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(I). Introduction

One of the most striking features of many turbulent fluid and

plasma systems is the emergence and persistence of large-scale

organized states, or coherent structures, amidst the small-scale

turbulent fluctuations. In large Reynolds number two-dimensional

hydrodynamics, a coherent state typically appears in the form of a

large-scale mean vortical flow# while the vorticity field itself

develops fine-scale spatial oscillations [1,2,3]. In slightly

dissipative two-dimensional magnetofluids, the magnetic field and

velocity field fluctuate wildly on small scales, while coherent

structures emerge in the form of macroscopic magnetic and kinetic

islands [4,5,6]. In this paper, we will discuss another turbulent

system, the two-dimensional microtearing system of plasma physics,

which has the tendency to develop persistent organized macroscopic

states in the midst of microscopic disorder. This behavior of the

microtearing system has been demonstrated by the numerical

simulations of Craddock et al. [7].

In this note, we propose a model that predicts the properties

of coherent structures in the two-dimensional microtearing system.

This feature of the turbulence is naturally modeled as a

statistical equilibrium phenomenon. Our approach is information-

theoretic in spirit [8,9], and is very much in accord with the

Jaynesian theory of statistical mechanics and statistical inference

[8]. In characterizing the relaxation of the system into a

coherent state, we appeal to the general principle that entropy is



maximized subject to constraints imposed by the underlying

dynamics. These constraints are dictated by the global conserved

quantities associated with the ideal (i.e., nondissipative)

microtearing dynamics. By solving the constrained maximum entropy

problem, we obtain a most probable macrostate, which quantifies

both the large-scale mean field and mean electron density, and the

small-scale fluctuations present in the turbulent relaxed state.

The essence of our approach is to introduce a macroscopic

description of the turbulent state of the microtearing system. A

macrostate is taken to be a local joint probability distribution,

or Young measure [10,11], px on the values of the magnetic field and

the electron density at each point x in the spatial domain D. In

other words, at a given point x in D, we no longer have well

determined values of the magnetic field and the electron density,

but only a probability distribution on the possible values.

Because of the extremely intricate small-scale behavior of the

system, this macroscopic description is intuitively appealing.

Further justification for the introduction of this macroscopic

description will be given below.

Our model for coherent structures in the microtearing system

is largely motivated by the recent statistical theories of Robert

et al. [12,13] and Miller et al [14,15] of coherent structures in

ideal two-dimensional hydrodynamics. In these theories, a

macrostates is taken to be a local probability distribution, or

Young measure, on the values of the fluctuating scalar vorticity.

In the Robert theory, the most probable macrostate is determined as



a maximizer of an appropriate entropy functional subject to

constraints imposed by the conservation of energy, and the infinite

family of generalized enstrophy integrals under the Euler dynamics.

The model of Miller et al., which is based on a canonical Gibbs

ensemble theory and also incorporates the complete family of

integrals conserved by the two-dimensional Euler dynamics, is

conceptually different from the Robert approach, but yields

identical predictions.

We have applied similar techniques to model coherent

structures in two-dimensional magnetohydrodynamic turbulence

[16,17,18]. Other recently proposed models of coherent structures

in magnetohydrodynamics have been developed by Gruzinov and

Isichenko [19,20] and Kinney et al. [21].

(II) . The two-dimensional microtearina system

The model equations for ideal two-dimensional microtearing

relaxation can be expressed neatly in appropriately normalized

variables as

(1)

). (2)

Here, A is the magnetic flux function, or vector potential, N is

the electron density, and J is the current density defined by

J=-AA. The Poisson bracket d(*,*) is given by

l 9 - M 9
dxdy Bydx



These equations are assumed to hold in a simply connected bounded

spatial domain DCS? with smooth boundary dD. For simplicity, we

assume that the normal component of the magnetic field B^(Ayf-Ax)

vanishes on dD; that is

B.n\dD=O, (4)

where n is the outwardly directed normal to the boundary. We also

impose the boundary conditions

A=0, N=0 on dD. (5)

The system (l)-(2) describes relaxation in a finite pressure,

nonelectrostatic isothermal two-dimensional plasma [7,22,23].

