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1 INTRODUCTION

The paradigm of the calculus of variations is the functional

I(v) = f\V(Vv)dx. (1.1)

In the absence of quasiconvexity of W, I may fail to assume its minimum in a given admissible
class, even when this class is very reasonable. In this situation, we may seek to represent the
solution in terms of the oscillatory statistics developed by a minimizing sequence, or its Young
Measure, [37], For definiteness, suppose that

c(\XtP - 1)+ < W(X) < C(l + IMP), ke M,0 < c < C, 1 < p < ~. (1.2)

where M denotes m x n matrices and that Q, c Rn is a domain with smooth boundary.
Given UQ e Kl*P(D.Mm\ consider the variational principle

inf I(v) where V = uo + HoP(Q,Rm). (1.3)

In recent years we have learned much about minimizing sequences ( u k ) of (1.1) and their
Young Measures. For example, ( u k ) may be chosen so that in addition to

uk -* u in V,

1 This research supported by the Air Force Office of Scientific Research, the Army Research Office, and the
National Science Foundation



we have that there is a g 6 L 1 ^ ) for which

IVukP -* g in Ll(Q) (1.4)

and the Young Measure representation is valid for y e C(M) satisfying

\y(k)\ < C(l + IXIP) (1.5)

This means that there is a family v = (v x )x € n of probability measures on M such that when
y satisfies (1.5)

V(Vuk) -* v in Ll(Q) where y(x) = J y(X) dvx(k) in ft a.e. (1.6)
M

In particular, the limit gradient Vu is recaptured as

Vu(x) = jXdvx(k) in ft a.e. and (1.7)
M

f W(X) dvx(X)dx = lim J\V(Vuk)dx = infl(v). (1.8)
GxM k^oorf V

This suggests introducing a class A of measures [i on Q x M , for example, the Young
Measures î generated by a sequences of gradients (Vv k ) , vk e V, and considering, in place of
(1.4), the variational principle, with dfi(x,X) = d ^

inflwOi) with IwOi) = <T4i> = Jwa)dji(x,X). (1.9)
A ilUA

The functional { T,|i) is a linear function on A. Thus every variational principle is linear.

To what extent can we formulate principles in the form (1.9) so they become meaningful? In
this note we shall discuss, somewhat informally, this isssue. We shall also address its natural
successor, namely, the analysis of questions which depend in some more complicated fashion on
the measure and are not linear functional. To offer a short and readable account, we shall be
guided by a precept of Carlo Pucci's old friend Hans Lewy: emphasize the obvious and eschew
the difficult

2 FRAMEWORK AND BASIC PROPERTIES

We introduce a few notations and review briefly the general features of Young Measures. Let

EP = { \\re C(RN): lim j ^ ^ p exists }, 1 < p < « . (2.1)

EP is a separable Banach Space whose dual we denote by EP\ For technical reasons, it has an
advantage over the inseparable space of functions XP defined by the inequality (1.5). Given a
domain ft c Rn, note that, [10],

^t^



= L°°(Q;£Pf).

A measure [i e L°°(£2; EP') is a parametrized measure or Young Measure if and only if there is a
sequence fre LP(Q;RN) and f € LP(Q;RN) andge Ll(Q) such that

£ -* f in LP, If* IP -* g in L1, and (2.2)

xpCffc) -^ v in L 1 ^ ) where \jf(x) = Jy(X)d\x(k) in Q, a.e. for v e £ P .
M

The formula in (2.2) is called the "Young Measure representation" and it permits us to represent
the statistics of the oscillations developed by the sequence (ft) by means of the formula

= lim lim TTT-. J x^f*) dx, a e Q a.e. (2.3)

A situation of special interest is when f* = Vuk, that is, when ( f*) is a sequence of gradients.
In this case we call \i an H]'P- Young measure, or simply a gradient Young Measure, when the
value of p is not of concern.

An important feature of Young Measures as they appear in a variational context is their duality
with lower semicontinuous functionals exhibited by means of Jensen's Inequality [24,25,26]. The
characterizing property of parametrized measures in L°°(£2; £P') is Jensen's Inequality for convex
functions, cf. (2.11). Gradient Young Measures are dual to quasiconvex functions: a parametrized
measure v € L°°(Q; £P') is a gradient Young Measure if and only if

(i) <p(F(a)) < j cp(X) dva(k) where F(a) = J X dva(^) in Q a.e. for every
M M

quasiconvex q> e EP, (2.4)

(ii) there i saue H^QJR"1) with F(x) = Vu(x), and (2.5)

