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Abstract

Suppose that an infinite sequence is produced by independent trials of a random
variable with a fixed distribution. The Shannon-Weaver entropy of the sequence de-
termines the minimum bit rate needed to transmit the values of the sequence. We
show that if the source distribution is highly concentrated, as is commonly observed in
practice, then its entropy is equal to the logarithm of the theoretical dimension of the
sequence. We conclude that the best-basis algorithm, which minimizes this theoreti-
cal dimension over a library of transformations, both chooses the transformation that
yields best compression and also gives an estimate of the compression rate.

1 Model

We need to define some basic objects. First, suppose that p = p(t) is a probability density

function, i.e., a real valued, nonnegative, integrable function defined on [0,1] which satisfies

Jo p{t)dt = 1. For each measurable subset E C [0,1] we define the associated probability

measure by

P{E} d^f f p(t)dt. (1)
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For technical reasons, we will assume that the density function p is continuous and strictly

positive on (0,1).

Secondly, fix 1 <& N < oo and define (uniform) quantization to N values by the formula

QN(x) « [Nxj/N. (2)

If x € [0,1) then QN(x) € {0, £ ,

Now suppose that {xm : m = 1,2,...} is a sequence of independent trials of a random

variable x € [0,1) whose density function i$ p. If the sequence is replaced by a quantized

version of itself, namely {QN(xm) : m = 1,2, . . .} , then the root-mean-square error or

distortion per sequence element will have the following expected value:

(3)

Since the terms in the sequence are independent and identically distributed random variables,

the distortion is independent of m. The sequence of quantized values thus produced will have

the following probability distribution function:

Pn & P{QN(xm) = ^ ) = [*P(t)dt; n = 1,2,...,AT. (4)

Again, each pn is independent of m. Shannon's theorem [2] states that the expected number

of bits per element required to encode this quantized sequence cannot be less than the entropy

of the distribution, defined below:

N

11 = 1

As before, HN is independent of m.

We obtain a rate-distortion curve for the sequence by plotting 10 log D^ against H^. We

use lOlogjDyv so that the distortion units are decibels relative to a unit signal amplitude.

The number of quantization intervals N parameterizes the curve. It remains to estimate HN

and DN from p.

Since we are assuming that p is continuous, we may use the mean value theorem to

estimate pn = ^p(^n), where £„ € (2^1, 77). Therefore,

N 1
E NP(tn) ^g [NP(t*)\ logiV ^ NPtin) l°ZP(tn) (6)



The second term is evidently a Riemann sum approximating — /J p{t) log p(t) dt, which we

may call the source entropy W{p). The logiV term is present because at super fine quan-

tizations the less significant digits contain most of the information even though they have

almost no connection with p.

Likewise, we can estimate

n - 1 2 . 1
Di = t-

N

Hence 10 log D^ < — 101ogAr. Unfortunately, no lower bound exists for DN, since even a

continuous density p can be arbitrarily concentrated at the values 0, -̂ , ^ , . . . , ^ ^ . How-

ever, if p is continuous then we can compute the asymptotic behavior of Du as N —> oo:

^ (8)

Combining Equations 6 and 8 shows that

101ogDn ~ -101ogAr - 51og3 \0HN + lOH(p) - 5log3, as N -* oo. (9)

Thus the rate-distortion curve is asymptotic to a line of slope —10 with an intercept at

lOH{p) — 5 log 3. Shifting the curve to the left improves the rate-distortion relationship in

the sense that the same transmission quality is obtained at a lower bit rate. Such a shift is

accomplished by reducing *H{p), or equivalently by transforming the sequence {xm} so that

it appears to come from a lower-entropy source.

2 Relations

Fix 1 < M < oo and suppose that {X\,...,XM} is a sequence of M Bernoulli trials of

the random variable with density p defined in Equation 1 above. Let {x j , . . *,x*M} be the

decreasing rearrangement of the sequence {xm}. That is,

*l = l > x \ >*;>...*;,>o d^r x

This decreasing rearrangement is uniquely defined, and it determines a decreasing step func-

tion x* = x*(t) on the interval [0,1] as follows:
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Figure 1: Two step functions determined by {x\,x2,.. .

The same sequence determines another step function as follows:

y{s) = YV ifx*m+* <s^x^ vM = o.

Examples of these two step functions are plotted in Figure 1.