Equation (1) is simply an expression of Ohm's law, and Equation (2)

corresponds to electron continuity. For a derivation of these

equations, and discussion of their physical relevance, the reader

is referred to [7,23]. It is of interest to note that the

microtearing system is also a special case of electron

magnetohydrodynamics, which is a three-dimensional evolution

equation describing the dynamics of the large-scale magnetic field

of a fast moving plasma [22,24], viz,

||=Vx((VxB)xS). (6)

Indeed, choosing B=(fAy/-Ajr/W) in Equation (6) formally leads to the

Equations (l)-(2).

A classical solution of the ideal microtearing system

conserves flux, cross-correlation, and energy. These quantities

are given by, respectively,



fi(A)dx§ (7)

D
Nfi(A)dxt (8)

±f (\B\2+N2)dx. (9)

The functions ft in (7) and (8) must satisfy certain regularity

conditions# but are otherwise arbitrary. Thus, there is an

infinite family of conserved flux integrals, and an infinite family

of conserved cross-correlation integrals. That these functionals

are invariant under the dynamics can be verified directly by

differentiating with respect to time, and using the boundary

conditions (4)-(5), the equations of motion (l)-(2), and properties

of the Poisson bracket (3). To the best of our knowledge, these

are the only invariants of the motion.

As these conserved quantities play a central role in the

statistical model developed below, we now briefly comment on their

physical significance. The meaning of the energy functional is

obvious. The flux and cross-correlation integrals are most readily

interpreted by choosing f((s)=l for s>ot, fi(s)=O otherwise, for an

indexed family of constants or In the topologically trivial case

in which the flux tubes form a regular nested family, Ft and Hit are

equal to the total area and total electron density within flux tube

i. Thus, under the evolution (l)-(2), each flux tube distorts in

a highly convoluted and intricate manner, while preserving its area

and electron density.



Despite the constraints imposed by the conservation of energy,

flux and cross-correlation, the state variable

U(x,t) = (B(x,t) ,N(x,t)) may evolve in a very complex and irregular

fashion, with the magnetic field and electron density characterized

by intermittency and intricate small-scale fluctuations, much like

the behavior of the magnetic field and the velocity field in two-

dimensional magnetohydrodynamics [4,5,6], or the vorticity field in

the two-dimensional Euler system [1,2,3]. The numerical

simulations of Craddock et al. [7], which address a dissipative

version of equations (l)-(2) in which the collisional resistivity

is negligible compared with the cross-field particle diffusivity,

clearly demonstrate the complicated behavior of the magnetic field.

They find that starting from random initial conditions, the field

evolves to a state consisting of long-lived isolated current

filaments and small-scale fluctuations. The evolution is further

characterized by a cascade of magnetic flux to large scales and a

cascade of magnetic energy to small scales. Under the ideal

dynamics (or in the situation in which the collisional resistivity

and the cross-field diffusivity are of the same order of magnitude,

but extremely small), we expect that the electron density would

also exhibit intricate small-scale fluctuations together with

persistent large-scale organized states. The model developed below

attempts to capture, at least partially, both the intricate small-

scale oscillations and the macroscopic coherent structures that are

present in this turbulent relaxed state.



III. Microscopic and macroscopic descriptions

The key idea behind the statistical model is to introduce a

macroscopic description of the microtearing system. The state

variable U=(B,N), which evolves according the equations (l)-(2), is

viewed as a microscopic description of the system. Due to its

tendency to display complicated behavior on increasingly small

scales as time evolves, the microstate U does not furnish a useful

description of the long-time behavior of the system. It is

natural, therefore, to introduce a macroscopic, or coarse grained,

description that represents the state of the system in a more

suitable manner. Such a description is furnished by a local

probability distribution, (px)xeD, on the values of fluctuating

microstate U(x) at each xeD. Thus, for each xeD, px is a

probability measure on B?, the range of the values of U(x) .

