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Abstract

We review a recently developed model of coherent structures in two-
dimensional magnetohydrodynamic turbulence. This model is based
upon a constrained maximum entropy principle: Most probable states
are determined as maximizers of entropy subject to constraints im-
posed by the conservation of energy, cross-helicity, and flux under the
evolution of an ideal two-dimensional magnetofluid. Predictions of the
model are compared with results of high-resolution numerical simula-
tions of magnetofluid turbulence.
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1 Introduction and Overview

In this note, we present a model of coherent structures in two-dimensional
(2D) magnetohydrodynamic (MHD) turbulence. By a coherent structure,
we mean a large-scale organized state that persists amidst the small-scale
turbulent fluctuations of the magnetic field and the velocity field. The emer-
gence of such macroscopic states is a dominant feature of large Reynolds
number MHD flows, as has been demonstrated by direct numerical simula-
tions. We model these structures as maximizers of an appropriate entropy
functional subject to constraints dictated by the conserved quantities of the
ideal (nondissipative) MHD equations. Excellent qualitative and quanti-
tative agreement is found with recent numerical simulations of 2D MHD
turbulence.

2 Ideal Magnetohydrodynamics

The equations of ideal, incompressible MHD in appropriately normalized
variables are:

Bt = V x ( V x B ) , (1)
Vt + V-VV = ( V x B ) x B - V p , (2)

V . B = 0 , V - K = 0, (3)

where B(xit) is the magnetic field, V{x,t) is the velocity field, and p(x,t)
is the fluid pressure. Note that p is determined instantaneously in response
to the incompressibility constraint on V. These equations are assumed to
hold in a regular bounded spatial domain D in R2, and x = (zi, £2) denotes
a generic point in D. The magnetic field and the velocity field take values
in R2. Boundary conditions are given by

J3-n = 0, V-n = 0 on C, (4)

where C is the boundary of D and n is the outward normal to C. The
model developed below also applies with minor modifications to the case of
a fundamental period domain corresponding to periodicity of B and V in
x\ and X2-

A 2D ideal magnetofluid conserves energy, flux, and cross-helicity. These
quantities are given by, respectively,

E = yD(B* + V2)dx, (5)



Fj = f /(a)cte, (6)
JD

Hf = f B.Vj'{a)dx. (7)
JD

Here a is the vector potential (or flux function), and is defined by the relation

B = (aX2 ,-aXl). (8)

The vector potential satisfies the boundary condition

a = 0 on C. (9)

The function / in (6) and (7) must satisfy certain regularity (eg. smooth-
ness) conditions, but is otherwise arbitrary. Thus, there are infinite fami-
lies of conserved flux integrals and cross-helicity integrals. These conserved
functionals, which give the dynamics of the 2D magnetofluid its special char-
acteristics, will play a fundamental role in the model sketched below.

3 Macroscopic Description of the MHD System

The high-resolution numerical simulations of Biskamp et al. [1, 2, 3] clearly
display the turbulent behavior of a slightly dissipative 2D magnetofluid. As
the field-flow state Y = (£, V) evolves, it develops rapid fluctuations on very
fine spatial scales. After a short period of time, large scale coherent struc-
tures emerge in the form of macroscopic magnetic and kinetic islands. These
structures persist for a relatively long time period amidst the turbulent fluc-
tuations before the dissipation causes them to decay. In the ideal limit of
vanishing dissipation, we expect that the mixing would continue indefinitely,
exciting arbitrarily small spatial scales, and that a turbulent relaxed state,
consisting of a large-scale coherent structure and infinitesimal-scale local
fluctuations, would be approached. Our main goal is to characterize this
final turbulent relaxed state.

The field-flow state Y constitutes a microscopic description of the MHD
system. Due to its highly intricate small-scale behavior, the microstate
Y does not furnish a palpable description of the long-time behavior of the
magnetofluid. For this reason, we introduce a coarse-grained, or macroscopic
description of the system. A macrostate (p(rr, y))xeD is a family of local
probability densities on the values y € R4 of the microstate Y at each
point x in the domain D. That is, for each x in D, p(x,y) represents a



joint probability density on the values y = (6, v) of the fluctuating field-flow
pair (B(x), V{x)). By appealing to the methods of nonlinear analysis, it is
possible to show that the macroscopic description p may be interpreted as
a possible long-time (t —• oo) weak limit of the microscopic field-flow state
Y(x, t) (See [4]). We say that Y(x, t) converges weakly to p as t —» oo if for
all bounded continuous functions G(x, y) on D x R4 there holds

/ / G(x,y)p(x,y)dydx=lim f G(x,Y(x,t))dx.

