) = 0.

This is satisfied approximately by

costi = r for H near 2K + X.
J 2K + X

and moreover in this range, (6.20) is positive.

7. Comparison with computation The table below summarizes our computational results. The

data for both cases were taken from computations on a 16x8 grid but these were identical to the

results from a 32 x 16 grid. In the uniaxial case the predicted value is nearly identical to the

computed one. Samples of graphical renderings of the computations appear in Figures 4 - 7 . The
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range of values of the anisotropy constant K was chosen so the energy stored in a body of

constant magnetization was comparable to the induced field energy. To calculate the predicted

values of the critical field we used (5.23) for L = 2 which gives a value X « 0.6 and

= 2K - 0.6. (7.D

K

1

12

1.4

1.6

1.8

2.0

Her

(predicted)

1.4

1.8

12

2.6

3.0

3.4

uniaxial

Her

(computed)

1.6

1.8

23

2.6

3.0

3.4

cubic

Her

(computed)

13

1.7

2.1

13

16

3

Table 1. Tabulated comparison of predicted and computed critical fields

We suspect that the variation we see in the cubic case owes primarily to the inadequacy of

m0 = ei to serve as a precursor magnetization. A better precursor magnetization in this case

might be somewhat tilted from the xi - axis at the four corners of Q. Inspection of Es as a

function of £ for a range of values of H suggests that ei dwells in a more shallow well in the

cubic case than in the uniaxial one.

Computations of (2.1) with field varying along a hard axis have also been attempted. Our

preliminary results indicate that the computed and predicted applied fields at which the uniform

magnetization loses stability are in good agreement In particular, the computations confirm that

the demagnetization energy acts to destabilize the precursor field, which is also the situation for the

field varying along the easy axis.
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3.5 -r

3 ••

2.5 --

2 --
Her

0.5 --

Her (predicted)

uniaxial Her (computed)

cubic Her (computed)

1.2 1.4 1.6 1.8

Figure 3. Comparison of predicted and computed critical fields
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\

©

©

o

p

' -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

Hi
the first component of the applied field

Figure 4. Computed hysteresis picture for uniaxial anisotropy energy (2.2) with K = 1.6.
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Energy

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

Hi
the first component of the applied field

Figure 5. Computed hysteresis picture for cubic anisotropy energy (2.3) with K = 1.6.

x2

Figure 6. Computed magnetization configuration for uniaxial anisotropy energy (2.2)

with K = 1.6 at field value H = (-2.1,0). This is in the metastable range.



The hysteretic event in the computation of magnetization 22 4/12/95

x2

xl

Figure 7. Computed magnetization configuration for uniaxial anisotiopy energy (2.2)

with K = 1.6 at field value H = (-2.32,0). This is in the unstable range.

8. Other systems Our conception is that most nonconvex computational optimization

problems result in hysteretic behavior. As an example we have begun investigation of the

Ericksen bar [13], which is a one dimensional version of a shape memory or pseudoelastic

material. Hysteretic patterns of stress vs. load parameter in the extension of shape memory

ribbons have been reported by Miiller and Xu [35] and by Ortin [38], as cited earlier. Their

observations, while quite different, share certain features, in particular the sequence of states

passing from stable to metastable to unstable. These experiments, in which the orientation of the

sample was not recorded, suggest attempting a simulation in one space dimension with an energy

density which is not convex. This amounts to studying the well known Ericksen bar, which is

also the topic of the analytic studies of Fedelich and Zanzotto [14] and Truskinovsky and Zanzotto

[45]. The computation becomes a one dimensional version of (2.1), without, however, the

induced field energy. We reproduced the general features of the experiments, but further

investigation is necessary to understand if many details are also reproduced by our computations.

Consideration of the shape memory ribbon as governed by a random hamiltonian has been studied

by Sethna et.al [42].

Appendix: a primer on solutions This section is an informal review of the properties of

solutions of the equation

U€ V: Au = div£xA» with % e R2 constant. (A.I)

By combining the jump conditions implied for du/9v across 3A with the Plemelj Formulas for

Cauchy Integrals, cf. Muskhilishvili [36], an explicit representation for du/9z is easily derived.