(Hi) ¥(x) = J IX P dvx(>.) € LkQ). (2.6)
M

Condition (i) is akin to a local condition, [25,26],

(i)' va is a homogeneous gradient Young Measure for a e ft a.e. (2.4)'

There is an extensive literature on this subject beginning with L. C. Young's own interpretation
in control theory [37]. Unfortunately, we lack space to adequately cite all the important recent
work. These methods were enhanced and generalized by Tartar [34,35], who studied conservation
laws and compensated compactness. The past ten years have witnessed further extensions. The
tool of the Young Measure has become fundamental to the study of microstructure in solids,
where the weak continuity properties of the minors of (Vu k ) have made it possible to establish
kinematical restrictions on minimum energy configurations. This has led to new understanding of
structural phase transformations, [4,5,6,7,8,9,17,18,19]. The interpretation of coherent structures
in turbulence by means of statistical equilibrium theory has led to maximum entropy principles



and a Young Measure description of most probable states via the theory of large deviations,
[20,21,3132,36]. The Young Measure is an extremely useful device for understanding nonlinear
processes across widely disparate length scales.

Although the presentation here may be viewed in some ways as a synthesis of the two areas
discussed above, our motivation was an attempt to investigate the nature of metastability in some
physical systems. We treat this in a separate paper. Details and extensions of our discussion here
are in [22,23].

The first issue at hand is what happens, in general, to a bounded sequence of measures in
L°°(Q;£Pf). A sequence ^ike L^iQEP') of parametrized measures with

II Ilk II = J ( 1 + i x IP) dvHxX) < M < oo (2.7)

QxRN

admits a subsequence, not relabeled, such that

y* *> T€ L~(fl;EPf), (2.8)
where x need not be a probability measure on RN, as we know well. Nonetheless, we may
isolate from x a probability measure ji, and it is this we wish to clarify. For simplicity, assume
that the |ik are homogeneous, i.e., independent of x € Q, so we may regard p,k € EP\ It
follows from elementary methods that there is a measure |i e CO(RN)! such that

Hk -&> |i in Co(RN)'. (2.9)

We claim

(a) \i e £Pf and

(b) j y d^ = lim J \\f djxk whenever yeEP with

Part (a) follows from the Monotone Convergence Theorem. Part (b) follows from (a) and the
bound (2.7). In particular

dji = lim J djLik = 1,

so \i is a probability measure.

Returning now to the characterization of x e £Pf with

fik ^ x in EP\

it is easy to check that x > 0 and may be expressed (as the measure on RN u {<»})

x = c6oo + \i, c > 0,



where n € EP satisfies (a) and (b),

1 1 . > ^ • and c = lim <T,X{lXisr}l^P>.

Because of this, we are justified in referring to \i as the probability measure determined by the
( j i k ). Similarly, for t e L°°(£2;£;Pf) satisfying (2.8), there is a parametrized family of
probability measures \i = (j ix)xe G e L°°(Q;EP!) and y e L!(Q) such that

x = y8oo + \i9 y > 0, and

dfi = lim J y d [ i k whenever y e L°°(Q'JBP) with (2.10)

- O a - e - i n Q

The characterization theorem for Young Measures ensures that the conditions (2.2) are satisfied:
there is a sequence f* € LP(£2;RN) which generates \i.

It is easy to verify Jensenfs Inequality directly in this situation from (a) and (b). Let (p e £P,
p > 1, be convex and let

Xo = f Xdii^i

Then from (b),

g(X) djiĴ M = |g(X)d^Xoa) < I^Jdji^axin ft a.e.. (2.11)

This property does not seem so obvious for other constraints, in particular, if \i* are gradient
Young Measures, is |i a gradient Young Measure?

Proposition 2.1 Let jik e L°°(£2;£Pf) be a weak* convergent sequence of gradient Young
Measures and let |X be the parametrized measure determined by the (|i,k ). Then \i e
L°°(£2;£Pf) is a gradient Young Measure.

The localization property (2.4)' makes it possible to assume that the (^ik) are homogeneous.
Each | ik is generated by a sequence vk0 e Hl>P(Cl,Rm) with

* c-

Choosing a diagonal sequence wk of the v^J we obtain a sequence which generates |X as an
H 1 ^ Young Measure for q < p and as a biting Young Measure, cf. [26]. From Theorem 1.1 of
[26], we are assured that î is an H^P Young Measure. Note that the sequence which generates
\i as as an H!»P Young Measure is not in general the ( w k ) .



The localization feature makes it possible to construct variations of the Proposition. For
example, we may specify a subdomain £2* c £2 such that \ik | Q, are gradient Young Measures.
Then ft | Q, is also a gradient Young Measure. In the next section we outline a different method.