Technically, we may need to pass to a subsequence of times tn —• oo in the
definition.

4 Constraints on Macrostates

The conservation of energy, flux and cross-helicity under the ideal dynamics
translates into corresponding constraints on admissible macrostates. These
constraints are formulated in a manner consistent with the above-mentioned
weak convergence of Y(x, t) to p. They take the forms (see [4, 5] for math-
ematical details):

E(p) = \jDJ^(b2 + v2)p{x,y)dydx = E\ (10)

Ff(p) = [ f(a(x))dx = F°1 (11)
J D

Hj{p) 2 fDJ^b-v!l{a{x))p{x)y)dydx = H% (12)

where E°, F°, and Hj are the values of energy, flux, and cross-helicity fixed
by the initial state of the MHD system; the local mean magnetic field ~B{x)
is defined by the relation

5(z)= f bp{x,y)dy, (13)
JR4

and a(x) is the vector potential corresponding to 'B(x). For future reference,
we also define the local mean velocity field

F(s)= f vp{x,y)dy (14)

We note that both the mean field-flow and the fluctuations contribute to the
energy and cross-helicity integrals, whereas only the mean field contributes
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to the flux integrals. The latter is a consequence of the smoothing property
of the operator B —> a [4]. We might say that energy and cross-helicity are
cascaded to infinitesimal scales, while flux is cascaded to large scales.

5 Most Probable States: The Maximum Entropy
Principle

There have been previous applications of maximum entropy principles to
determine most probable states in MHD turbulence. An interesting model
along those lines was proposed by Montgomery et al. [6]. Our own research
into this subject began as an attempt to build upon the ideas presented
in [6]. The classical statistical mechanical theory of MHD turbulence, as
set forth by Fyfe and Montgomery [7] utilizes a truncated Fourier series
representation of the field-flow state, together with a canonical ensemble on
the Fourier amplitudes.

Our approach is inspired in part by the recent maximum entropy model
of Robert et al [8, 9] for coherent structures in 2D hydrodynamics. A
novelty of our model is that it incorporates the complete list of conserved
integrals of the ideal MHD dynamics, unlike the above mentioned theories.
Another new feature of our model is that it provides a scheme for determin-
ing analytical expressions for both the large-scale mean field-flow and the
infinitesimal-scale fluctuations inherent in the long-evolved state.

The entropy functional that we use is essentially the classical Gibbs-
Boltzmann-Shannon entropy:

= - / /
JDJR

p(xiy)\ogp{x,y)dydx. (15)
R4

As such, 5 is a measure of (the logarithm) of the number of microstates
corresponding to the macrostate p. Implicit in its definition as an integral
over D is the assumption that fluctuations at two separated points in D are
statistically independent. A detailed discussion of the rationale behind this
assumption is provided in [10].

In accordance with the principles expounded by Jaynes [11], we now
determine the most probable macrostate p as a maximizer of the entropy
(15) subject to the constraints (10)-(12) on energy, flux, and cross-helicity.
That is, we solve the constrained entropy maximization problem

(MEP) S(p) -> max, subject to E(p) = E°, Ff(p) = F°, Hf(p) = ifJ,



where / varies over all (sufficiently smooth) functions on the invariant range
of the flux function a.

In [4], a slightly different entropy functional (a Kullback relative entropy
functional with a Gaussian reference measure) was employed. However,
identical results are obtained with either the entropy used in [4] or the
entropy (15) used in the present note. Our maximum entropy formulation
may be partially justified by appealing to the theory of large deviations, as
was done in [4], or by the methods of [10], in which a discrete system that
satisfies a Liouville property was used to approximate the continuous MHD
system.

6 Calculation of Equilibrium States

For sake of economy, we consider here the simplified problem (SMEP):

S(p) —> max,

subject to the constraints
E(p) = £°,

= f f b-vp(x,y)dycb: = H0.
JD JRA

Here, /i, i = 1,. . . , M, may be chosen from some convenient family of basis
functions. Such a discretization of the flux constraints approximates quite
accurately the infinite family of constraints [12].