Intuitively, for any (Borel) set ACS?,

where Nt(x) is a neighborhood of x in D, with diam Nt(x)<l, and |s|

denotes the volume (or Lebesque measure) of the set S. Thus, px(A)

represents the probability that (or frequency with which) a

macrostate U takes values in the set A when sampled in an

infinitesimal neighborhood of x. The macrostate p varies slowly

with x, while U varies rapidly with x, and for any infinitesimal

cell dx over which p is effectively constant, U behaves like a

random variable with distribution p. The macrostate p has the



advantage that it encodes only partially the infinitesimal scale

fluctuations of the microstate, as it ignores the extremely complex

local arrangements realized by these fluctuations. The family of

local probability distribution (px)xeD
 i s referred to in the context

of nonlinear analysis as a Young measure [10]. The Young measure

arises naturally in the study of fine structures in crystalline

solids and other materials with order [25,26]. As mentioned in the

introduction, Robert et al. [12,13] and Miller et al. [14,15]

utilized the Young measure to characterize coherent vortex

structures in two-dimensional Euler turbulence.

There is a natural description of the system by Young

measures, at least for finite time. Indeed, the trivial

macrostates

provide such a description. However, the macroscopic description

is really intended to capture the long-time behavior of the system.

Thus, a macrostate p^iPxJxeu c a n ^ e conceptualized as a possible

limit as t-*» of (perhaps a subsequence of) the Dirac masses p*. It

is not difficult to show that, because of the conservation of

energy, the family of measures {&}&«,,*>) is tight (or weakly

relatively compact) [27], so that any sequence of the {&} has a

weakly convergent subsequence. That is, for any bounded continuous

function g(x,u) , and for any sequence of the p? on DxB8, we have

(at least for a subsequence)

8



*u) dp*{u) dx

JJ Sr(x, u) dpx{u) dx

Note that the Young measures are closed in the space of bounded

Radon measures on D*B? with respect to weak convergence [11,12].

Thus, any weak limit must be a Young measure. These theoretical

considerations justify, at least partially, the introduction of the

parameterized measure {px)x^D as a description of the long-time

behavior of the microtearing system.

IV. Admissible macrostates and the maximum entropy principle

The conservation of energy, flux, and cross-correlation impose

important constraints on the state variable £7, as was discussed in

Section II. Indeed, as the behavior of the system becomes

increasingly complicated with time, the invariance of the

functionals (7)-(9) furnishes perhaps the only tangible information

about the system after some period of time. The invar iance of

these functionals translates under the weak convergence into

corresponding constraints on the possible long-time macroscopic

states p, as we shall now demonstrate.

For a parameterized measure P={px}xeD'
 w e define the

functionals



dpx(u) dx=± [ (b2+n2)dp, (12)
2 J DxMr

H± (p) -fJHx) f± (A (x) )dx. (13)

dxi (14)

where u=(b,n) with beB?,neR running over the ranges of the magnetic

field and electron density, respectively, and

=f ndpx{u) , (15)

is the local mean electron density. We have also defined the local

mean magnetic field:

f (16)

Since, for an arbitrary parameterized measure pxf the corresponding

B(x) need not be divergence free or satisfy the boundary condition

B*n\nD-0 , some care must be taken in defining the local mean flux

function A(x) . We note that if the "energy11 E(p) of the measure p

is finite, then B(x) eL2(D:B?) . A(x) is then defined by the

relationship

A (x) =cur 1 -1 iProjJS (x)), (17)

where ProjH is the projection onto the closed subspace H of

L2(D:B?) , consisting of divergence free vector fields whose normal

components vanish on dD [28], i.e.,

H=iB6L2(P:R2) :V-B=0,B72|ai>=0}. (18)

10



The operator curl'1 is a compact operator from H to the Sobolev

space H*0(D) [28,29]. Thus, A is the unique (up to a set of measure

zero) flux function in H*0(D) corresponding to the projection of B

on H.

Now if a sequence (or subsequence) of the trivial Young

measure pfx-SV(xt> converges weakly in the sense of Equation (11) to

a limit macrostate {px}xeD, then the limit necessarily satisfies

E(p)*E°.

^, (20)

1#. (21)

where E°, Ft°, and Ht° are the constant values of the functionals

(7)-(9) fixed by the initial data. Thus, we take as the admissible

class W of macrostates all Young measure p on DxB8 that satisfy

constraints (19)-(21).