The variational principle (1.9) may now be placed into a rigorous context. We choose A to
be the gradient Young Measures generated by sequences in V, or what is the same, the gradient
Young Measures for which u € V in (2.5).

Proposition 2.2 Suppose that vk e A c L0 0^;^1) with

Iw(vk) -> inflwOD. (2.12)
A

Then there is a subsequence, not relabeled, of the vk and a V 6 A (a gradient Young Measure)
such that

vk -*>> v and Iw(v) = inf IW(H). (2.13)
A

From (1.2) we have that ( vk ) are bounded in L°°(Q;£Pf) and hence, after extraction of a
subsequence, have a weak limit of the form

T = y8oo + v with Y ^ 0 and v € A . (2.14)

It is easy to check from this that Y= 0 so that (2.13)i holds.

Clearly, in this first try at the "every variational principle is linear" idea, the lower bound in (1.2)
is crucial, cf. [12,13,28].

3 LOCAL CONSTRAINTS

A local constraint on a parametrized measure might be one determined by some quasiconvex
functions rather than all of them. For example, write RN = MxRd, where M denotes m x n
matrices, and write X = (A,a), A e M and a e Rd. Suppose that v satisfies Jensen's
Inequality for functions cp satisfying, I £21 = 1,

<p(F,p) < fcp(F+V;,p + q)dx for £ e Ho~(Q,Rm) and

q e L~(ft;Rd) with f qdx = 0. (3.1)

We would expect v to be generated by a sequence of the form (Vu 1 ^) , and this is in fact the
case, [14]. Here we wish to give a different result in a similar direction.

Given 0 < c p e £P satisfying (3.1), determine the set Ky c L°°(ft;£Pf) of parametrized
measures v for which

\|/(F,p) < J v(A,a) dvx(A,a) where (F,p) = J (A,a) dvx(A,a), x € Q a.e.,
MxRd MxRd



whenever \|/G £P satisifes (3.1) and y < cp. (3.2)

Theorem 3.1 Let l̂k G K® be a weak* convergent sequence and let \i be the parametrized
measure determined by (|l* )# Then \i e Ky .

To prove this, we really only have to show that if cp e £P is nonnegative and satisfies (3.1),
then there is a sequence, which we shall call (y s)# such that (y s)# e l^P, 0 < s < 1, and (y s ) #

-» <p, pointwise as s -» 1", (y s)# < <p. For this, introduce

( p ( A ' a ) i

)» in{cp(A,a)>l}

and its "relaxation"

,a) = inf f Vs(A + VC,a + q) dx G £ S P (3.4)

for C, € HQ °°(fiJlm) and q e L°°(£2;Rd) with J q dx = 0. Note that we may choose Q =

Q, a unit cube, and replace the boundary condition on £ by one of periodicity. To show that
(\|/s)# converges to <p, we avail ourselves of the argument of Marcellini and Sbordone [29] to
establish that a minimizing sequence for (3.4) may be chosen equi-integrable in LP. This
argument combines the Ekeland Distance Lemma [11] with the Meyers - Elcrat [30] form of the
reverse Haider Inequality.

Obviously, the theorem above implies the other statements we have been discussing.

4 EXTENDED VARIATIONAL PRINCIPLES

We now seek to enlarge the scope of questions amenable to Young Measure methods with a new
paradigm. Let

y G £P satisfy y > 0 and
q>G C(R+) satisfy pcp(p) convex and increasing for large p and (4.1)

r dv
1 ^du? <*v £ 0 f°r ^ probability measures v G EP\
12

For a fixed probability measure \i° G £P\ with d|i = d^i°dx and a > 0, consider the
functional

L(v) = w dv + a <p(7rr) dv, v G L°°(ii^Pf), (4.2)

with the convention that I<j(v) = +<» if v fails to be absolutely continuous with respect to \i. It
will be clear in what follows that \i° need not be a probability measure. The most common
choice of <p is <p(p) = log p and in this case the Kullback Entropy is minus the second integral.
(4.1) is satisfied in this case. Also in this case, the minimizer of (4.2) is given by



d v ° = Z^f) e " " * " ^ w h e r e z ^ = f e "^d|Li0 (4.3)

is the well known "partition function," when the competition is among all parametrized measures
and Z(a) is finite. We wish to make prominent some extremely elementary properties of (4.2).