The step functions y and x* are approximate inverses, in the sense that

V (**(t)) = Quit); x* (y(s)) = max{i; : x*m < s} « Q,(«) (12)

Thus y inverts x* up to the precision of the M-bin uniform quantization, while x* inverts

y up to the precision of the generally nonuniform quantization defined by the monotonic

sequence {x1^}.

Now y(s) is just I/A/ times the number of values of m € {1,2,..., M} for which xm > 5,

so we can compute its expectation in terms of the density p:

= E jjP{k values of {xm} lie in [5,1]} = (1 - qs)M'k qk
8 = 9., (13)

where q8 = J,1 p{t) dt, and we have used the identity T r f f c ^ f f c , . ! ) * 0 collapse the

sum. Note that the expectation is independent of M.

The assumption that p is continuous and positive implies that Ey($) = / p(t) dt is

decreasing and continuously differentiate. Thus

^Ey(8) = -p(s) < 0, (14)



and Ey has a continuously differentiable inverse function which we may call z = z(i):

z(Ey(s)) = s; Ey(z(t)) = t; ±

Combining Equations 14 and 15 allows us to compute the source entropy in terms of zf:

p(.) logpW * = jj [ p j ^ j ] log [ j ^ ] <fc = / .<*[-*'(«)] A
(16)

In the last step, we substituted s <- z(t) and then simplified.

It remains to relate z with x*. The idea is that y is the "inverse" of x*, while 2 is the

inverse of Ey. We claim that z « x* and

x M
/ log [~z>(t)] dt « ^ log [-Ax^], (17)

-70 m = l

where AxJ^ =f xj^ — x ^ ^ for m = 1,2, . . . , M is the difference between successive values in

the decreasing rearrangement.

Finally, suppose that the values in the sequence { x i , . . . , x m } are concentrated near 0

in such a way that the decreasing rearrangement decreases exponentially or by some power

law. Namely, suppose we choose constants 0 < A < B and 0 < a < b such that for all

m = 1 ,2 , . . . , M, we have

A(x*m)a<-Ax'm<B(x-m)b. (18)

Then we can estimate

M log A + a £ log [x-m] < H(p) < M log B + b £ log [x'm]. (19)
m=l m=l

But since the two sums axe independent of the order of summation, we can dispense with

the decreasing rearrangement and write the estimate as follows:

M M

M log A + a Y, ^g [xm] < H{p) < M log B + 6 £ log [xm]. (20)
m=l m=l

3 Theoretical Dimension

Although J(x) = ]Cm=:i l°2>xm is not an additive information cost function in the sense of

[1], it can be replaced by any of the expressions below:



M

• ]L 1°S (* + xm/€): Regard e > 0 as a roundoff error.
m=l

• ( 5Z kmT I : With 0 < 6 <§C 1 this approximates the L° or counting norm, which
\m=l /

in turn is an approximation for I(x).
M

2 l o g | x | 2 :• — 23 |^m|2log|xm|2: This is the entropy functional discussed in [1]. It is the lin-
m=l

ear approximation to the L° norm of a sequence {xm} with unit L2 norm, using the

derivative of If norm with respect to p to obtain the differential.

The last of these is monotonic with the theoretical dimension d(x), which is defined in

Reference [1] as follows:

{
The idea is that I(x) is minimized, whenever any one of these expressions is minimized.

Now suppose that we have a particular sequence and a library of transforms containing

some in which the transformed sequence has the "rapid decrease" property of Equation 18.

Then choosing that transform which minimizes any one of these information cost functions

produces a coefficient sequence which appears to come from the lowest-entropy source. In

particular, if {xm} are samples of a smooth oscillatory function, and B C O(M) is a family

of smooth orthogonal wavelet packet transformations of RA/, and Bx denotes the coefficient

sequence produced by applying B € B to {xm}, then I(Bx) and d(Bx) will have the same

minimum B* € JB, and if each Bx is regarded as Bernoulli trials from an unknown source

density, B*x will look like it comes from the lowest-entropy source.

4 Example

We consider a simple family of source densities which produce sequences with the "rapid

decrease" porperty.

Suppose that the source distribution is p(t) = (a + l)t°, where —1 < a < 0 to insure

that p is integrable and concentrated near t = 0. The coefficient is chosen to insure that

Jp = 1. Then Ey{s) = £ p{t) dt = 1 - sa+1, so

Z(t) = (1 - 1 ) 1 ' ^ =* z'{t) = ^ (1 - *)~Q/(O+1) = ^ Y z ( t ) - Q . (22)



The relation between zr and z implies that

U{p) = - a C log[z(t)] dt - log(a + 1), (23)
Jo
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