The forms of the constraints (19) -(21) on the macrostates are

simple consequences of the definition of weak convergence given by

(11) , and the compactness of the operator curl'1. The analysis

given in [17] can easily be adapted to rigorously establish these

constraints. The methods of [17] can also be modified to show that

the constraint set

W={p€M: E(p) ±E°, F± (p) ̂ F?,^ (p)

is closed in the space of bounded Radon measures on JDxJ* with

respect to the weak convergence defined by (11) . Here, M is our

notation for the space of Young measures on DxB*. For more details

11



on properties of M, the reader may consult [11], and the references

therein.

The inequality in (19) may be a bit disturbing at first sight,

as it represents a potential loss of information in shifting to the

macroscopic description of the long-time behavior of the system.

Indeed, for any finite time# we have

But under the weak convergence of p to p, we could very well have

E(p)<E° (the difficulty is that the function g(b,n) = (l/2) (\b\2+n2)

is not bounded, so that the functional E(p) defined by (12) is not

continuous under weak convergence). In Section VI, we will show,

however, that the "most probable" macrostate p actually satisfies

equality in (19), and hence it contains all of the information

afforded by the conservation of energy, flux, and cross-correlation

under the ideal dynamics.

The constraints (20)-(21), which can also be expressed as

( ft a U)) dx= ( fi (A ° (x)) dx=Fi°,
J D J D

JNfi (A (X) ) dx^JNoft (A ° (X) ) dx=ifi

where A0 and No are the initial flux and electron density, have the

important interpretation that the flux integrals and cross-

correlation integrals are determined entirely by the mean field in

the long-time limit.

V. The maximum entropy principle

Now that we have determined the class W of admissible

12



macrostates, we seek to determine the most probable of these

macrostates. To this end, we introduce the Kullback entropy of a

macrostate p [ll,12,13f30]:

K(p:*)=-[ f log-%dpx(u)dx. (22)
JIVE3 dn°

Here, n° is a (x-independent) probability measure on B8, n=dx®n° is

a spatially homogenous Young measure on Dxjf, and dpx/dn° is the

density (or Radon-Nikodym derivative) of px with respect to n°. If

px is not absolutely continuous with respect to n° for almost every

x, then K(p:n) is set equal to -». As an integral over S?, K(p:n)

has either of the standard interpretations as the (logarithm) of

the number of microscopic realizations of the macrostate p or the

uncertainty in the macrostate px [31]. The functional -K(p:n) is

a measure of the "statistical distance" from the macrostate p to

the spatially homogeneous measure n [30]. The form of K as an

integral over D implies that the fluctuation at two distinct parts

in D are treated as independent. This implicit assumption is a

hypothesis of the model, reflecting the supposed ergodicity of the

local mixing of the turbulent microtearing system. The most

probable macrostate is then found by maximizing K(p:n) over the

constraint set W, once an appropriate reference measure n° has been

chosen.

The assumption of ergodicity in the dynamic evolution of the

state variable U(x,t) implies that, in the absence of information

that constrains spatial variations of the macrostates, the most

probable macrostate should be spatially homogeneous. It is evident

13



that the constraints (20)-(21) on flux and cross-correlation do

impose spatial structure on the admissible macrostates, whereas the

energy constraint (19) does not. For these reasons we choose the

reference measure n to be the macrostate whose local distribution

is for all xeD,

exp{
(2n)3/2o3 2a2

with

--A- (b2+n2))du,
2 2

n is the most probable spatially homogeneous macrostate in the

sense that it maximizes the Boltzmann-Gibbs-Shannon entropy

functional [31]

subject to the constraint E(p)<E°. In fact, n actually satisfies

E(n)=E°. Thus, in the absence of constraints on cross-correlation

and flux the most probable macrostate is a spatially homogeneous

Gaussian measure with mean 0 and with energy equal to the initial

value of energy. To determine the most probable macrostate that

satisfies all of the constraints (19)-(21), we solve the

constrained maximum entropy problem:

K(p:n)-+max subject to peW. (MEP)

The maximum entropy principle (MEP) selects those admissible

14



macrostates that minimize the statistical distance to the

homogeneous measure n. Unlike n, a measure which solves (MEP)

exhibits spatial variations characteristic of a coherent structure.