Theorem 4.1 Suppose that Io(v*) < -H» for some v* e K and c = ao . Then

inf J y dv = lim inf Ia(v) (4.4)

If a < a1, then Ia(v) < Io'(v), whence f(a) = inf Io(v) is decreasing as a -> 0. Let
A.

a = inf J y dv
K flxRN

and given e > 0 , choose v such that

J y dv < a + e.
QxRN

Then
r r dv r dv
J y dv + a I <P(-TT) dv < a + e + a I (p(-rr) dv

and
r dv

inf Io(v) < a + e + a J (p(-r7) dv ,

whence
lim inf Ia(v) < a + e.
o-tf> K

Suppose that the set where \|/ assumes its minimum is compact and

dv = I Q, I min y .inf J \(/(
^ QXRN

Assume that we have in hand v° such that I^v07) = inf IQ(V). Then the ( v ° ) are bounded

in L°°(n^P') and thus, according to our discussion, we may select a subsequence (not relabeled)
which determines a parametrized measure v° G L°°(Q;EP%). (Note that v° is not generally
absolutely continuous with respect to |X.) From the Monotone Convergence Theorem (viz. the
argument we used to prove (a) in §2),

J y dv° < lim inf J y dv° < lim I<j(va) = IQ I min y .
RN a->o oxRN o-^0

It follows that supp v ° c { y = min y} is compact and v° -*̂  v° in L°°(£2;£P') and, of
course, v° realizes the minimum for a = 0. Facts like these are well known for the particular
case of (4.3) but are proved by direct computation. Passing to the limit as a —> 0 gives the
stationary distribution of a random variable and is related to the simulated annealing algorithm. In
practical situations, it is quite important to choose the sequence of a carefully, [16].



We now address the existence question.

Theorem 42 Let K a L°°(Q;£Pf) be a set of parametrized measures which enjoys the closure
property

if \lke K and | i k Js. x j n L°°(Q;EP'), then the parametrized measure
\i determined by ( j l k ) satisfies JIG K. (4.5)

Assume that (4.1) is satisfied and that <p(p) -> °o as p -» <». 77ie/i rAere
parametrized measure minimizer v°e K of \Q. Of course V° « Jl.

For a minimizing sequence vk, write dvk = p 1 ^ p k e L H Q X R N J I ) . Then

sup f <p(pk)pk d|i < oo with lim

This is a well known condition for weak relative compactness in L1 and it follows from the de la
Vallte Poussin Criterion that there is a subsequence of the ( p k ) weakly convergent in L1. A
standard technique shows that the second term of IQ is lower semi-continuous with respect to
weak convergence in L1 from which it is easy to show that the weakly convergent subsequence
converges to a minimizer.

Theorem 4 3 Assume that (4.1) is satisfied and set g(p) = <p(p)p. Suppose that

d2

^72 g > 0 for p > 0 , range (g1)"1 c (0,oo),

and that there is a constant a such that

X) = 1 where p*(\) = ( g r 1

Then V* = p*\i is an absolute minimizer of IQ.

Minimization falls into this framework. Let K c R N be compact and let n ° denote
normalized Lebesgue measure on K. Consider a function y € C2 , for example, and the
functional

Ia(v) = J \|/ dv + a Jtog^)d v ' v e £Pf, a > 0.
K. K.

As mentioned above, the minimizer is given by (4.3). Assuming that y has M isolated global
minimizers at X\ KM in K, our theorem asserts that

v a ^ X C J S ^ as a -» 0 where q > 0 and X q = 1.

This can also be established by calculating the Taylor expansion of y , which reveals that the q
are related to V2\|/(^i). These considerations form the basis of the simulated annealing algorithm



K)

for global minimization. More generally, there is an intimate connection between the type of
variational principle we are discussing and the stationary Fokker-Planck Equation, [1,15,16].

5 SOME EXAMPLES

5.1 The Langevin function and constrained theory

Consider an ensemble of N identical particles governed in equilibrium by thermal motion in, say,
-1 < ^ < 1, each of which tends to orient under a field / with strength T^. The probability
distribution dv° = p°d£ which describes the state of a given particle at "temperature" a is the
extremal of

Ic(v) = -J/il£pd£ + cfplogpdS, K = [-1,1],

(5.1)

and is given by the formula (4.3). Note that since K is compact, we may arrange that (4.1) is
satisfied. The expected value of the "strength", the state of a particle, is

TI<$> = il Up°d£ = t l L ( ^ ) , where L(x) = cothx - £ (5.2)

is the Langevin Function. The expected strength of the ensemble is

S = N t i L ( ^ ) . (5.3)

Langevin used this analysis successfully to explain paramagnetism [27]. For small values of x,

L(x) = j x + O(x3), and leads to the notion of the susceptibility

y - i _
X - f - 3 a

Note the interesting scaling properties here. If the N particles are grouped into clusters of size
M where each cluster responds as a unit, then the expected strength of a cluster is Mr|( M£).
The expected strength of the ensemble and the susceptibility are

£ and X M = ^ = ^ . (5.5)

Thus the effective susceptibility is enhanced when the particles can act as clusters. This is among
the mechanisms considered in magnetic nanocomposites, a subject of current research, [33]. The
linear approximation to L(x) breaks down if M is large, which leads to an optimization problem
for M.