When £ = ei, say, and A = Q, Qh, or Dh, one of the rectangular regions which arise here,

du/9xi has a simple representation in terms of sums of angles subtended by certain vertical

segments of 9A.
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Let A be a finitely conneaed region with piecewise smooth boundary 9A and let
andu2 denote the solutions of

uo€ V: (A.2)

V: (A.3)

where, as before,

V : V U G L2(R2)},

which glosses over the fact that u itself need not be square integrable over the entire space since

we are working in the plane. Equivalently,

V:
R

= f'R V, j = (A.3f)

3iio
It is easy to check that UJ = 3-—, j = 1,2. Standard regularity theory applied to (A.3), or

noting that Uo e H^(R 2 ) , shows that u e H | ^ ( R 2 ) , 1 < p < ~ . We note that

div (ui,U2) = XA curl (ui,u2) = 0 in R2. (A.4)

Moreover,

dz

dui
is holomorphic in R ^ A . Hence we may represent -jg1 as a Cauchy integral on 3A with

respect to an appropriate density. (A.3) and the piecewise smooth property of 9A imply that

dv

dt

du~

du

J

= 0,

v = outward pointing normal, x = tangent

where + denotes the limit taken on approach from inside A and - denotes the limit taken on
approach from

For any function u,

ax
du VI V2J

Vu or Vu =
( V2 vi
I,-vi v2

du
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Hence

CrU C/U CTU z * »\
3 - = (V2 + iVi)— + (Vi - 1V2/T". (A-5)
»Z d l oV

Thus

-^- - -g -̂ = (vi - iV2)Vj on 3A, j = 1,2, (A.6)

and according to the Plemelj Formula

— (vi-iV2)Vidt, j = 1,2. (A.7)
dA

Now suppose that A is a rectangle with boundary consisting of segments parallel to the

coordinate axes. Indeed, suppose that

3A = Ti u T2 u C, where

Tj = { z e 3A: xi = aj }, with ai < a2,

and C consists of the segments parallel to the X2 axis. Then Vi = 0 on C and

$rrz
di< z

T2

(If one does not write (A. 8) as a contour integral, the sign of the first term is reversed.) The real
parts of these integrals are merely the angles subtended by z and Ti and T2. For example, with
8j(z) denoting the angle subtended by z and Tj,

, Z€ A.

Now 6i(z) —» ic as z —» Ti, giving that

duj j 1

Similarly in view of (A.8),

Am
), Rez > a2* and

iel(z), zeT2.
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In general, we have the expression

^ (Oi(z) + 62(z))

25

Rez<ai

i < Re z < a2

Rcz>a2

4/12/95

(A.9)

where 0j(z) = the angle subtended by z and the segment Tj, j = 1,2.

We consider two special cases. Let A = Aj, = (04i)x(0,l) and consider Uj with

Thus, with the obvious notations,

du(h)

du'(h)

T2.h

), Z 6 Ah.

We Anther see that

du'" du(h)
1 'z) = Umn-57-(z) = 1, z e T i and

du'f 1
lim 4 - ^*

(h)

(A.11)

(A.12)

For the special case where A = ft = (OJ^)x (0,1), retaining the notation w = ui employed in

the body of the paper, and dropping the superscript +,

9w 1 l t l ~ t v _ ¥ . ,K 1ON

£ - ) , ze H, Imz = t,and (A.13)

1 1 f
2 + 2nj 2Z x2 -

1 1 . 1 L

(A.14)

Other situations may be calculated by superposition. For example, consider the region A

or A = Dh. For definiteness, we take A = UK Let Ti = { xi = h, 0 < x2 < 1}
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and I^ = { xi = L - h , 0 < X2 < 1}, and denote by 6^(z) the angle subtended by rj1 and z.

Using (A.9) for each rectangle, we have for

that

62(z) -6$(z)), 0 < xx < h, and

62(z) - e£(z)), Rez = 0,and
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