While it may be conventional wisdom that maximizers of entropy

are in some sense most probable, the sense in which solutions to

(MEP) are the most probable elements in W can be made more precise

by appealing to Robert's Concentration Theorem [11,12,13], which is

a convenient restatement of results from the theory of large

deviations [30]. This program has been carried out by the author

for the problem of characterizing coherent structures in two-

dimensional magnetohydrodynamic turbulence [17], and the arguments

given there can be easily modified to the present situation.

VI. Solutions of (MEP)

The functional K(p:n) is upper semicontinuous with respect to

the topology of weak convergence and has compact level sets [30].

Therefore, it achieves its maximum over the closed, nonempty set W.

We calculate the maximizer(s) by applying the Kuhn-Tucker theory of

constrained optimization with equality and inequality constraints

[32]. To overcome the analytical difficulties associated with the

infinite families of conserved flux and cross-correlation

integrals, we choose an appropriate finite collection of basis

functions flff2,...,fm in the constraints (20)-(21). Technically,

the ft should be chosen so that the // are linearly independent in

order to apply the Kuhn-Tucker theory [32]. We also assume that

\fi(s)\<C\s\
q, for some g<«# we could choose, for example, the

basis functions used in [32]. We further assume that the initial

15



energy E° is larger than E^, where E^ is the minimum value of the

energy functional

E(B,N)=±[ (\B2\+N2)dx, (23)
2 J D

consistent with the constraints

l i=l,...,m, (24)

i=l,...,jn. (25)

That the variational problem E(B,N)-*min, subject to the constraints

(24) and (25) has a solution (in L2(D:B?)xL2(D)) can be established

by the direct methods of the calculus of variations [33#34]. An

efficient numerical algorithm to compute solutions to variational

problems of this type# together with an associated Lagrange

multiplier rule, is presented in [33].

Under the above assumption, there are admissible macrostates

in W that have finite entropy (as will be demonstrated below), so

that the entropy maximizer(s) must also have finite entropy

(because -*><K(p:ir)<0) . In this case, any maximizer (p*.)xeD has

density p*(x,u) with respect to rr°. For macrostates (px)xeD that

have densities p(x,u) with respect to n°, the constraint

functionals (19)-(21) and the entropy functional (22) can be

expressed in terms of p as follows:

16



" ,P I** «) l o 9P (x, u) dn°(u)dx, (26)

P (x, u) dn° (u) C&K£B, (27)

FZ.i-l.-.m, (28)

H^p) =[ Nf^A) dx=H!, 1=1 m, (29)

where H (x) = f .np (x, u) dn° (u) ,

and

The most probable macrostate px*=p*(x,u)dn° (u) maximizes JCfp; over

L!(ir) subject to the constraints (27)-(29) and

J 2p*(x,u)dn°(u)=l, p*(x,u)*0 a.e. xeD. (30)

According to the Kuhn-Tucker rule [32], there exists Lagrange

multipliers /8/a|/i=2/ .. .,in, and ^,1=2, .. .,m such that

p#) . (31)

The multiplier /S satisfies the side conditions

-B°)»0. (32)

In particular, if fl>0, then E(p*)=E°.

The functional derivatives appearing in (30) can be readily

calculated, and the resulting equilibrium equation is

17



p* (x. u) =Z-1 (x) exp{-& (b2+n2) -ij-EetjcurlGf't (A) -nEC^i (3) -b-TCicuxlGOti'i (A))},

where Z(x) is the partition function which enforces the

normalization constraint (30),, and G is the inverse of the operator

-A on D corresponding to homogeneous boundary conditions. After a

straightforward but tedious calculation, we arrive at the following

expressions for the maximum entropy macrostate px*(du)=p*(x,u)n° (du) :

where

| | | | (34)

B(x) — AEcurJ (G(adfi(A) ̂ CiNfiiA)), (35)
P

iECifi(3) . (36)

By taking the curl of equation (35) , we obtain the following

expression for the mean flux function A

£(ai^(A) CiEfi<S) ) • (37)

P

Notice that the mean magnetic field S is divergence free, and that

(A,N) is a stationary solution of the ideal microtearing equations

(l)-(2). In fact, (B,N) is a critical point of the energy

functional E(B,N) given by equation (23) subject to the constraints

(24)-(25) on cross-correlation and flux, as can be readily

18



verified. We now prove the following important results.