A second view is given by what we call the "constrained theory," [3]. Here a nonlinear elastic
body, for example, is assumed to reside in a collection of potential wells X even when subjected
to a modest constant field T. This gives rise to the functional



inf - J T-X dv where K = gradient Young Measures with support in X. (5.6)

The solution of (5.6) may be approximated by externals of

Ia(v) = - JiUdv + a f cp&dv,

where [i is a fixed reference measure, e.g., a Gaussian. A generalized Langevin Function is given
by

T 1 m

(5.7)

Thus, in view of Theorem 4.1, the constrained theory may be realized as the zero temperature limit
of a system governed by thermal motion confined to a given collection of potential wells.

5.2 Coherent structures identified by maximum entropy principles

We present an example of the analysis related to a problem that arises in modeling coherent
structures in 2D microtearing turbulence and in 2D magnetohydrodynamic turbulence. Consider
the functional

F a(v) = \ f (IAI2 + lal2)dv + a J l o g & d v (A € M**m, a e Rn) (5.8)

dii = dfi°(A,a)dx, d*i°(A,a) = ^ £ e~ ^ I A | 2 + l a | 2 ) dAda • (5.9)

a standard Gaussian on RN, N = nm + n. We shall minimize Fa over the set K defined as the
set of parametrized measures v e L 0 0 ^ ^ 2 ) such that v is an Hl(Q,)xL2(Q) Young Measure
satisfying

j ^ v ) = \ \ lvl2dx = J? and J2(v) = f v q d x = j£, where (5.10)

(Vv(x),q(x)) = f(A,ot)dvx(A,a) with (v,q) e H^(Q;Rm) x L2(f2;Rn). (5.11)

The statement that v is an Hl(Q) x L2(fi) Young Measure means that v € Ky whenever 9
satisfies the conditions of (3.1)-(3.2). It is easy to check that K has the closure property (4.5)
by using Theorem 3.1 and the Rellich Compactness Theorem. Hence by Theorem 4.3, we are
assured the existence of

v ° e K: Fo(v<*) = min Fo(v) (5.12)

with first moment (Vua,p°) and from Theorem 4.1 we know that
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inf J v dv = lim inf Ia(v), where y(A,a) = \ (I A I2 + I a I2).
* QxRN - -i •-

Let

E(v) = \ J ( I A I 2 + la l 2 )dv and E#(v,q) = J f ( I Vv I2 + Iql2)dx. (5.13)

By Jensen's Inequality, E#(v,q) < E(v) when the relation (5.11) holds with equality when vx

= 6 ( V v ( x ) q ( x ) ) , so it follows that, with A the set of (v,q) which satisfy (5.10) and (5.11)2,

infE#(v,q) < infE(v) = in/.
A K.

From this we see that inf is attained at v° € K with v° = 8(VU(x),p(x))' w h e r e (U>P) € ^

minimizes E#. (Note that the constants J° must be given consistently so that the class K is not
empty.) There are multipliers a and b such that

u e H*(Q;Rm): -Au + au + bp = 0 and bu + p = 0 in fl, (5.14)

and so it turns out that u is an eigenfunction corresponding to the smallest eigenvalue of -A with
homogeneous boundary conditions.

Although we have invented this problem to illustrate the method, it has several interesting
features. The solution v° (a > 0) is for each x a Gaussian with mean (Vu°(x),p°(x)), each
component having variance a/(l + a), and with independent components, i.e., zero covariance.
Let [i° denote the Young Measure which is for each x Gaussian with mean (Vu(x),p(x)), with
the same variance a/(l + a), and with independent components. Then

Fa(v°) = (a + 1) E#(u°,p°) + a I a I log ( ( ^ J ^ )N/2) and

= (a + 1) E#(u,p) + a IQI log ( ( ^ ^ )W). (5.15)

Thus (u°,pa) = (u,p) and the Young Measure delivers the limit deformation at each
"temperature".

Finally, v ° minimizes Fo over the larger set K' of L2(RN) Young measures defined
analogously to K with the boundary condition applied to the curl-free part of the appropriate
portion of the first moment, as determined by the Helmholtz decomposition.
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