In taking into account only the quadratic cross-helicity constraint, we
are simplifying considerably the full statistical equilibrium problem (MEP).
However, this simplified problem does capture the essence of the correlation
effects between the field and the flow that result from the conservation of
cross-helicity. For an analysis of the consequences of the complete family of
cross-helicity integrals, the reader is referred to [10].

The solution p of (SMEP) follows from the Lagrange multiplier rule:

S\p) = (3E\p) + J>/*(p) + lH'{p), (16)

where /?, oti, and 7 are Lagrange multipliers corresponding to the constraints
on energy, flux, and cross-helicity, respectively. The derivatives in (16) are
functional derivatives. From (16) it follows that



where Z(x) is the partition function which enforces the normalization con-
straint

/ p(x, y) dy = 1, for all x in D.

After algebraic manipulations, we arrive at the expression

) (17)

where /i = —7//3. We note that - 1 < /x < 1 (see [4]).

7 Analysis of Equilibrium States

A glance at equation (17) reveals that the most probable macrostate p is for
each x in D a Gaussian distribution on the field-flow pair (B(x), V(x)). On
closer inspection we find that Var £i(x)=Var K(x) = l/(/?(l - M2)), corr
(jBt(x), K(x)) = /i, for i = 1,2, and for each x in D. The other components
are uncorrelated. The mean field-flow can be shown to satisfy the equations
(see [4])

Vjx) = /i£(x), (18)
7(x) = ^Ai/ZWrr)), (19)

where

is the current density corresponding to B(x), and A: = —Qi/(/3(l - /i2)).
In particular, it follows from (18)-(19) that the mean field-flow is a sta-

tionary solution of the ideal MHD equations (l)-(3). The theory predicts,
therefore, that the ideal magnetofluid will evolve to a turbulent relaxed state
consisting of a stationary mean field-flow (the coherent structure) and Gaus-
sian fluctuations. We also see from (19) that the mean field B is a critical
point of the (deterministic) magnetic energy, \ JD B2 dx, subject to the flux
constraints, JD /»(a) dx = Ff.

8 Comparison with Numerical Simulations

In general, the predictions of our maximum entropy model are in good agree-
ment with the numerical simulations of Biskamp et al [1, 2, 3). They ob-
serve local Gaussian distributions on the magnetic field and velocity field,



and a cascade of flux to large scales, which is indicative of the formation of
macroscopic magnetic structures. They also report a cascade of energy to
small-scales.

A particularly remarkable prediction of our model is that the ratio of
kinetic to magnetic energy in statistical equilibrium is less than 1, regardless
of the initial ratio. This follows from straightforward calculations and the
fact that the correlation /x satisfies — 1 < /x < 1. Indeed, we have for the
magnetic energy Em and the kinetic energy Ek the following expressions

Em = \ f f b2p(x,y)dydx = l [ B2dx + volume(D)/(/?(l - /i2)),
* JD JR4 * JD

o

I v*p(x> y^ dydx = *r I B2 d x + v o l u m e ( ^ / ( w - V2))-
D JR4 * JD

This prediction is also in accord with the numerical studies of Biskamp et
al [1, 2, 3], in which they observed the rapid relaxation of Ek/Em to an
almost constant value less than 1, even for initial ratios as large as 25.

For more detailed discussions of the predictions of our model and for
further comparisons with the numerical simulations of Biskamp et al [1, 2,
3], the reader is referred to [4, 5, 10].

9 Related Results

The maximum entropy model for 2D MHD turbulence proposed above has
been derived by Jordan and Turkington [10] as a continuum limit of a dis-
crete model that utilizes a spatial discretization of the field-flow state Y(x, t).
This discrete model is based on a discrete Fourier transform together with
an implicit canonical ensemble on the discretized variables. We also wish to
bring to the attention of the reader the very interesting work of Isichenko
and Gruzinov [13], who have obtained results similar to those reported here.
Their approach utilizes a canonical ensemble for a truncated spectral repre-
sentation of the MHD system. A clever rescaling of the inverse temperatures
enables them to formally pass to a continuum limit, thereby obtaining statis-
tics that respect the complete set of ideal MHD invariants. Their model also
predicts that the ideal magnetofluid will evolve to a state consisting of a sta-
tionary coherent structure and Gaussian fluctuations.
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