(i) . Any maximum entropy macrostate pm satisfies E(p*)=E°.

Consequently, p* contains all of the information

furnished by the conservation of energy, flux, and cross-

correlation under the ideal microtearing dynamics.

(ii) . The mean field and the mean electron density (B(x),N(x))

corresponding to a solution p* of (MEP) is an absolute

minimizer of the energy functional (23) subject to the

constraints (24) , (25) . That is,

To establish (i) , we calculate the energy E(p*) of p . A

direct substitution of (33) into (27) yields

E(p*)=l\D[p-1+E*E°, (37)

where E=E(B,N). As O<j8<oo (by equation (34)), it follows from (37)

that E°>E. Substituting (34) into (37) gives

2 E°(E°-E) '

Therefore, fi>0 because E>Emin>0. From (32), it follows that

E(p*)=E°, as claimed.

As for assertion (ii) let us note that any macrostate of the

form

19



exp{-±[(b-B{x))*+(n-N(x))2])

» * "

with Bfxj and N(x) satisfying the constraints (24)-(25), and

satisfying E(B,N) + (3/2)r'1\D\=E°, r>0, is an element of the

admissible class W. The entropy of such a macrostate can be

calculated directly from either equation (26) or equation (22).

The result is

(39)

The macrostate p* is of the from (38) (with r=/3, ffi,Nj«(B,N) , and

E(B,N)=E) , and since p* maximizes K(p:n) over all p in W, it follows

from (39) that °E=Emin, the minimum possible value of the energy (23)

consistent with the constraints on flux (24) and cross-correlation

(25).

We remark that, in general, the solution to (MEP) is not

unique. In fact, the analysis of this section has shown that there

are as many solutions to (MEP) as there are absolute minimizers of

the energy functional (23) subject to the constraints (24)-(25) on

flux and cross-correlation.

VII• Predictions of the model

The analysis of the previous section shows that the model

predicts that, under the ideal dynamics, the microtearing system

will evolve to a turbulent relaxed state consisting of a coherent

macroscopic mean magnetic field and mean electron density coupled

with turbulent local Gaussian fluctuations. The mean field-density

20



(B(x),N(x)) is a stationary solution of the evolution equations

(l)-(2) of the microtearing system, and, in fact, (B,N) minimizes

the energy (23) subject to the constraints (24)-(25) on flux and

cross-correlation. A closer inspection of the expression (33) for

the maximum entropy macrostate p*, reveals that the variance of each

of the components Bj(x) ,B2(x) ,N(x) is JS"
7, which has been shown to be

equal to 2 (E °-Emin) /3\D\ for each x in D. Thus the variance of each

component is independent of x. Furthermore, the components

Bj (x) , B2(x) and N(x) are statistically independent for each x in D.

While the flux and cross-correlation integrals are determined

entirely by the mean field-density, the energy is divided into mean

and fluctuating components. Indeed, this is demonstrated by

equation (37) . The contribution of the fluctuations to the energy

is

and the contribution of the mean field-density is, of course, 'E=Emin.

We might say that flux and cross-correlation are cascaded to large-

scales, while energy is cascaded to small (infinitesimal) scales.

In particular, these predictions are in agreement with the

numerical simulations of Craddock et al. [7], which were discussed

in Section II of this paper.

Two regimes are of particular interest. In the high energy

regime (E°»EmiH) , the variance 2(E°-Emin)/3 \D\ of the distributions

p/ is very large, so we expect that the mean field-density will be

obscured by large fluctuations. The system will be highly

21



turbulent. On the other hand, when E°»Emin, the variance is close

to zero, so that the fluctuations about the coherent mean field-

density are very small. In this low-energy regime, therefore, we

expect the system to relax to a guasistationary state consisting of

clearly discernible large-scale organized structure, which

minimizes the energy (23) subject to constraints on flux and cross-

correlation (24)-(25).

While there is qualitative agreement of the predictions of the

model with the numerical simulations of Craddock et al., [7], it

must be emphasized that those simulations addressed a particular

dissipative version of the microtearing eguations in which

collisional resistivity is negligible compared with the cross-field

particle diffusivity. In other words, Craddock et al. considered

dynamics of the form

with rj«p. Our model is intended to apply to the case when TJ«J> are

both extremely small. Numerical simulations of the dynamics in

this dissipative regime will be needed to fully test the

predictions of the model.

22



References

[I] J.C. McWilliaras, J. Fluid Mech. 146, 21 (1984).

[2] M.E. Brachet, M. Meneguzzi, H. Politano, and P.L. Sulem, J.
Fluid Mech. 194, 333 (1988).

[3] R. Benzi, S. Patarnello, and P. Santangelo, J. Phys. A:Math.
Gen. 21, 1221 (1988).

[4] D. Biskamp and H. Welter, Phys. Fluids B 1, 1964 (1989).

[5] D. Biskamp and H. Welter, Phys. Fluids B 2, 1787 (1990).

[6] D. Biskamp, H. Welter, and M. Walter, Phys. Fluids B 2, 3024
(1990).

[7] G.G. Craddock, P.H. Diamond, and P.W. Terry, Phys. Fluids B 3,
304 (1991).

[8] E.T. Jaynes, Phys. Rev. 106, 620 (1957).

[9] S. Kullback, Information Theory and Statistics, Wiley, New
York, 1959.

[10] L.C. Evans, Reg. Conf. Series in Math. 74, A.M.S. (1990).

[II] R. Robert, CRAS. 309, Serie I, 757 (1990).

[12] R. Robert, J. Stat. Phys. 65, 531 (1991).

[13] R. Robert, and J. Sommeria, J. Fluid Mech. 229, 291 (1991).

[14] J. Miller, Phys. Rev. Lett. 65, 2137 (1990).

[15] J. Miller, P.B. Weichman, and M.C. Cross, Phys. Rev. A. 45,
2328 (1992).

[16] B. Turkington, and R. Jordan, to appear in Proc. Intl. Conf.
on Adv. Geometric Analysis and Cont. Mech.

[17] R. Jordan, to appear in Nonlinearity (1995).

[18] R. Jordan, and B. Turkington, in preparation.

[19] A.V. Gruzinov, Comments Plasma Phys. Controlled Fusion 15, 227
(1993).

[20] M.B. Isichenko, and A.V. Gruzinov, Physics Plasmas, 1, 1802
(1994).



[21] R. Kinney, T. Tajima, J.C. McWilliams, and N. Petviashvili,
Phys. Plasmas, 1 , 260 (1994).

[22] A.V. Gruzinov, Phys. Lett. A. 177, 405 (1993).

[23] R.D. Hazeltine, Phys. Fluids 26, 3242 (1983).

[24] A.S. Kingsep, K.K. Chuckbar, and V.V. Yan'kov, in Reviews of
Plasma Physics, Vol. 16, 1990.

[25] M.Chipot and D. Kinderlerher, Arch. Rat. Mech. Anal. 103, 237
(1988).

[26] D. Kinderlehrer, in Proc. Symp. Material Instabilities, 1988.

[27] P. Billingsley, Probability and Measure, Wiley, New York,
1986.

[28] R. Temam, Navier-Stokes Equations: Theory and Numerical
Analysis, North-Holland, Amsterdam, 1984.

[29] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

[30] R.S. Ellis, Entropy, Large Deviations, and Statistical
Mechanics, Springer-Verlag, New York, 1985.

[31] R. Balian, From Microphysics to Macrophysics I, Springer-
Verlag, Berlin, 1991.

[32] A.D. Ioffe, and V.M. Tihimirov, Theory of Extremal Problems,
North-Holland, Amsterdam, 1979.

[33] A. Eydeland, J. Spruck, and B. Turkington, Math. Comput. 55,
509 (1990).

[34] B. Dacorogna, Direct Methods in the Calculus of Variations,
Springer-Verlag, New York, 1989.

ii



 



2 6

01353


